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Abstract— This note deals with observer design for nonlinear
systems via Linear Matrix Inequalities (LMIs). The main goal
consists of showing that for some families of nonlinear systems,
the LMI-based observer design techniques always provide
exponential convergent observer. Indeed, until now, this advan-
tageous feature is unique to some types of observers/estimators,
such as the high-gain observer, the sliding mode observer,
and the moving horizon estimator, under certain conditions
of detectability or observability. More specifically, the LMI
conditions we propose in this paper always provide solutions
to both systems in companion form and feedforward struc-
ture. An extension to a general class of nonlinear triangular
systems without linear components is provided, which renders
the applicability of LMI-based methods possible for a wide
class of nonlinear systems without the need for nonlinear
diffeomorphism-based transformations.

Index Terms— Observers design, Lipschitz systems, LMIs.

I. INTRODUCTION

Observer design for nonlinear systems has become a vital
and crucial step in modern control design issues due to the
integration of novel technologies and the development of
new and sophisticated sensors. Such technologies involve
numerous variables or states from different natures, such as
cyber-physical states, for instance [1]. The observer design
step is motivated by the often very high cost of sensors, and
sometimes because of the unavailability of sensors at any
cost.

Tremendous research activities have been paid to nonlinear
observer design and various methods have been proposed
in the literature. Among these methods, apart from the op-
timization/minimization of cost functions-based techniques,
like the extended Kalman filter, and the moving horizon esti-
mator, we can mention the famous high-gain observer design
methodology [2], the sliding mode observer approach [3],
and the LMI-based techniques [4]. While the first two tech-
niques guarantee the existence of the observer design under
only some assumptions on the nonlinearity of the system,
however, the last one provides only sufficient conditions
expressed in terms of LMIs for which feasibility is not
always ensured, which is the main drawback of LMI-based
observer design approach. In this paper, we will address this
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problem and we will analyze the feasibility of LMIs for some
specific families of nonlinear systems, namely systems in
companion form, and systems having feedforward structure.

Several LMI-based techniques have been developed in the
literature, where each technique attempts to reduce the con-
servatism of the LMI design conditions ensuring exponential
convergence of the observer (2). Among these methods, there
are the old techniques, which are conservative [5], [6], [7],
[8], and the recent approaches [9], which provide feasible
LMI conditions for a wider class of nonlinear systems.
Feasibility of the LMI conditions depends on the Lipschitz
constant and the structure of the nonlinearity of the system.
To overcome these limitations, the recent LMI approaches
use some mathematical tools in convenient ways to dominate
the Lipschitz constant and to compensate for the structure of
the nonlinearity due to additional decision variables. Despite
the considerable efforts made to propose enhanced LMI
conditions, this approach suffers from a major drawback,
which is the absence of a guarantee of feasibility for any
Lipschitz constant. This weakens the LMI techniques and
sometimes makes them useless. Recently in [10], instead of
guaranteeing the feasibility of LMI conditions, the authors
proposed new results on guaranteeing infeasibility of the
LMIs for systems where all the system components or all the
output functions are non-monotonic. In spite of this result,
the problem of guaranteeing feasibility is the most important
and still remains open. It would therefore be interesting to
work on the analysis and guarantee of the feasibility of LMIs
for at least some particular families of nonlinear systems as
it is the case with some famous nonlinear observers, namely
high-gain observers and sliding mode observers. This goal
is the motivation of this paper.

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

A. Problem statement

Consider the class of systems described by the following
equations: {

ẋ = Ax+ f(x)
y = Cx+ h(x)

(1)

where x ∈ Rn is the system state and y ∈ Rp is the
output measurement vector. Without loss of generality, and
for the sake of brevity, we consider the system (1) without
control input. We assume that the functions f(.) and h(.)
are respectively γf−Lipschitz and γh−Lipschitz with respect
to their arguments. Without loss of generality, the Lipschitz
constraint is assumed to be global. Otherwise, we need
to apply the Hilbert projection theorem [11], [12] or the
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Kirszbraun–Valentine extension theorem [13], [14] to extend
f(.) and h(.) to global Lipschitz functions. We only need
the system (1) to admit a positively invariant compact set on
which f(.) and h(.) are Lipschitz. The reader can also find
details on this extension in [2].

As usual in the LMI context, which is the objective of
the paper, we consider the following Luenberger observer
structure corresponding to (1):

˙̂x = Ax̂+ f(x̂) + L
(
y − Cx̂− h(x̂)

)
(2)

where x̂ ∈ Rn is the estimate of x and the matrix L ∈ Rn×p
is the observer gain to be determined such that the estimation
error ϵ ≜ x− x̂ converges exponentially towards zero.

Of all the existing methods, the less conservative one is
the LPV/LMI approach which is based on transforming the
dynamics of the estimation error into a polytopic system,
and then the application of the convexity principle leads to
solving a finite number of LMI conditions without using
strong upper bounds to dominate the nonlinearity of the
system. For this reason, in this paper, we will exploit this
method and we will show that the LMIs are always feasible
for some families of nonlinear systems. Hence, we will first
recall the LPV/LMI technique.

By applying [15, Lemma 7], there exist functions ψij(., .)
and ϕij(., .) such that the dynamics of the estimation error
is given as

ϵ̇ =
(
A− LC

)
ϵ+

[
f(x)− f(x̂)

]
+
[
h(x)− h(x̂)

]
=

(
A
(
ψ
)
− LC

(
ϕ
))
ϵ (3)

where

A
(
ψ
)
≜ A+

n,n∑
i,j=1

ψijHn,n
ij (4)

C
(
ϕ
)
≜ C +

p,n∑
i,j=1

ϕijHp,n
ij (5)

−γfi ≤ γ
ψij

≤ ψij ≤ γ̄ψij
≤ γfi (6)

−γhi ≤ γ
ϕij

≤ ϕij ≤ γ̄ϕij ≤ γhi (7)

with

ψij ≜ ψij

(
xx̂j−1 , xx̂j

)
, ϕij ≜ ϕij

(
xx̂j−1 , xx̂j

)
.

It is clear from (6) and (7) that the parameters ψ and ϕ
belong to the bounded convex sets

Sf =
{
φ ∈ Rn×n : γ

ψij
≤ φij ≤ γ̄ψij

}
, (8)

Sh =
{
φ ∈ Rp×n : γ

ϕij
≤ φij ≤ γ̄ϕij

}
(9)

for which the sets of vertices are respectively given by

Vf =
{
φ ∈ Rn×n : φij ∈ {γ

ψij
, γ̄ψij

}
}

(10)

and
Vh =

{
φ ∈ Rp×n : φij ∈ {γ

ϕij
, γ̄ϕij

}
}
. (11)

Hence, by using the quadratic Lyapunov function

ϑ(ϵ) ≜ ϵ⊤Pϵ

and developing its derivative along the trajectories of (3), we
obtain following theorem.

Theorem 1: The estimation error ϵ satisfying (3) con-
verges exponentially towards zero if there exists a positive
definite matrix P = P⊤, a matrix X ∈ Rn×p, and a scalar
λ > 0 such that the following LMIs are feasible:

A
(
ψ
)⊤P+ PA

(
ψ
)
− C

(
ϕ
)⊤X⊤ −XC

(
ϕ
)
+ λIn < 0

∀ψ ∈ Vf , ∀ϕ ∈ Vh. (12)

Moreover, the observer gain is computed by L = P−1X .
Proof: The proof is straightforward from the LPV/LMI

technique in [15]. The term λIn is added to get exponential
convergence instead of asymptotic convergence.

Although (12) are the less restrictive LMI conditions that
can exist in the literature, they are still strongly dependent on
the Lipschitz constants of the nonlinearities, namely the set
of vertices Vf and Vh. They are not always feasible for all
values of the bounds γ

ϕij
, γ̄ϕij

, γ
ψij

, and γ̄ψij
. To improve

the feasibility, some guidelines have been given in [16].
Therefore, this note is a continuation of the work in [16].
We will not only improve the feasibility of LMI conditions
as in [16], but we will show that LMIs (12) are still always
feasible for some classes of nonlinear systems independently
from the value of the Lipschitz constant of the nonlinearity
of the system.

III. FEASIBLE LMIS FOR PARTICULAR FAMILIES OF
SYSTEMS

For some classes of nonlinear systems, we can al-
ways guarantee feasibility of the LMIs for any bounds
γ
ϕij
, γ̄ϕij

, γ
ψij

, and γ̄ψij
. This is the objective of this section.

A. Systems in canonical form

Here we will study the case where system (1) can be
transformed into the following triangular form through a
diffeomorphism z = Φ(x):

ż =


ż1
ż2
...

żn−1

żn

 =


z2
z3
...
zn
fz(z)


y = z1

(13)

which can be written under the following compact form (14):{
ż = Azz +Bzfz(z)
y = Czz

(14)

where Az, Cz , and Bz have the companion structure as
in [17]. Note that a more general class of systems with a
nonlinearity fi(z1, . . . , zi) in each component of the system
can be considered, without loss of generality. However, for
the sake of brevity, we investigate (13) with only a single
nonlinear function in the last component of the system.
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Now introduce the linear transformation

ζ = Tτz, where Tτ ≜ diag

(
1

τ
, . . . ,

1

τn

)
(15)

which transforms (13) into

ζ̇ = τAzζ +
1

τn
fz(T−1

τ ζ). (16)

Let us consider the following state observer corresponding
to (16):

˙̂
ζ = τAz ζ̂ +

1

τn
fz
(
T−1
τ ζ̂

)
+ L

(
y − CzT−1

τ ζ̂
)

(17)

where L, independent from τ , is the constant observer gain
to be determined. Then the dynamics of the estimation error
eζ = ζ − ζ̂ is expressed as

ėζ = τ
(
Az − LCz

)
eζ +Bz∆fz (18)

where
∆fz ≜

1

τn

[
fz(T−1

τ ζ)− fz
(
T−1
τ ζ̂

)]
. (19)

Applying [15, Lemma 7], there exist functions

ψj : Rn × Rn −→ R

and constants γ
j
≤ 0 and γ̄j ≥ 0, such that

∆fz =
[ j=n∑
j=1

ψj
τn−j

e⊤n (j)
]
eζ (20)

and
γ
j
≤ γj ≤ γ̄j , (21)

where e⊤n (j) is the jth element of the canonical basis of Rn.
Similarly to (4), we introduce the affine matrix A(τ ,Ψ)

defined as

A
(
τ ,Ψ

)
= Az +

n∑
j=1

[ 1

τ1+(n−j)ψje
⊤
n (j)

]
(22)

where Ψ =
[
ψ1, . . . , ψn

]⊤
. Then, the parameter Ψ belongs

to a bounded convex set for which the set of vertices is given
by

Vfz ≜
{
v ∈ Rn : vj ∈ {γ

j
, γ̄j}

}
. (23)

From (18), (20), and (22), it follows that the dynamics of
the estimation error becomes

ėζ = τ
[
A
(
τ ,Ψ

)
− LCz

]
eζ . (24)

Consequently, we can state the following corollary as a
particular case of Theorem 1.

Corollary 2: Let P = P⊤ > 0 and X be matrices of
appropriate dimensions, and τ > 0 is a scalar, such that the
following LMI conditions hold:

A
(
τ , w

)⊤P + PA
(
τ , w

)
− C⊤

z X − X⊤Cz < 0,

∀w ∈ Vfz . (25)

Then the observer (17) corresponding to (16), with L =
P−1X⊤, converges exponentially towards zero. Moreover,

the estimated state x̂ = Φ−1
(
T−1
τ ζ̂

)
converges exponentially

to the state x of the original system (1).
Proof: The proof is omitted.

Corollary 2 is an intermediate gateway that leads straight-
forwardly to the next important result from the LMI point
of view. Such a result is given in the following proposition.

Proposition 1: For any fixed values of the bounds γ
j

and
γ̄j , j = 1, . . . , n, there exists τ∗ > 0 such that the LMIs (25)
are feasible for any τ ≥ τ∗.

Proof: Since (Az, Cz) is observable, then there always
exists a matrix P = P⊤ > 0 and a matrix X such that

A⊤
z P + PAz − C⊤

z X − X⊤Cz < 0.

On the other hand, from the definition of A
(
τ ,Ψ

)
in (22),

we have

lim
τ→+∞

(
A
(
τ , w

))
= Az, ∀w ∈ Vfz .

Then from continuity of A
(
τ , w

)
with respect to τ , there

exists τ∗ > 0 large enough such that the LMI (25) holds for
any τ ≥ τ∗.

Proposition 1 means that the LMIs (25) are always feasible
for any global Lipschitz nonlinear function fz(.) indepen-
dently from the value of its Lipschitz constant. This result
is important in the LMI context since it always guarantees
the design of an LMI-based exponential observer for any
Lipschitz constant of the system. This is not the case in
general for the arbitrary structure of the system where the
feasibility of the LMIs depends strongly on the value of the
Lipschitz constant of the system.

Remark 1: High-gain observer design is a particular case
of the proposed methodology. Indeed, as can be seen in
the proof of Proposition 1, a sufficiently large value of τ
guarantees exponential stability of the estimation error. Such
a sufficiently large value of τ leads to high values of the
observer gain.

Remark 2: The result of this section remains valid for the
more general class of systems (26) with multi-nonlinearities,
described by the following equations:

ż =


ż1
ż2
...

żn−1

żn

 =


z2
z3
...
zn
0

+


f1(z1)

f2(z1, z2)
...

fn−1(z1, z2, . . . , zn−1)
fn(z)


y = z1.

(26)
The generalization is straightforward, therefore it is not
necessary to provide the developments. On the other hand,
we avoid repetition since in the next section, we will consider
multi-nonlinearities in the system description.

B. Systems having feedforward structure

Consider the class of feedforward systems described by the
equations below, which can be obtained by transforming (1)
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through the diffeomorphism z = Φ(x):

ż =



ż1
ż2
...

żn−2

żn−1

żn


=



z2 + f1(z3, . . . , zn)
z3 + f2(z4, . . . , zn)

...
zn−1 + fn−2(zn)

zn
u(t)


= Azz + f feed(z) +Bu(t)

y = z1

(27)

where u(t) is any known signal. In general, when we con-
sider system (1) with the presence of control input, namely
f(x, u) and h(x, u) instead of f(x) and h(x), we get the
structure (27) by using some backstepping transformation
techniques [18]. Such a structure is encountered in several
works in the literature, namely in [19], [20] and the refer-
ences therein.

Similarly to the previous section, by using the transforma-
tion (15) and the observer (17), we obtain

ėζ = τ
[
Afeed

(
τ ,Ψ

)
− LCz

]
eζ (28)

with

Afeed

(
τ ,Ψ

)
= Az +

n∑
i=1

n∑
j=i+2

[
τ j−(i+1)ψfeed

ij en(i)e
⊤
n (j)

]
(29)

where ψfeed
ij , independent from τ , comes from [15, Lemma 7]

with
−γf feed

i
≤ γ

ψfeed
ij

≤ ψfeed
ij ≤ γ̄ψfeed

ij
≤ γf feed

i
(30)

where γ
ψfeed

ij

≤ 0 and γ̄ψfeed
ij

≥ 0. From the structure (27), in

this case f feed, we have ψfeed
ij ≡ 0 for i = n− 1, i = n, and

∀j = 1, . . . , n. It is obvious because from (27), the last two
components of f feed are zero. This means that the parameter
Ψ belongs to an hyper-rectangle Sf feed for which the set of
vertices Vf feed is defined as follows:

Vf feed =
{
φ ∈ Rn×n : φij ∈ {γ

ψfeed
ij

, γ̄ψfeed
ij
}

φij = 0 for i = n− 1 and i = n
}
. (31)

It follows that

lim
τ→0

(
Afeed

(
τ ,Ψ

))
= Az, ∀Ψ ∈ Vf feed (32)

since ψfeed
ij is bounded and independent from τ .

Now we are ready to state the following proposition.
Proposition 2: There exists τ feed > 0, such that the

following LMI conditions hold ∀τ : 0 < τ ≤ τ feed:

Afeed
(
τ , w

)⊤P + PAfeed
(
τ , w

)
− C⊤

z X − X⊤Cz < 0,

∀w ∈ Vf feed , (33)

where P = P⊤ > 0 and X are matrices of appropri-
ate dimensions, which are the decision variables of the
LMIs (33). Then the observer (17) corresponding to (16),
with L = P−1X⊤, converges asymptotically. Moreover, the

estimated state x̂ = Φ−1
(
T−1
τ ζ̂

)
converges asymptotically

to the state x of the original system (1) for all τ satisfying
0 < τ ≤ τ feed.

Proof: First, as for the Proposition 1, from observability
of (Az, Cz), we deduce there always exist a matrix P =
P⊤ > 0 and a matrix X such that

A⊤
z P + PAz − C⊤

z X − X⊤Cz < 0.

On the other hand, we have

Afeed
(
τ , w

)⊤P + PAfeed
(
τ , w

)
− C⊤

z X − X⊤Cz

=

<0︷ ︸︸ ︷
A⊤
z P + PAz − C⊤

z X − X⊤Cz

+S(τ , w)P + PS(τ , w)⊤ (34)

where

S(τ , w) ≜
n∑
i=1

n∑
j=i+2

[
τ j−(i+1)ψfeed

ij en(i)e
⊤
n (j)

]
.

Then, from (32) and the continuity of Afeed
(
., w

)
with

respect to τ (we can also use the Archimedean property),
there exists τ feed > 0 such that

Afeed
(
τ feed, w

)⊤P + PAfeed
(
τ feed, w

)
− C⊤

z X − X⊤Cz < 0

∀w ∈ Vf feed . (35)

On the other hand, we have

Afeed
(
τ , w

)
= Afeed

(
τ feed, wτ

)
with wτij =

[
τ
τ feed

]j−(i+1)
wij . Since γ

ψfeed
ij

≤ 0 and γ̄ψfeed
ij

≥
0, and we have w ∈ Vf feed , then wτ ∈ Sf feed for any τ ≤
τ feed, i.e.: τ

τ feed ≤ 1. Hence, from the convexity principle, the
inequality (35) is preserved ∀τ ≤ τ feed, which ends the proof
of Proposition 2.

IV. EXTENSION TO A MORE GENERAL CLASS OF
SYSTEMS

This section is devoted to a more general class of systems,
which does not contain necessarily linear parts like in (13).

Consider the class of systems (1) which can be trans-
formed to the following form through the diffeomorphism
z = Φ(x):

ż =


ż1
ż2
...

żn−1

żn

 =


ϕ1(z1, z2)

ϕ2(z1, z2, z3)
...

ϕn−1(z1, z2, . . . , zn−1, zn)
ϕn(z)


= fnl(z)
y = φ(z1).

(36)

This extension can be useful in the sense that some real-
world models are not in the form (13), and then they do not
need to be transformed into (13) with complex structure of
nonlinearities. For a motivating example, we can mention the
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tumor growth model investigated in [21] and the references
therein. Such a tumor growth model is under the form (36).
To avoid repetition and cumbersome notations, we consider,
in this section, only systems under the nonlinear canonical
form. Extension to systems having nonlinear feedforward
structures can be straightforwardly obtained.

We use again the same change of variable (15), ζ = Tτz,
to design an observer for (36). We then, first, introduce the
state observer corresponding to ζ:

˙̂
ζ = Tτfnl

(
T 1

τ
ζ̂
)
+ L

[
y − φ

(
τ ζ̂1

)]
(37)

where we used T−1
τ = T 1

τ
; ζ̂ is the estimate of ζ. Then

the estimation of z is expressed as ẑ = T 1
τ
ζ̂. Hence,

the estimation of the original state x is given by x̂ =

Φ−1
(
T 1

τ
ζ̂
)

. Notice that in the case of the tumor growth
model in [21], the system is under the form (36), then there
is no need for nonlinear transformation. Therefore, we get
directly from (37) an estimation of x as x̂ = T 1

τ
ζ̂.

Now let us come back to the convergence analysis of the
estimation error eζ = ζ − ζ̂. We have

ėζ = Tτ

∆fnl︷ ︸︸ ︷[
fnl

(
T 1

τ
ζ
)
− fnl

(
T 1

τ
ζ̂
)]

+ L
[
φ (τζ1)− φ

(
τ ζ̂1

)]
. (38)

By applying [15, Lemma 7] and after isolating the terms
corresponding to the (i + 1)th component of the state and
the ith component of the nonlinearity, fnli , we deduce that
there exists functions

ψnl
ij : Rn × Rn −→ R

φ1 : R× R −→ R

and constants γ
ψnl

ij

, γ̄ψnl
ij

, γ
φ1

, and γ̄φ1 , such that

∆fnl = τ

[
n−1∑
i=1

ψnl
i,i+1(t)en(i)e

⊤
n (i+ 1)

]
eζ

+

 n∑
i=1

i∑
j=1

[ 1

τ i−j
ψnl
ij(t)en(i)e

⊤
n (j)

 eζ (39)

φ (τζ1)− φ
(
τ ζ̂1

)
= τφ1(t)Czeζ (40)

and
γ
ψnl

ij

≤ ψnl
ij (t) ≤ γ̄ψnl

ij
(41)

γ
φ1

≤ φ1 (t) ≤ γ̄φ1
(42)

where ψnl
ij(t) and φ1(t) are independent from τ ; ψnl

ij (t) ≜

ψnl
ij

(
ζ ζ̂j−1 , ζ ζ̂j

)
and φ1(t) ≜ φ1

(
ζ1, ζ̂1

)
are introduced for

simplification. Furthermore, we assume, as in the previous
section, that

γ
ψnl

ij

≤ 0 and γ̄ψnl
ij
≥ 0, for all j ≤ i, i = 1, . . . , n. (43)

More importantly, we need the following assumption for the
existence of the observer we propose:

γ
ψnl

i,i+1

> 0 and γ
φ1
> 0. (44)

Notice that conditions (44) are introduced first in [2]
to guarantee the existence of a high-gain observer for the
system (36). Authors in [2, Eq.(75), page 96] used a slightly
different, but equivalent, condition, namely

0 < α ≤ ψnl
i,i+1(t) ≤ β and α ≤ φ1(t) ≤ β (45)

which can be obtained from (41)-(42) and (44) with

α = min

(
min

i=1,...,n−1
γ
ψnl

i,i+1

, γ
φ1

)
,

β = max

(
max

i=1,...,n−1
γ̄ψnl

i,i+1
, γ̄φ1

)
.

Now, we introduce the following notations:

ψt ≜


ψnl

1,2(t)

ψnl
2,3(t)
...

ψnl
n−1,n(t)

 ∈ Rn−1, φt ≜



ψnl
11(t)

ψnl
21(t)

ψnl
22(t)

ψnl
31(t)
...

ψnl
n1(t)
...

ψnl
nn(t)


∈ R

n(n+1)
2 (46)

A (ψt) ≜
n−1∑
i=1

ψnl
i,i+1(t)en(i)e

⊤
n (i+ 1)

=


0 ψnl

1,2(t) 0 . . . 0 0
0 0 ψnl

2,3(t) 0 . . . 0
...

...
...

. . .
...

...
0 0 0 0 . . . ψnl

n−1,n(t)
0 0 0 0 . . . 0

 (47)

Anl (τ ,φt) ≜
n∑
i=1

i∑
j=1

1

τ1+i−j
ψnl
ij(t)en(i)e

⊤
n (j) (48)

C (φ1(t)) ≜ φ1(t)Cz.

The dynamic of the estimation error (38) can then be
expressed under the following compact form:

ėζ = τ
[
A (ψt) +Anl (τ ,φt)− LC (φ1(t))

]
eζ . (49)

By definition (46) and assumption (41), the time-varying
parameters ψt and φt belong to bounded convex sets for
which the sets of vertices are respectively, given as follows:

Vψ =
{
φ ∈ Rn−1 : φi ∈ {γ

ψnl
i,i+1

, γ̄ψnl
i,i+1

},

where γ
ψnl

i,i+1

> 0, i = 1, . . . , n− 1
}
, (50)
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Vφ =
{
ρ ∈ R

n(n+1)
2 : ρ =

ρ1...
ρn

 ,ρi =
ρi1...
ρii

 ,
ρij ∈ {γ

ψnl
ij

, γ̄ψnl
ij
}, s.t (43)

}
. (51)

Now we are ready to state the main proposition of this
section.

Proposition 3: There exists τ⋆nl > 0, such that ∀τ ≥ τ⋆nl,
there exist matrices P = P⊤ > 0 and X of appropriate
dimensions, and a scalar λ > 0, such that the following LMI
holds:[

A(v) +Anl
(
τ , w

)]⊤ P + P
[
A(v) +Anl

(
τ , w

)]
−C(κ)⊤X − X⊤C(κ) < −λIn,
∀v ∈ Vψ,∀w ∈ Vφ,∀κ ∈ {γ

φ1
, γ̄φ1

}. (52)

Then the observer (37) with L = P−1X⊤, converges
exponentially. Moreover, the estimated state x̂ = Φ−1

(
T 1

τ
ζ̂
)

converges exponentially to the state x of the original sys-
tem (1), ∀τ ≥ τ⋆nl > 0.

Proof: Since v ∈ Vψ , κ ∈ {γ
φ1
, γ̄φ1

}, and taking in
mind (44), it follows from [2, Lemma 2.1, page 96] that
there exist matrices P = P⊤ > 0 and X of appropriate
dimensions, and a scalar λ > 0, such that

A(v)⊤P + PA(v)−C(κ)⊤X − X⊤C(κ) < −2λIn,
∀v ∈ Vψ,∀w ∈ Vφ,∀κ ∈ {γ

φ1
, γ̄φ1}. (53)

Also, since

lim
τ→0

(
Anl

(
τ , w

))
= 0n×n, ∀w ∈ Vφ

then it is obvious that ∃τ⋆nl > 0 large enough, such that

Anl
(
τ , w

)⊤P + PAnl
(
τ , w

)
< λIn,
∀w ∈ Vφ, ∀τ ≥ τ⋆nl. (54)

Hence, summing (53) and (54), the relation (52) is inferred.

Remark 3: Notice that the condition (44) may also be
replaced by

γ̄ψnl
i,i+1

< 0 and γ̄φ1
< 0 (55)

and the result still remains valid. Indeed, the condition for
the existence of solution to (53) is the strict monotonicity of
the nonlinearities ϕi and φ with respect to the variables zi+1

and z1, respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that LMI-based approaches
can also guarantee the design of nonlinear observers for a
large class of nonlinear systems. We proposed LMI condi-
tions for the synthesis of nonlinear observers and we showed
that the feasibility of such LMIs is guaranteed for some fam-
ilies of nonlinear systems. While the feasibility of the LMIs
is not ensured for arbitrary structure of the nonlinearities,
it is shown that such feasibility guarantee is applicable to

important families of systems, namely triangular systems and
systems having feedforward structures.

In future work, we aim to apply the results to real-
world models to show the effectiveness and superiority
of the proposed techniques. We also aim to deepen the
methods to propose new synthesis approaches based on
LMI techniques combined with high-gain observer-based
methodology, for systems having arbitrary structure of the
nonlinearities, namely non-triangular systems.
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