
Addressing Discrete Dynamic Optimization via a Logic-Based
Discrete-Steepest Descent Algorithm

Zedong Peng, Albert Lee, David E. Bernal Neira

Abstract— Dynamic optimization problems involving discrete
decisions have several applications, yet lead to challenging
optimization problems that must be addressed efficiently. Com-
bining discrete variables with potentially nonlinear constraints
stemming from dynamics within an optimization model results
in mathematical programs for which off-the-shelf techniques
might be insufficient. This work uses a novel approach, the
Logic-based Discrete-Steepest Descent Algorithm (LD-SDA), to
solve Discrete Dynamic Optimization problems. The problems
are formulated using Boolean variables that enforce differential
systems of constraints and encode logic constraints that the
optimization problem needs to satisfy. By posing the problem
as a generalized disjunctive program with dynamic equations
within the disjunctions, the LD-SDA takes advantage of the
problem’s inherent structure to efficiently explore the combi-
natorial space of the Boolean variables and selectively include
relevant differential equations to mitigate the computational
complexity inherent in dynamic optimization scenarios. We rig-
orously evaluate the LD-SDA with benchmark problems from
the literature that include dynamic transitioning modes and
find it to outperform traditional methods, i.e., mixed-integer
nonlinear and generalized disjunctive programming solvers, in
terms of efficiency and capability to handle dynamic scenarios.
This work presents a systematic method and provides an
open-source software implementation to address these discrete
dynamic optimization problems by harnessing the information
within its logical-differential structure.

I. INTRODUCTION

Control tasks with high-level discrete or logical decisions,
such as integrated process design and control [1], trajectory
optimization [2], and energy management in hybrid electric
vehicles [3], can be modeled using Mixed-Integer Dynamic
Optimization (MIDO). However, MIDO problems are com-
putationally challenging to solve, and standard optimization
solvers cannot simultaneously handle discrete variables and
differential algebraic equations (DAE). The standard routine
for solving MIDO problems is to discretize differential
equations, resulting in a mixed-integer nonlinear program-
ming (MINLP) problem [1], [4], [5]. However, the resulting
MINLP problem is usually nonconvex, as it involves non-
linear equality constraints, and existing MINLP solvers are
insufficient to solve these problems [6], particularly in online
settings relevant to MIDO.

Since the discrete behaviors in mixed-integer control prob-
lems can sometimes be modeled as logic variables and
constraints, an alternative to MIDO is Differential-Algebraic
Generalized Disjunctive Programming (DAGDP). In DAGDP
problems, logical decisions, represented as Boolean variables

Zedong Peng, Albert Lee, and David E. Bernal Neira are with the David-
son School of Chemical Engineering, Purdue University, West Lafayette, IN,
47907 USA {peng372,lee4382,dbernaln}@purdue.edu

indicating the choices via True or False values, interact
with the dynamic systems depicted by differential equations.
Compared to the MIDO formulation, the disjunctions in
DAGDP problems allow for a more compact representation
of the logic-induced control problem, where certain opera-
tions or configurations are only feasible or relevant under
specific discrete conditions. Moreover, another benefit of
the DAGDP formulation is that it facilitates the use and
development of alternative solution strategies in addition to
the MINLP reformulation, which more effectively leverages
the structure of the optimization model. The use of dynamic
models within the framework of DAGDP offers a promising
avenue to model control problems associated with processes,
and this paper introduces an innovative approach to effec-
tively tackling their complexities.

A. Related Work

The approaches to solving DAGDP problems primarily de-
rive from and combine established ideas from both general-
ized disjunctive programming (GDP) and dynamic optimiza-
tion. Typically, solution strategies for dynamic optimization
problems include single shooting, multiple shooting, direct
transcription, and numerical integration [5]. In the literature,
direct transcription, e.g., finite difference or orthogonal collo-
cation, is first applied to discretize the DAE system. Through
this, the DAGDP problem will be reformulated into a GDP
model, which will be solved by reformulation into MINLP
(BigM or Hull) or logic-based methods [1], [7]. Although
this approach is simple and intuitive, it has a significant
drawback, that the reformulated MINLP problem is usually
nonconvex.

In addition to MINLP reformulation, an alternative method
to solve MIDO problems is to apply complete discretiza-
tion techniques based on complementarity constraints, also
known as the Mathematical Program with Equilibrium Con-
straints (MPEC) [8]. The complementarity constraint avoids
the use of discrete variables. However, MPEC reformulations
yield a highly nonconvex nonlinear programming (NLP)
problem, usually challenging to solve.

Other DAGDP solution approaches in the literature han-
dle the discrete variables first and then solve a series of
continuous dynamic optimization subproblems. This strategy
does not necessarily depend on a particular discretization
technique and provides more freedom to tackle the DAE sys-
tem. For example, the MIDO problems can be decomposed
into a primal dynamic optimization and mixed-integer linear
programming (MILP) sub-problems. These can be solved
later using a MINLP decomposition algorithm, such as the

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 1664

outer-approximation and generalized bender decomposition
methods [9]. Chachuat et al. [10] address MIDO problems
by adapting the outer-approximation algorithm and applying
the branch-and-bound method to solve dynamic optimiza-
tion subproblems to global optimality. Deriving valid linear
inequalities to construct the MILP subproblems is a challeng-
ing task for MIDO problems, which usually have nonconvex
nonlinear constraints. Inspired by this approach, we propose
decomposition methods that decouple the dynamic optimiza-
tion from the discrete choices. We aim to tackle the discrete
variable optimization without defining a MILP.

Another technique used to optimize discrete problems
is through a discrete steepest descent algorithm (D-SDA),
where the search space is mapped to a lattice representing
each realization of the discrete variables and its correspond-
ing subproblem over the remaining continuous decision, fol-
lowed by a series of steepest descent steps to find improving
solutions [11]. This lattice can be smaller than the original
combinatorially large one defined by all combinations. The
D-SDA is designed to address MINLP problems and has
been used to efficiently solve dynamic optimization problems
that integrate design and nonlinear model predictive control
(NMPC) [12] and consider cases even under uncertainty [13].
This approach effectively avoids the pitfalls of nonconvexi-
ties and suboptimal solutions inherent in other optimization
methods. In this particular case, the dynamic model is not di-
rectly enforced by the discrete choices in the problem. While
the D-SDA demonstrates robustness in managing complex
decision variables and nonconvex problems, as illustrated in
a distillation column case study, the authors acknowledge the
computational intensity of the subproblems as a challenge
and point towards future enhancements to improve efficiency
and applicability to broader systems.

Another recent extension of the D-SDA is to consider the
case where discrete choices imply sets of (potentially non-
linear) constraints, usually expressed as GDP problems [14].
This approach was named logic-based D-SDA (LD-SDA).
Using the LD-SDA shows that leveraging the logical struc-
ture in these disjunctive programs leads to an improved
solution of highly nonlinear problems, such as a catalytic
distillation column, compared to using the D-SDA over a
reformulated MINLP. The constraints implied by the Boolean
variables addressed by the LD-SDA were algebraic, and no
previous work has addressed the case where a system of
differential equations implies these constraints.

B. Contributions

This work’s contributions can be summarized as follows:
• We extend the LD-SDA to solve DAGDP problems.

The LD-SDA utilizes a logic-based search strategy to
explore the search space given by the discrete choices,
here Boolean variables, involved in disjunctions, and
it is independent of the type of method used to solve
the dynamic optimization subproblems. This flexibility
allows a variety of dynamic optimization approaches to
be applied, such as finite difference methods, orthogonal
collocation, and even numerical integrators.

• This work integrated the model transformations in the
open-source algebraic modeling language Pyomo [15],
Pyomo.DAE and Pyomo.GDP, for DAGDP model-
ing. Several numerical instances of mode transition
are provided. The implementation is available at
github.com/SECQUOIA/LD-SDA-Dynamic.

• An open-source and general implementation of LD-
SDA is provided as an option for the GDPOpt
solver [16] for users to solve GDP problems, potentially
with DAE systems in the disjunctions.

II. BACKGROUND

A. Discrete-Continuous Dynamic Optimization Problems

In this work, we focus on DAGDP problems with Boolean
variables, i.e., Y ∈ {False,True}= {⊥,⊤}, and differential-
algebraic equations (DAE) in the disjunctions. The problem
formulation can be written as follows.

min
x(t),y(t),
u(t),p,

Y (t)∈{⊥,⊤}

ψ(x(t),y(t),u(t), p, t) (1a)

s.t. ξ (x(t), ẋ(t),y(t),u(t), p, t) = 0 (1b)∨
r∈Dk

[
Ykr

ϕkr(x(t), ẋ(t),y(t),u(t), p, t) = 0

]
(1c)

⊻r∈Dk (Ykr) = True =⊤ ∀k ∈ K (1d)
Ω(Ykr) = True =⊤ (1e)
x(0) = x0 (1f)

xL ≤ x(t)≤ xU ,yL ≤ y(t)≤ yU (1g)

uL ≤ u(t)≤ uU , pL ≤ p≤ pU . (1h)

where x(t) represents the time-dependent state vectors, with
time derivatives indicated by ẋ(t). y(t) denotes the algebraic
variable states, and u(t) the control actions. The vector p en-
compasses the decision variables of the system not dependent
on time t. Eq. (1b) represents the DAE system or the purely
algebraic equations that are consistently enforced. For each
disjunction k ∈ K, a selection is made from a set of options
defined by Dk. For every disjunct r ∈ Dk, a Boolean vari-
able Ykr, differential algebraic equations, representing system
dynamics, are specified as Eq. (1c). The objective function
ψ(·) and functions ξ (·) and ϕkr(·) that define constraints
are potentially nonlinear. The Boolean variables follow an
exclusive OR (⊻) constraint as Eq. (1d), ensuring that within
each disjunction k, exactly one option r is selected. If
Yk,r(t) is set to True = ⊤, the corresponding disjunct and
the constraints inside will be active. Otherwise, the disjunct
can be discarded. Eq. (1e) is the logical propositions that
represent the relationships of the logical variables. The initial
state and the bounds are provided in Eqs. (1f) - (1h).

B. Reformulations and logic-based methods for GDP

There are different strategies to solve GDP problems. One
approach is to reformulate the GDP problem into MINLP
problems via BigM and Hull reformulations. The BigM
reformulation introduces a sufficiently large scalar that makes
the particular constraint redundant when its indicator variable

1665

is not selected. The Hull reformulation lifts the model to
a higher-dimensional space by introducing copies of the
continuous variables and constraints inside disjunctions. The
Hull reformulation always yields tighter relaxations than the
BigM reformulation at the expense of larger model sizes. For
more details, see [17].

In addition to MINLP reformulation, one can exploit
explicit logical propositions in GDP problems via logic-
based methods, such as the logic-based outer approxima-
tion (LOA) and logic-based branch and bound (LBB) [16].
Contrary to the MINLP reformulation, logic-based methods
formulate specific subproblems corresponding to the values
of the logical variables while solving the problems. These
subproblems only include constraints activated by the logical
variables within each evaluated assignment of True/False to
each Boolean variable, or configuration. For instance, if the
specific logical configuration Ŷ is given, the disjunctions can
be fixed, and the subproblem becomes

min
x(t),y(t),u(t),p

ψ(x(t),y(t),u(t), p, t) (2a)

s.t. ξ (x(t), ẋ(t),y(t),u(t), p, t) = 0 (2b)
ϕkr(x(t), ẋ(t),y(t),u(t), p, t) = 0 ∀Ykr =⊤ (2c)
x(0) = x0 (2d)

xL ≤ x(t)≤ xU ,yL ≤ y(t)≤ yU (2e)

uL ≤ u(t)≤ uU , pL ≤ p≤ pU . (2f)

The subproblem represents the optimization problem un-
der constraints with a fixed logical configuration. This prob-
lem might avoid evaluating numerically challenging nonlin-
ear equations whenever their corresponding logical variables
are irrelevant. Since the subproblem satisfies the logical
proposition (1e), the algorithm avoids solving subproblems
from infeasible logical configurations.

Solving the subproblems (2), which result from explo-
ration of the space defined by discrete variables, can result in
convergence to the optimal solution of (1). The methods for
choosing the series of subproblems lead to different logic-
based methods, among them LOA and LBB. LOA uses
gradient-based linearization of the nonlinear constraints at
the optimal solution of Eq. (2) to approximate the feasible
region of the original problem. The additional constraint
would be added to a mixed-integer programming problem,
denoted as the main problem. The optimal solution to the
main problem returns a configuration of Boolean variables.
On the other hand, LBB systematically solves GDP by
exploring the values of Boolean variables in the search tree,
where each node represents the partial fixation of the Boolean
variables. The solutions in the node provide bounds to the
optimal solution. Both methods are designed to efficiently
find the optimal configuration of Boolean variables [16].

C. Discretization for Dynamic Optimization

DAGDP problems contain differential and algebraic con-
straints in their disjunctions. An approach to obtain a prob-
lem with only algebraic constraints that can be solved as
a GDP, as described in § II-B, is to use the transcription

approach [5], which transforms sets of differential equations
into algebraic equations through an orthogonal collocation
within finite elements. The transformed GDP becomes

min
xi j ,yi j ,ui j ,p,
Ykr∈{⊥,⊤}

ψ(xi j,yi j,ui j, p) (3a)

s.t. F(xi j,yi j,ui j, p)≤ 0 (3b)∨
r∈Dk

[
Ykr

fkr(xi j,yi j,ui j, p) = 0

]
(3c)

⊻r∈Dk (Ykr) = True =⊤ ∀k ∈ K (3d)
Ω(Ykr) = True =⊤ (3e)
x(0) = x0 (3f)

xL ≤ xi j ≤ xU ,yL ≤ yi j ≤ yU (3g)

uL ≤ ui j ≤ uU , pL ≤ p≤ pU (3h)
i ∈ Ne, j ∈ Nc, k ∈ K, r ∈ Dk, (3i)

where Ne is the number of finite elements and Nc is the
number of internal collocation points used for properly dis-
cretizing the DAE. When comparing the DAGDP formulation
with GDP, the differential equations in Eqs. (1b) and (1c) are
mapped into algebraic equations in Eqs. (3b) and (3c).

When discretizing the DAGDP into GDP, the entire time
horizon is separated into several finite elements. The dynamic
behavior of the process is captured in each stage using a
series of points given by an orthogonal collocation. The
smoothness of the dynamic response determines the right
number of these elements. The size of a given finite element
i represents the particular length of the independent variable.
The orthogonal collocation within each finite element facili-
tates the precise determination of the internal location points,
ensuring accurate modeling of the process dynamics.

When applying both transformations, the subproblems
become the following NLP problems

min
xi j ,yi j ,ui j ,p

ψ(xi j,yi j,ui j, p) (4a)

s.t. F(xi j,yi j,ui j, p)≤ 0 (4b)
fkr(xi j,yi j,ui j, p) = 0 ∀Ykr =⊤ (4c)
x(0) = x0 (4d)

xL ≤ xi j ≤ xU ,yL ≤ yi j ≤ yU (4e)

uL ≤ ui j ≤ uU , pL ≤ p≤ pU (4f)
i ∈ Ne, j ∈ Nc, k ∈ K, r ∈ Dk. (4g)

D. Convergence Analysis

The motivation for the LD-SDA is based on discrete con-
vex analysis [18], where the convergence to global optimal
points of various convex functions (M-convex and L-convex)
over lattices is characterized by local optimality over integral
neighborhoods. The value of the function corresponds to the
optimal solution of a dynamic optimization problem given a
fixed set of discrete choices. However, we cannot guarantee
that the solutions to the DAGDP models over the discrete
choices define a function that is either M- or L-convex.
Therefore, the LD-SDA serves as a heuristic method, and
the convergence of global optimality cannot be guaranteed.

1666

III. LOGIC-BASED DISCRETE-STEEPEST DESCENT
ALGORITHM

In this section, we explain how to apply the Logic-based
Discrete-Steepest Descent Algorithm (LD-SDA) to tackle
DAGDP problems with ordered Boolean variables.

As mentioned in §I-A, the key of LD-SDA is to first map
the ordered Boolean variables into a lattice with each point
representing a particular realization of the disjunctions. Then,
LD-SDA performs the neighbor search and the line search
to find improving solutions by solving the corresponding
continuous dynamic optimization subproblems.

A. Reformulation

In the DAGDP model, ordered Boolean variables {Ykr |
r ∈ Dk} can be reformulated into a set of integer vari-
ables referred to as external variables. For example, in
each exclusive OR constraint (1d), the Boolean variables
Y1k,Y2k, . . . ,Y|Dk|k can be represented by discrete values zk ∈
{1,2, . . . , |Dk|} according to an ordered sequence they follow.
After the reformulation, the feasible region of the boolean
variables is mapped into a |Dk|-dimensional integer lattice.

B. Algorithm Description

In the lattice, each point corresponds to a continuous
dynamic optimization subproblem by fixing the disjunctions,
which can be solved by arbitrary dynamic optimization
methods. The LD-SDA starts from the given initial point
and obtains the initial primal bound (PB) by solving the sub-
problem. Then, a neighbor search over the external variable
lattice is performed to find the steepest descent direction.
Two types of integral neighborhoods, i.e., search directions,
are supported, defined by the L2 and L∞ norms. If no better
solution is found in the neighbor search, a locally optimal
solution is reached, and the algorithm terminates. Otherwise,
there exists at least one improving direction. In this case, the
algorithm will move to the best neighbor, and a line search
will be performed in the improving direction. If a worse
solution is detected during the line search, a new neighbor
search and line search will be repeated at the incumbent
best-found point until a local optimum is found. After each
neighbor and line search, the explored points will be added to
the set G of explored points, used to avoid exploring the same
point twice. The detailed steps are described in Algorithm
1. For simplicity, we use z to denote the external variables
and x for all remaining variables in the DAGDP problem.

IV. COMPUTATIONAL EXPERIMENTS

A. Implementation Details

This section shows the effectiveness of the LD-SDA
through several computational experiments. The DAGDP
models are written using the DAE and GDP modules in Py-
omo. We provide an implementation of LD-SDA in GDPOpt
in Pyomo. We further benchmark LD-SDA against solving
the problem as a reformulated MINLP problem, and other
logic-based methods, such as LOA, GLOA, and logic-based
enumeration. KNITRO and BARON are used as (MI)NLP
solvers. For KNITRO, mip multistart is set to 1 to

Algorithm 1: Logic-based Discrete-Steepest Descent
Algorithm (LD-SDA) for DAGDP problems

Input: An external variable feasible solution z0;
Integral neighborhood ∈ {L2,L∞}.

1 Initialize: k← 0, G←{z0}
2 Generate the search directions d ∈ D.
3 Solve the initial DO subproblem with the given z0

(x0,PB0)← SolveDO(z0)
4 while True do
5 Generate neighbors

Nk = {n : n = zk +d ∀d ∈ D}\G
6 Perform Neighbor Search

(zk+1,xk+1,d∗,G,PBk+1)← NS(zk,Nk,PBk)
7 k← k+1
8 if PBk > PBk−1 then
9 while PBk > PBk−1 do

10 Perform Line Search
(zk+1,xk+1,G,PBk+1)← LS(zk,d∗,PBk)

11 k← k+1

12 else
13 z∗← zk, x∗← xk
14 return Best found feasible solution z∗ and x∗

enable a mixed-integer multi-start heuristic and improve the
chances of finding the global solution. All tests ran on a
Linux cluster with 48 AMD EPYC 7643 2.3GHz CPUs and
1 TB RAM, restricted to using only a single thread.

B. Three-stage Dynamic Model Switching

Consider the optimization of a system with two dynamic
modes and three stages [7]. At each stage s, only one of the
two modes can be enforced. This problem aims to compute
the dynamic model and the optimal control actions that apply
in each stage by maximizing the square of the state variable
over the time horizon, and is formulated as

min
x(t),u(t),

Y∈{⊥,⊤}

V (x) =−
∫ ts

t0
x2(t) (5a)

s.t.
[

Ys,1
dx
dt =−xex−1 +u

]
⊻

[
Ys,2

dx
dt =

0.5x3+u
20

]
, t ∈ [ts−1, ts] (5b)

Ys,2⇒∨s′<sYs′,1 (5c)
Ys,2⇒¬∨s′>s Ys′,1 (5d)
t0 = 0, ts = s ∀s = {1,2,3} (5e)
x(0) = 1, u(0) = 4, (5f)

where x is the state variable and u is the control variable.
To solve this problem, we first use orthogonal collocation to
discretize the differential equations in each disjunction with
30 finite elements and three collocation points at each stage.
The discretized model has 553 variables, 819 constraints, and
three disjunctions. To apply the LD-SDA to this problem,
we first reformulate the disjunctions using external variable

1667

TABLE I
COMPUTATIONAL RESULTS OF PROBLEM (5)

Strategy Solver Obj Time [s] Status

MINLP BigM KNITRO - 0.05 Infeasible
BARON -9.18 900+ maxTimeLimit

MINLP Hull KNITRO - 9.75 Infeasible
BARON -12.74 900+ maxTimeLimit

L-Enumerate KNITRO -12.74 1.56 Optimal
BARON -9.18 900+ maxTimeLimit

LOA KNITRO -12.74 4.63 Optimal
BARON -12.74 900+ maxTimeLimit

GLOA KNITRO -12.74 5.03 Optimal
BARON -12.74 900+ maxTimeLimit

LD-SDA L2
KNITRO -12.74 1.50 Optimal
BARON -9.18 900+ maxTimeLimit

LD-SDA L∞

KNITRO -12.74 1.47 Optimal
BARON -9.18 900+ maxTimeLimit

zs ∈ {1,2}. zs = 1 represents when mode 1 is active and
zs = 2 when mode 2 is active at stage s.

The computational results for (5) are presented in Table
I, and the time limit is set at 900 seconds. All the methods
using BARON reach the maximum time limit and cannot
prove global optimality within the time limit. KNITRO
fails to solve the BigM and Hull reformulation and returns
the infeasible termination condition, while all logic-based
methods using KNITRO find the optimal solution within 5
seconds. In this problem, both LD-SDA L2 and L∞ explore
all feasible disjunctions similarly to an enumeration over
the logic space. LOA and GLOA terminate after around 5
seconds, slower than logic-based enumeration and D-SDA.
These computational results show the advantage of the logic-
based method over MINLP reformulations for this problem.

C. Multi-stage Dynamic Model Switching

Consider the following DAGDP with three dynamic modes
and S stages and sequencing constraints:

min
x(t),u(t),

Y∈{⊥,⊤}

V (x) =−
∫ tS

t0
x2(t) (6a)

s.t.
[

Ys,1
dx
dt =

−x
e1−x +u

]
⊻

[
Ys,2

dx
dt =

0.5x3+u
20

]
⊻

[
Ys,3

dx
dt =

x2+u
t+20

]
,

t ∈ [ts−1, ts] (6b)
Ys,2⇒∨s′<sYs′,1 (6c)
Ys,2⇒¬∨s′>s Ys′,1 (6d)
Ys,3⇒∨s′<sYs′,2 (6e)
Ys,3⇒¬∨s′>s Ys′,2 (6f)
t0 = 0, ts = s ∀s = {1, ...,S} (6g)
x(t0) = 1,ut ∈ [−4,4],x ∈ [0,10]. (6h)

Eqs. (6c)-(6f) are mode sequence constraints which denote
that mode 1 should be performed before mode 2 and mode 2
before mode 3. We discretize the differential equations with
30 finite elements and three collocation points at each stage
using orthogonal collocation. The statistics of the discretized
models are presented in Table II.

Using LD-SDA to solve this problem requires a reformu-
lation based on external integer variables. A straightforward
reformulation is to define a variable zs ∈ {1,2,3} to represent
the mode choice at each stage. However, this would result in
a search space as high-dimensional as the original Boolean
variables space. This space is limited to three or fewer
points in each dimension, limiting the possibility of line
search and resulting in slow convergence depending on the
initial point. Therefore, we propose another reformulation
based on the mode transition, which can also apply to other
problems with sequence constraints, such as in scheduling
and planning. Instead of using the integer variable to denote
the mode choice at each stage, we use it to indicate whether
the mode transition happens at each stage. Due to the
sequence constraint, only two transitions are allowed. i.e.,
{A : 1→ 2,B : 2→ 3}, defining external variables zs,A,zs,B.
Compared to the first reformulation, the high-dimensional
space is reduced into a two-dimensional space. The rela-
tionship between mode transition and selection is expressed
in Eqs. (6i)-(6j). Moreover, since mode transition might not
occur within the stage horizon, we define extra variables in
Eqs. (6k)-(6l) to capture this case and force one of the zs
variables of each transition to be True in Eqs. (6m)-(6n).

zs,A⇔ Ys−1,1∧Ys,2 ∀s = {2, ...,S} (6i)
zs,B⇔ Ys−1,2∧Ys,3 ∀s = {3, ...,S} (6j)

zS+1,A⇔¬∨s∈{2,...,S}Ys,2 (6k)

zS+1,B⇔¬∨s∈{3,...,S}Ys,3 (6l)

⊻s∈{2,...,S+1}zs,A = True =⊤ (6m)

⊻s∈{3,...,S+1}zs,B = True =⊤ (6n)

The computational results of solving problem (6) with S =
{4, . . . ,9} using LD-SDA, MINLP reformulation, and other
logic-based methods are presented in Fig. 1. For the 4-stage
problems, all the methods using BARON, except logic-based
enumeration, can find the optimal solution. However, with
increasing number of stages, none of these methods could
guarantee to find the global optimal solution by closing the
optimality gap within the time limit of up to 1 hour. Both
LD-SDA L2 and L∞ using KNITRO as NLP solver converge
to the optimal solution for all problems and outperform the
other logic-based and MINLP reformulation methods.

The search path of LD-SDA L2 and L∞ for the nine-
stage problem (6) is presented in Fig. 2. Both algorithms
start from point (1,2), which means that the A : 1→ 2 mode
transition occurs at stage 2, and the B : 2→ 3 mode transition

TABLE II
STATISTIC OF THE MULTI-STAGE DYNAMIC SWITCHING PROBLEM (6)

of stages # of variables # of constraints # of disjunctions

4 741 1183 4
5 927 1547 5
6 1113 1911 6
7 1299 2275 7
8 1485 2639 8
9 1671 3003 9

1668

4 5 6 7 8 9
Number of Stages

101

102

103

So
lu

tio
n

Ti
m

e
[s

]
(w

ith
in

 0
.1

%
 o

f k
no

wn
 o

pt
im

al
 v

al
ue

)

GDPOpt
Enum - BARON
Enum - KNITRO
LOA - BARON
LOA - KNITRO
GLOA - BARON
GLOA - KNITRO

LD-SDA
L2 - BARON
L2 - KNITRO
Linf - BARON
Linf - KNITRO
MINLP

BigM - BARON
BigM - KNITRO
Hull - BARON
Hull - KNITRO

Time limitTime limit

Fig. 1. Computational results of MINLP reformulation, LD-SDA, and other
logic-based methods for varying S in problem (6)

1 2 3 4 5 6 7 8 9
zs,A, position of 1→2 mode transition

2

3

4

5

6

7

8

9

z s
,B

, p
os

iti
on

 o
f 2

→3
 m

od
e

tra
ns

iti
on

L2 Path
L∞ Path
L2 Exploration
L∞ Exploration −200

−175

−150

−125

−100

−75

−50

Objective function

Fig. 2. Search path of the LD-SDA for problem (6) with S = 9

occurs at stage 3. After one round of neighbor search and
a following line search, both LD-SDA L2 and L∞ converge
to the optimal point (1,4). Since LD-SDA L∞ allows more
search directions, it explores two more points than LD-SDA
L2 before termination. However, neither method converging
to the global optimum is guaranteed. If the optimal point is
not in the search directions of the starting or intermediate
points, the LD-SDA could be trapped in a local optimum.

V. CONCLUSIONS AND FUTURE WORK

This work presents the LD-SDA as an optimization tool
for discrete dynamic optimization modeled via Differential
Algebraic Generalized Disjunctive Programming (DAGDP).
The LD-SDA exploits the logical structure of the problem
and allows more flexibility in handling the DAE systems.
Two examples based on dynamic mode selection are pro-
vided to evaluate the performance of LD-SDA. The com-
putational results demonstrate that LD-SDA outperforms
the equivalent MINLP formulation and other logic-based
methods when DAEs are discretized via direct transcription.

Moreover, an open-source implementation of the LD-SDA is
provided, and this work integrates the model transformations
in Pyomo.DAE and Pyomo.GDP for DAGDP modeling.

Future research directions include the integration of the
LD-SDA with decomposition-based methods and exploring
the effects of cutting planes on the LD-SDA.

REFERENCES

[1] A. Flores-Tlacuahuac and L. T. Biegler, “Simultaneous mixed-integer
dynamic optimization for integrated design and control,” Computers
& chemical engineering, vol. 31, no. 5-6, pp. 588–600, 2007.

[2] B. Landry, R. Deits, P. R. Florence, and R. Tedrake, “Aggressive
quadrotor flight through cluttered environments using mixed integer
programming,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 1469–1475.

[3] N. Robuschi, C. Zeile, S. Sager, and F. Braghin, “Multiphase mixed-
integer nonlinear optimal control of hybrid electric vehicles,” Auto-
matica, vol. 123, p. 109325, 2021.

[4] V. Bansal, J. D. Perkins, and E. N. Pistikopoulos, “A case study
in simultaneous design and control using rigorous, mixed-integer
dynamic optimization models,” Industrial & Engineering Chemistry
Research, vol. 41, no. 4, pp. 760–778, 2002.

[5] L. T. Biegler, Nonlinear programming: concepts, algorithms, and
applications to chemical processes. SIAM, 2010.

[6] J. Kronqvist, D. E. Bernal, A. Lundell, and I. E. Grossmann, “A
review and comparison of solvers for convex MINLP,” Optimization
and Engineering, vol. 20, pp. 397–455, 2019.

[7] R. Ruiz-Femenia, A. Flores-Tlacuahuac, and I. E. Grossmann,
“Logic-Based Outer-Approximation Algorithm for Solving Discrete-
Continuous Dynamic Optimization Problems,” Industrial & Engineer-
ing Chemistry Research, vol. 53, no. 13, pp. 5067–5080, 2014.

[8] B. Baumrucker, J. G. Renfro, and L. T. Biegler, “MPEC problem
formulations and solution strategies with chemical engineering appli-
cations,” Computers & Chemical Engineering, vol. 32, no. 12, pp.
2903–2913, 2008.

[9] B. Burnak, N. A. Diangelakis, and E. N. Pistikopoulos, “Mixed-
Integer Dynamic Optimization for Simultaneous Process Design and
Control,” in Integrated Process Design and Operational Optimization
via Multiparametric Programming. Springer, 2020, pp. 21–46.

[10] B. Chachuat, A. B. Singer, and P. I. Barton, “Global methods for
dynamic optimization and mixed-integer dynamic optimization,” In-
dustrial & Engineering Chemistry Research, vol. 45, no. 25, pp. 8373–
8392, 2006.

[11] D. A. Linán, D. E. Bernal, L. A. Ricardez-Sandoval, and J. M. Gómez,
“Optimal design of superstructures for placing units and streams with
multiple and ordered available locations. Part I: A new mathematical
framework,” Computers & Chemical Engineering, vol. 137, p. 106794,
2020.

[12] D. A. Liñán and L. A. Ricardez-Sandoval, “A Discrete-Steepest
Descent Framework for the Simultaneous Process and Control Design
of Multigrade Reactive Distillation Columns,” IFAC-PapersOnLine,
vol. 55, no. 7, pp. 370–375, 2022.

[13] O. Palma-Flores, L. A. Ricardez-Sandoval, and L. T. Biegler, “Simul-
taneous design and NMPC control under uncertainty and structural
decisions: A discrete-steepest descent algorithm,” AIChE Journal,
vol. 69, no. 11, p. e18188, 2023.

[14] D. E. Bernal, D. Ovalle, D. A. Liñán, L. A. Ricardez-Sandoval, J. M.
Gómez, and I. E. Grossmann, “Process Superstructure Optimization
through Discrete Steepest Descent Optimization: a GDP Analysis and
Applications in Process Intensification,” in Computer Aided Chemical
Engineering. Elsevier, 2022, vol. 49, pp. 1279–1284.

[15] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L.
Nicholson, J. D. Siirola, J.-P. Watson, D. L. Woodruff, et al., Pyomo-
optimization modeling in python. Springer, 2021, vol. 67.

[16] Q. Chen, E. S. Johnson, D. E. Bernal, R. Valentin, S. Kale, J. Bates,
J. D. Siirola, and I. E. Grossmann, “Pyomo. GDP: an ecosystem for
logic based modeling and optimization development,” Optimization
and Engineering, vol. 23, no. 1, pp. 607–642, 2022.

[17] I. E. Grossmann, Advanced optimization for process systems engineer-
ing. Cambridge University Press, 2021.

[18] K. Murota, “Discrete convex analysis,” Mathematical Programming,
vol. 83, no. 1, pp. 313–371, 1998.

1669

