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Abstract— Logical dynamic games are dynamic games with
logical dynamics describing the external state evolutionary
process, which exist widely in real systems like the Boolean
network of lactose operon in Escherichia coli. To the best
of our knowledge, there is little attention on LDGs. In this
paper, we aim at developing a framework for the analysis
of dynamic games with logical dynamics under finite-horizon
criteria. First, mathematical model of logical dynamic games is
provided. A necessary and sufficient condition for the existence
of pure feedback Nash equilibrium in a logical dynamic game
is derived. Second, rigorous mathematical model of logical
dynamic potential game is proposed, which establishes the
relationship between logical dynamic games and corresponding
optimal control problems. Third, we proved that a logical
dynamic game is a logical dynamic potential game, if and only if,
all the static sub-games are potential games. Finally, an example
is provided to illustrate the theoretical results.

I. INTRODUCTION

Recently, the logical dynamic system (LDS) is becoming a
hot research topic, and it is embedded in various real systems,
such as the biological, economical, and social systems etc
[20], [21], [23]. The essential feature of the LDS is that
the state variable belongs to a logic domain [22], which
usually consists of a finite number of logic values. A typical
LDS is Boolean network [23]. Due to the logical feature,
analysis and synthesis of LDS are not easy using traditional
mathematical tool until the emergence of a new kind of
matrix product, called semi-tensor product (STP) of matrices
[24]. STP is an effective tool for dealing with LDSs, which
has been successfully applied to many finite-value systems
such as Boolean networks [24], [30], [20], finite games [26],
[27] and finite automaton [28], to name but a few.

One of the successes of STP in finite games is the veri-
fication of potential games, which is converted equivalently
into the existence of the solution of linear equations [15],
[26]. Moreover, Liu and Zhu proved that the linear equation
method presents the lower bound in computational complex-
ity for checking finite potential games [29]. Although the
optimal control of LDSs has been studied extensively [20],
[30], [31], to the best of our knowledge, works on dynamic
games with logical dynamics are still lacking.
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As a successful interdisciplinary research area, dynamic
non-cooperative game theory combines game theory and
optimal control theory [3]. This paper falls into this category.
The key concept in dynamic non-cooperative game theory
is the dynamic Nash equilibrium (DNE) strategy profile,
describing a situation where no agent has anything to gain
by switching only its own strategy when other agents adopt
the DNE strategy in the dynamic environment. In stochastic
game, the DNE is also called Markov Nash equilibria [1],
[11]. Indeed, results on dynamic non-cooperative game the-
ory mainly emerge from investigating the existence of the
DNE and developing of algorithms to obtain the DNE.

As the core problem, the existence of DNE has always
been the focus of attention [1], [11], [7]. Shapley proved the
existence of Markov Nash equilibria for two-person zero-
sum stochastic games [1]. Subsequently, similar results were
obtained for various stochastic games, such as continuous-
time stochastic games [5], open-loop Nash equilibrium of
stochastic games [9], infinite state stochastic games [6], just
to name a few. However, most previous works are confined to
randomized strategies. Compared with randomized strategies,
pure strategies are relatively easy to be implemented in
physical world. Although some preliminary explorations are
reported in [4], [12], [13], determining the existence of
the pure strategy Nash equilibrium in a stochastic game is
PSPACE-hard [14]. Efficient methods are still missing to deal
with this challenging problem.

For more than a decade, several attempts in acquiring
pure DNE have been made via potential game theory [4],
[7], [10]. The importance of potential games lies in three
fundamental aspects: (i) existence of pure Nash equilibria,
where the potential minimizers provide one of the pure Nash
equilibria [16], [19]; (ii) availability of the Nash equilibria
by some decentralized iterative strategies, such as logit
response [17] or asynchronous myopic best response [18];
(iii) computation of pure Nash equilibria, which is equivalent
to the optimization of a potential function [8]. By introducing
potential function in the dynamic games, pure DNE were
obtained for zero-sum two-person stochastic games and non-
zero-sum stochastic games with additive reward functions
in [13]. Deterministic Markov Nash equilibria for potential
discrete-time stochastic games defined on Borel spaces were
proposed in [4]. Just as Potters et al. pointed out, “for
stochastic games, the existence of a potential function is
mostly hard to prove” [13]. However, as far as we known,
there are no works on logical dynamic games or logical
dynamic potential games.

Motivated by the above analysis, here we aim at devel-
oping a framework for the analysis of dynamic potential
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games with logical dynamics under finite-horizon criteria.
Particularly, we are interested in two problems: (i) how to
combine the concepts of the potential games and LDSs; (ii)
how to verify whether a logical dynamic game is a logical
dynamic potential game.

Fortunately, we have solved the above problems success-
fully. Here we briefly present our main contributions as
follows.
• A necessary and sufficient condition for the existence

of pure feedback Nash equilibrium in a logical dynamic
game is derived (Proposition 4.1). Using dynamic pro-
gramming theory, it is proved that a logical dynamic
game consists of a series of static sub-games. Then the
existence of pure feedback Nash equilibrium is found
equivalent to the existence of pure Nash equilibria of
all the sub-games.

• Rigorous mathematical model of logical dynamic poten-
tial game is proposed in Definition 4.2, which establish-
es the relationship between logical dynamic games and
corresponding optimal control problems. This logical
dynamic potential game model is formally in parallel
with static potential game theory in [16].

• We proved that a logical dynamic game is a logical
dynamic potential game, if and only if, all the static sub-
games are potential games (Theorem 4.4). Moreover, we
find that a logical dynamic game is a logical dynamic
potential game if its auxiliary game is a state-based
potential game (Theorem 5.3 and 5.5).

II. PRELIMINARIES

A. Vector Representation of Finite Set

Vector representation of finite state systems is based on
STP of matrices, which is defined as follows.

Definition 2.1: [24] Consider two matrices A ∈ Rm×n
and B ∈ Rp×q . Let l be the least common multiple of n and
p. The STP of A and B is defined as

AnB :=
(
A⊗ Il/n

) (
B ⊗ Il/p

)
∈ Rml/n×ql/p.

As STP is a generalization of the conventional matrix
product, we omit “n” without confusion in the following.
Consider a finite set Dk = {1, 2, · · · , k}, the vector form
or vector expression of variable x ∈ Dk is defined as ~x :=
δk−xk . Then there is a corresponding relationship between
finite sets Dk and ∆k.

Definition 2.2: (i) A function f :
∏n
i=1 Dki → Dk0 is

called a logical function.
(ii) A function g :

∏n
i=1 Dki → R is called a pseudo logical

function.
Proposition 2.3: [24] Consider the pseudo logical func-

tion g :
∏n
i=1 Dki → R and logical function f :∏n

i=1 Dki → Dk0 . Let k =
∏n
i=1 ki, then using vector

expression of finite set, there exists a unique vector Vg ∈ Rk
and a unique matrix Mf ∈ Rk0×k such that

g(x) = Vg nni=1 ~xi, f(x) = Mf nni=1 ~xi,

where Vg and Mf are called the structure vector of g and
the structure matrix of f , respectively.

B. Static Potential Games

This subsection provides preliminaries on finite games
and potential games, which can be found in many standard
textbooks on game theory, for instance, [32], [33].

Definition 2.4: A finite non-cooperative game in strategic-
form can be described by a triple G = {N,A,C}, where

(i) N = {1, 2, · · · , n} is the set of agents;
(ii) A =

∏n
i=1Ai is the set of action profiles and Ai =

{1, 2, · · · , ki} is the set of actions of agent i ∈ N.
(iii) C = {c1, c2, · · · , cn} is the set of all agents’ cost fun-

ctions, ci : A→R is the cost function of agent i ∈ N .
Denote the set of finite non-cooperative games G with

|N | = n and |Ai| = ki by G[n;k1,··· ,kn]. It is obvious that
the cost function ci of a game G ∈ G[n;k1,··· ,kn] is a pseudo-
logical function. Using the vector representation, we have

ci(a1, · · · , an) = Vci nnj=1 ~aj , i ∈ N. (1)

One of the core concepts in non-cooperative games is Nash
equilibrium, which is defined as follows.

Definition 2.5: [32] Consider a non-cooperative game G,
an action profile a∗ = (a∗1, · · · , a∗n) ∈ A is a (pure) Nash
equilibrium if for any i ∈ N

ci(a
∗
i , a
∗
−i) ≤ ci(ai, a∗−i), ∀ai ∈ Ai, a∗−i ∈ A−i, (2)

where A−i =
∏
j 6=iAj .

However, pure Nash equilibria may not exist for general
games. A special class of games possessing pure Nash
equilibria is proposed by Rosenthal [34] and Slade [35],
which are called potential games [37].

Definition 2.6: [37] A finite non-cooperative game G =
{N,A,C} is called an exact potential game if there exists a
function ρ : A→ R such that, for ∀ai, bi ∈ Ai,∀a−i ∈ A−i

ci(ai, a−i)− ci(bi, a−i) = ρ(ai, a−i)− ρ(bi, a−i),∀i ∈ N,

where ρ is called a potential function of the game G.
However, it is not easy to verify whether a given finite

game is a potential game or not [36]. [26] proved that the
existence of the potential function equals to the existence of
a solution of the following so called potential equation.

Lemma 2.7: Consider a game G ∈ G[n;k1,··· ,kn], set Γi =
⊗i−1l=1Ikl ⊗1>ki ⊗

n
l=i+1 Ikl , ξi ∈ Rk−i , k−i =

∏
j 6=i kj , i ∈ N.

Then G is potential, if and only if, the following equation

Γpξ = V >G , (3)

has a solution, where VG := [Vc2 − Vc1 , · · · , Vcn − Vc1 ] and

Γp=


−Γ>1 Γ>2 0 0 · · · 0
−Γ>1 0 Γ>3 0 · · · 0

...
. . .

−Γ>1 0 0 0 · · · Γ>n

, ξ=


ξ1
ξ2
...
ξn

. (4)

Moreover, if the solution exists, then the potential function
P : A→ R of the game G can be calculated by

P (a) = (V1 − ξ>1 Γ1) nni=1 ~ai. (5)

Equation (3) is called the potential equation of the game G.
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III. MATHEMATIC MODEL OF LOGICAL DYNAMIC
GAMES

An LDS is described as follows [24]

x(t+ 1) = f(x(t), a1(t), · · · , an(t)), (6)

where x(t) ∈ X(= Dk) and aj(t) ∈ Aj(= Drj ) are logical
variables, which represent the state of system and action of
agent j at time t, respectively. Let A :=

∏n
j=1Aj(= Dr)

be the set of action profiles, a(t) = [a1(t), · · · , an(t)]> ∈
A, r =

∏n
j=1 rj . And f : X×A→ X is the logical function.

Using vector representation of finite set, LDS (6) can be
expressed as follows

~x(t+ 1) = Mf~x(t)~a(t), (7)

where Mf ∈ Lk×kr is the structure matrix of logical
function f . (7) is called the algebraic form of (6). For more
details on how to obtain the structure matrix Mf , please refer
to [24]. For convenience, denote by xt := x(t),at := a(t)
in the sequel.

At each time t, agent i ∈ N updates his action ai(t) ac-
cording to its available information. The information gained
by the agents is called the information structure of the LDS
(6), which can be classified into different types according to
the amount of available information in decision-making pro-
cess. Here we only list some common information structures
in the following, please refer to [3] for more details.

Definition 3.1: Consider the LDS (6), agent i’s informa-
tion structure is a (an)

(i) open-loop pattern if the available information at time
t is {x0};

(ii) closed-loop perfect state information pattern if the
available information at time t is {x0, · · · ,xt};

(iii) feedback information pattern if the available informa-
tion at time t is {xt}.

In this paper, we suppose that the information structure of
agent i is feedback information pattern. At each time step,
agent i updates his action ai(t) according to the state xt. In
other words, the strategy of agent i at time t can be described
as ai(t) = µit(xt), where µit is a logical function of agent
i at time t. Finite-horizon optimization problem over time
interval {0, 1, · · · , τ} is considered in this paper, where τ
is the terminal time. We focus on the pure strategy in this
paper, i.e., µit : X → Ai is a deterministic logical function.
The set of all admissible strategies µit is denoted by U it . The
strategy of agent i is µi := [µi0, µ

i
1, · · · , µiτ ] and the strategy

profile at time t is µt := [µ1
t , µ

2
t , · · · , µnt ]. The strategy of

LDS (6) can be defined as

µ := (µ0, µ1, · · · , µτ ).

The objective function of agent i in this paper is of finite-
horizon type. Given an initial state x(0) = x0 and an
admissible strategy µ, the objective function of agent i ∈ N
is described as follows

Ji(x0,µ) = hi(xτ+1) +

τ∑
t=0

gi

(
xt, µt

(
xt
))
, (8)

where hi : X → R is the terminal cost function of agent
i ∈ N , gi : X × A → R is the stage cost function over
each time step and τ is the optimization time. By virtue of
vector representation of finite set, objective function (8) can
be expressed as follows

Ji(x0,µ) = Vhi n ~xτ+1 + Vgi

τ∑
t=0

~xt~µt, i = 1, · · · , n, (9)

where Vhi and Vgi are the structure vectors of hi and gi,
respectively.

Obviously, the LDS (6) and the objective function (8)
constitutes a logical dynamic non-cooperative game under
corresponding information structure, which is called logical
dynamic game (LDG) for convenience. The Nash equilibrium
of a dynamic game with feedback information structure is
called feedback Nash equilibrium (FNE) [3].

Definition 3.2: Consider the LDG described by (6)-(8),
the strategy profile µ∗ = (µ1∗, µ2∗, · · · , µn∗) is called a
(pure strategy) feedback Nash equilibrium if it satisfies the
following inequalities recursively for all i ∈ N, ∀µit ∈ U it ,
t = 0, 1, 2, · · · , τ, ∀µ0, · · · , µt−1

Ji

(
x0,
(
µ0, · · · , µt−1, (µi∗t , µ−i∗t ), µ∗t+1, · · · , µ∗τ

))
≤ Ji

(
x0,
(
µ0, · · · , µt−1, (µit, µ−i∗t ), µ∗t+1, · · · , µ∗τ

))
.

(10)
Remark 3.3: Obviously, the principle of optimality and

Nash equilibrium condition should be satisfied simultane-
ously for a strategy profile being an FNE.

Problem formulation: In this paper, we aim at combining
the concepts of potential games and LDGs. Such LDGs is
called logical dynamic potential games (LDPG). We will
explore the verification problem for an LDG being an LDPG.

IV. LOGICAL DYNAMIC POTENTIAL GAMES

A. Decomposition of LDGs

Consider the LDG (6)-(8). According to dynamic pro-
gramming theory, agent i’s value function V it (xt) at time
t = 0, 1, · · · , τ + 1 for the Nash equilibrium strategy µ∗t :
X → A (t = 0, 1, · · · , τ) is

V it (xt) = min
µit,··· ,µiτ

{
hi(xτ+1)+

τ∑
l=t

gi(xl, µ
i
l(xt), µ

−i∗
l (xt))

}
, (11)

where ~xl+1 = Mf~xl~al, l = t, · · · , τ.
The value function V it (xt) satisfies the following iteration

V it (xt) = min
µit(xt)

{
gi
(
xt, µ

i
t(xt), µ

−i∗
t (xt)

)
+ V it+1

(
f
(
xt, µ

i
t(xt), µ

−i∗
t (xt)

))}
,

(12)

with V iτ+1(xτ+1) = hi(xτ+1). Then the LDG (6)-(8) is
equivalent to a series of τ + 1 static game problems at time
t = 0, 1, · · · , τ. By using

ωit(xt,a) := gi
(
xt,a

)
+ V it+1

(
f(xt,a)

)
,

the corresponding static game Gt(xt) at time t is

Gt(xt) =
{
N, {Ai}i∈N , {ωit(xt, ·)}i∈N

}
. (13)
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We call Gt
(
xt
)

the sub-game at time t.
Proposition 4.1: Consider the LDG described by (6)-(8),

the FNE µ∗ exists, if and only if, each sub-game Gt
(
xt
)

has at least one pure Nash equilibrium a∗t , t = 0, 1, · · · , τ .
Furthermore, µ∗ = (µ∗0, · · · , µ∗τ ) and (a∗0,a

∗
1, · · · ,a∗τ ) has

the following relationship

a∗t = µ∗t (xt), t = 0, 1, · · · , τ.
Proof: The conclusion is obvious according to above

analysis. So we omit the proof details.

B. Structure of LDPGs
This section considers that how to combine the concepts

of potential games and LDGs. Recall the definition of static
potential games, where the potential minimizers provide one
of the pure Nash equilibria for such games. A natural idea
is to introduce the concept of potential games into LDGs by
associating an optimal control problem with the LDG, such
that the solution of the optimal control problem is a DNE
of the LDG. An optimal control problem of an LDS can be
described as follows

min
µ
J(x0,µ) = ψ(xτ+1) +

τ∑
t=0

φ
(
xt, µt(xt)

)
subject to xt+1 = f(xt,at),

(14)

where φ : X×A→ R is the stage cost function, ψ : X → R
is the terminal cost function, and f : X × A → X is the
logical dynamic function defined in (6).

Definition 4.2: The LDG (6)-(8) is called an LDPG, if
there exists an optimal control problem (14) satisfying the
following conditions for all i ∈ N, ∀µ̃it, µit ∈ U it , t =
0, 1, 2, · · · , τ, ∀µ0, · · · , µt−1

Ji
(
x0,Mt

)
−Ji

(
x0, M̃t

)
=J
(
x0,Mt

)
−J
(
x0, M̃t

)
, (15)

where µ∗ = (µ∗0, µ
∗
1, · · · , µ∗τ ) is the solution of the optimal

control problem (14), and

Mt =
(
µ0, · · · , µt−1, (µit, µ−it ), µ∗t+1, · · · , µ∗τ

)
,

M̃t =
(
µ0, · · · , µt−1, (µ̃it, µ−it ), µ∗t+1, · · · , µ∗τ

)
.

(16)

Remark 4.3: Rigorous mathematical model of LDPG is
proposed in Definition 4.2, which establishes the relations
between LDGs and corresponding optimal control problems.
This LDPG model is formally in parallel with static weighted
potential game model proposed in [16].

According to the dynamic programming theory, the value
function Vt(xt), t = 0, 1, · · · , τ of problem (14) is

Vt(xt) = min
µt(xt),··· ,µτ (xτ )

{
ψ(xτ+1) +

τ∑
p=t

φ
(
xp, µp(xp)

)}
,

where xp+1 = f(xp, µp), p = t, · · · , τ. The value function
Vt(xt) satisfies the dynamic programming formulation

Vt(xt) = min
µt

{
φ
(
xt, µt

)
+ Vt+1

(
f(xt, µt

(
xp)
))}

, (17)

and Vτ+1(xτ+1) = ψ(xτ+1).
Denote by Ωt(xt,a) := φ

(
xt,a

)
+ Vt+1

(
f(xt,a)

)
.

Then the finite-horizon optimal control problem (14) can be
regarded as a series of τ static minimization problems with
Ωt(xt,a) as the cost function at time t = 0, 1, · · · , τ.

Theorem 4.4: The LDG (6)-(8) is an LDPG with (14) as
its associated optimal control problem, if and only if, each
sub-game Gt

(
xt
)

is a static potential game with Ωt(xt,a)
as its potential function, i.e., for every xt ∈ X, ∀i ∈
N, ∀a−i ∈ A−i, ∀ai, bi ∈ Ai,

ωit(xt, ai, a−i)−ωit(xt, bi, a−i)=Ωt(xt, ai, a−i)−Ωt(xt, bi, a−i).

Furthermore, the FNE µ∗ is

µ∗t (xt) = arg min
a∈A

Ωt(xt,a). (18)

Proof: The proof is obvious according to above analysis
and we omit the details to meet the page limitation.

V. VERIFICATION OF LDPGS

Consider the LDG (6)-(8). Construct an auxiliary state-
based game as G := {N,X, {Ai}i∈N , {gi(a,x)}i∈N}.

Definition 5.1: A state-based game G is called a state-
based potential game, if there exists a function φ : A ×
X → R the following two conditions for any agent i ∈
N, ∀ai, a′i ∈ Ai, ∀x,x′ ∈ X are satisfied

gi(a
′
i, a−i,x)−gi(ai, a−i,x)=φ(a′i, a−i,x)−φ(ai, a−i,x),

gi(a,x)− gi(a,x′) = φ(a,x)− φ(a,x′).
Remark 5.2: State-based potential games have been dis-

cussed in many works, such as [2], [7]. The definition of
state-based potential game in this paper is a little different
from existing definitions in [2]. We do not impose any
restrictions on the logical dynamics (6).

Theorem 5.3: Consider the LDG (6)-(8). If the auxiliary
game G = {N,X, {Ai}i∈N , {gi(a,x)}i∈N} is a state-based
potential game and the terminal cost function hi(x) satisfies
hi(x) = hj(x), ∀i, j ∈ N, then the LDG is an LDPG.

Proof: We omit the proof details to save the space.
A natural question is how to determine whether a state-

based game is state-based potential game or not. The follow-
ing result provides a method to deal with this problem.

Lemma 5.4: A state-based game G =
{
N,X, {Ai}i∈N ,

{gi(a,x)}i∈N
}

is a state-based potential game, if and only
if, there exists a function φ : A×X → R and n+1 functions
di :A−i ×X → R, i = 1, 2, · · · , n, dn+1 :A→ R, such that{

gi(a,x) = φ(a,x) + di(a−i,x), i ∈ N,
gi(a,x) = φ(a,x) + dn+1(a).

(19)

Proof: The details are omitted to save the space.
Theorem 5.5: A state-based game G =

{
N,X, {Ai}i∈N ,

{gi(a,x)}i∈N
}

is a state-based potential game, if and only
if, the following linear equation has a solution

Γsp1ξ = 0, (20)

where Γ̇i = ⊗i−1p=1Irp ⊗ 1>ri ⊗
n
q=i+1 Irq ⊗ Ik and

Γsp1 =


−Γ̇>1 0 · · · 0 (Ik ⊗ 1>r )

0 −Γ̇>2 · · · 0 (Ik ⊗ 1>r )
...

. . .
...

0 0 · · · −Γ̇>n (Ik ⊗ 1>r )

 . (21)

Furthermore, if the solution exists, the potential function can
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be expressed as

φ(a,x) = (Vg1 − ξ>1 Γ̇>1 ) n ~a~x, (22)

where ξ1 is the first k
∏n
i=2 ri elements of ξ.

Proof: The details are omitted to save the space.

VI. EXAMPLES

Consider a reduced Boolean model for the lactose operon
in Escherichia coli (Chapter 1.3, page 15, [38]), which
models the gene regulation dynamics via two glucose control
mechanisms: inducer exclusion and catabolite repression.
The detailed dynamics is described as follows

x1(t+ 1) = ¬a1(t) ∧ (x2(t) ∨ x3(t)),

x2(t+ 1) = ¬a1(t) ∧ a2(t) ∧ x1(t),

x3(t+ 1) = ¬a1(t) ∧ [a2(t) ∨ (a3(t) ∧ x1(t))],

(23)

where x1, x2, x3 ∈ {0, 1} are state variables which denote
the lac mRNA, lactose in high concentrations and lactose
in medium concentrations, respectively; a1, a2, a3 ∈ {0, 1}
are control inputs which represent the extracellular glucose,
high extracellular lactose and medium extracellular lactose,
respectively. The state set and action profile set are

X = {000, 001, 010, 011, 100, 101, 110, 111};
A = {000, 001, 010, 011, 100, 101, 110, 111}.

Using the vector representation, we can obtain

Mf = δ8[8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1, 1, 1, 5, 3, 3, 3, 7, 1, 1, 1, 5,
3, 3, 3, 7, 3, 3, 3, 7, 4, 4, 4, 8, 4, 4, 4, 8, 4, 4, 4, 8].

The information structure is feedback pattern. For a given
strategy µ, the objective function of agent i (= 1, 2, 3) is

Ji(x0,µ) = hi(xτ+1) +

τ∑
t=0

gi

(
xt, µt

(
xt
))
, τ = 10,

where the terminal cost function are set as follows

h1(x) = [3, 2, 1, 4, 6, 2, 2, 5] n ~x := Vh1
n ~x,

h2(x) = [6, 7, 5, 0, 3, 3, 4, 2] n ~x := Vh2
n ~x,

h3(x) = [4, 0, 2, 2, 1, 3, 2, 5] n ~x := Vh3
n ~x.

The stage cost function gi(x,a), i = 1, 2, 3 are omitted here.
According to Theorem 4.1 and Algorithm 1, we have

V i11(x) = Vhi n ~x
ωi10(x,a) = gi(x,a) + V i11(f(x,a))

= gi(x,a) + hi(f(x,a))
= (Vgi + VhiMf ) n ~xn ~a, i = 1, 2, 3.

(24)

The sub-game at time t = 10 is

G10(x) =
{
N, {Ai}i∈N , {ωi10(x, ·)}i∈N

}
.

The feedback Nash equilibrium of G10(x) is a∗10 = µ∗10(x),
which can be calculated as

µ∗10(x) = 000, if x = 000; µ∗10(x) = 000, if x = 001;
µ∗10(x) = 000, if x = 010; µ∗10(x) = 111, if x = 011;
µ∗10(x) = 011, if x = 100; µ∗10(x) = 000, if x = 101;
µ∗10(x) = 111, if x = 110; µ∗10(x) = 111, if x = 111.

The logical expression of µ∗10 is
µ1∗
10(x) = (x1 ∧ x3) ∨ x2
µ2∗
10(x) = (x1 ∧ x3) ∨ (¬x3 ∧ x2)

µ3∗
10(x) = (x1 ∧ x3) ∨ (¬x3 ∧ x2),

whose algebraic expression is

~a∗10 = K∗10 n ~x = δ8[1, 1, 1, 8, 4, 1, 8, 8] n ~x.

The value function and the sub-game is calculated by

V it = Vgi(I8 ⊗K∗t )R8 + V it+1Mf (I8 ⊗K∗t )R8,
Vωit = Vgi + V it+1Mf , t = 0, 1, 2, · · · , 9, 10.

Then we can obtain the FNE via Algorithm 1.{
~a∗t = ~a∗10 = K∗10 n ~x, t = 1, 2, · · · , 9.
~a∗0 = K∗0 n ~x = δ8[8, 4, 1, 8, 4, 1, 8, 8] n ~x.

Therefore, the FNE of the LDG is

µ∗ = [µ∗0(x), µ∗1(x), · · · , µ∗9(x), µ∗10(x)], ∀x ∈ X.

According to (24) and using Lemma 2.7, it is easy to verify
that all sub-games Gt(x), ∀t are potential games with the
common potential function Pt(x,a) = P (x,a) in Table I.

TABLE I
POTENTIAL FUNCTION VECTOR

P (x,a) 000 001 010 011 100 101 110 111
000 -3 -1 -1 0 -1 0 0 -1
001 -5 0 0 -1 0 -1 -1 1
010 -10 -9 -9 -4 -9 -4 -4 -1
011 3 -1 -1 0 -1 0 0 -3
100 8 1 1 -3 1 -3 -3 2
101 -18 -12 -12 -1 -12 -1 -1 5
110 -4 0 0 -2 0 -2 -2 -6
111 5 8 8 5 8 5 5 -2

Therefore, we conclude that the LDG (23) is an LDPG.
Denote accumulated costs Ji(t) of each agent i as follows

Ji(t) :=
t∑

p=0
gi(xp,a

∗
p), t = 0, 1, · · · , 10;

Ji(11) :=
10∑
p=0

gi(xp,a
∗
p) + hi(x11), i = 1, 2, 3.

The dynamics of accumulated costs for each agent from the
initial state x(0) ∈ {010, 100, 101, 110} is shown in Fig. 1.

Denote accumulated potentials Jp(t) of each agent i =
1, 2, 3 under the DNE strategy as follows

Jp(t) :=
t∑

p=0
P (xp,a

∗
p), t = 0, 1, · · · , 10.

The dynamics of accumulated potentials from the initial state
x(0) ∈ {010, 100, 101, 110} is shown in Fig. 2.

VII. CONCLUDING REMARKS

A framework for the analysis of LDGs under finite-horizon
criteria is established in this paper. We have focused on the
mathematical model of LDG, existence of FNE, and verifica-
tion of LDPGs. First, mathematical model of logical dynamic
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Fig. 1. Dynamics of accumulated costs Ji(t) from initial state x(0) ∈
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0 1 2 3 4 5 6 7 8 9 10
t

-40

-35

-30

-25

-20

-15

-10

-5

0

A
cc

um
ul

at
ed

 p
ot

en
tia

ls

x
0
=010

x
0
=100

x
0
=101

x
0
=110

Fig. 2. Dynamics of accumulated potentials Jp(t) from initial state x(0) ∈
{010, 100, 101, 110}

games is provided. A necessary and sufficient condition for
the existence of pure feedback Nash equilibrium in a logical
dynamic game is derived. Second, rigorous mathematical
model of logical dynamic potential game is proposed, which
establishes the relationship between logical dynamic games
and corresponding optimal control problems. Third, a logical
dynamic game is proved to be a logical dynamic potential
game, if and only if, all static sub-games are potential games.

Further works focus on the analysis and synthesis of LDGs
with uncertainty and infinite-horizon criteria.

REFERENCES

[1] L. Shapley, “Stochastic games,” Proceedings of the National Acade-
my of Sciences, vol. 39, no. 10, pp. 1095-1100, 1953.

[2] J. Marden, “State based potential games,” Automatica, vol. 48, no.
12, pp. 3075-3088, 2012.
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