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Relaxed controls and measure controls

Ciro D’ Apice, Rosanna Manzo, Luigi Rarita, and Benedetto Piccoli,

Abstract— In this paper, we introduce a new idea to general-
ize the concept of relaxed control to the framework of measure
differential equations, recently introduced in [15]. A relaxed
control is defined as a probability measure on the space of
controls, and, similarly, a measure control is a feedback relaxed
control which depends on the measure distribution on the state
space representing the state of the system. Relaxed controls
are useful to solve optimal control and stabilization prob-
lems. On the other side, measure differential equations allow
deterministic modeling of uncertainty, finite-speed diffusion,
concentration, and other phenomena. Moreover, it represents
a natural generalization of Ordinary Differential Equations to
measures.

We establish regularity properties of measure controls to ensure
existence and uniqueness of trajectories and show applications
to stabilization problems.

I. INTRODUCTION

Most controlled systems can be written as: & = f(z,u),
where the system state x belongs to a manifold, and the
control u to a metric space. The approach of geometric
control theory is based on considering the family of vector
fields f, = f(xz,u), v € U and the properties of the
Lie Algebra generated by them, [1], [13]. Control problems
can be solved by open loops, t — u(t), and closed loops
or feedback, + — wu(x). However, in optimal control and
stabilization problems, one has often to resort to relaxed
control, see [23].

A relaxed control is a measure u on the control set U.
Given a relaxed control, we obtain an averaged dynamics by
integrating over the control variable z — [ f(z,u) da(u).
The relaxed control may depend on the state @ = u(x)
generating a feedback by averaging. Such dynamics can be
realized by oscillatory signals as the dither, see [22], [24].
The class of control systems admitting a relaxed stabilizing
feedback is strictly larger than those admitting a classical
stabilizing feedback [3]. One of the most challenging aspects
of relaxed feedback is their regularity, which may not be
inherited by the regularity of u, for instance in weak sense.
Our first contribution is the use of optimal transport theory
[20] to achieve regularity results for relaxed feedback. More
precisely, we show that regularity w.r.t. the Wasserstein
distance guarantees Lipschitz continuity of the generated
average feedback.

A continuous stabilizing feedback may fail to exist due to
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topological obstructions as in the famous Brockett’s example
[6]. Moreover, relaxed feedback may also fail to stabilize
systems for which an open loop stabilizing control exists
for every initial condition [3]. Thus we resort to more
general type of feedback mechanism related to evolution
equations for measures. Our starting point is the concept
of measure differential equation (briefly MDE), which can
be seen as a natural generalization of ODEs to measures.
The evolution of a measure is given by a measure vector
field, assigning a probability measure on every fiber of the
tangent bundle prescribing the velocities along which the
measure mass is moving. A fairly complete theory, in terms
of existence and uniqueness, was developed in the paper [15].
In particular, solutions are constructed by approximations
formed by traveling Dirac deltas on a lattice, called lattice
approximate solutions (briefly LAS). Since solutions are
interpreted in weak sense, uniqueness for Cauchy problems
is not achievable, but it is possible to construct a Lipschitz
semigroup. Moreover, extensions are available to measure
differential inclusions [4], [10], [14], equations with sources
[19], [18], superposition principle [7], biology and other
applications [11], [16], [17].

This paper introduces generalization of relaxed controls
using this framework. First, we define a random vector field,
which is a map assigning to every measure on the state space
a measure on the tangent bundle, which is compatible with
the given control system. This can be seen as a measure
vector field whose values are included in the controlled
velocities and generalize the concept of relaxed control. This
concept still does not capture a possible nonlocal dependence
on feedback mechanisms. Indeed, if the state of the system
depends on a measure distributed on the state space, as in
multi-agent systems, then the dynamics should depend on the
whole measure [8], [9], [18]. We then introduce the definition
of measure control, which is a map associating a relaxed
feedback to every measure on the state space. The former
may depend on the global structure of the measure, not only
on local information.

Existence and uniqueness of trajectories to measure controls
can be achieved by applying the theory of measure differ-
ential equations to measure vector fields compatible with
the given control systems. The key regularity assumption is
a Lipschitz continuity w.r.t. to the Wasserstein distance of
the measure control. More precisely, the relaxed feedback
associated to a measure will depend on a Lipschitz fashion
on the state variable, and, the relaxed feedback computed
at a given point will depend on a Lipschitz fashion on the
measure. Such regularity ensures existence of trajectories to
measure controls, as well as the existence of a Lipschitz
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semigroup (obtained as limit of LAS-type approximations).
Finally, we pass to show the power of the proposed approach.
The classical circle stabilization problem is solved by means
of a regular measure control.

II. MEASURES AND WASSERSTEIN DISTANCE

We use the standard notation for the Euclidean n-

dimensional space R", its tangent bundle TR™ = R"™ x R",
and the base projection 71 : TR™ — R", 7y (z,v) = x. For
every A C R", we denote by x 4 the characteristic function
of A and by C°(A) the set of compactly supported smooth
functions.
A Polish space (X,d) is a complete and separable metric
space. We denote by M(X) the set of positive Radon
measures with finite mass on X, by M.(X) the subset of
measures with compact support, by | - | the total variation
norm (or total mass), and by Supp(-) the support operator.
The subset P(X) C M(X) indicates the probability mea-
sures, i.e. p € M(X) such that |u| = u(X) = 1. Given a
Borel map ¢ : X7 — X, with (X;,d;) Polish spaces, and
1€ M(X1), we set ¢#u(A) = p(¢~'(A) = p({z € X :
¢(x) € A}), for every Borel set A. The ® product allows to
combine a measure y € M(X;) with a family of measures
v, € P(X2), z € X3, by setting

/ d(x,v) d(uQ®gv,) = / o(x,v)dvg (v) du(zx).
X1% X2 X1 J X

Notice that every measure X on the product X; x Xs can
be written by disintegration (see [2]) as X = m#X Ry Vg
with v, probability measures on Xs.

We are now ready to introduce the Wasserstein distance,
which is defined by solving the optimal transport problem
among measures. We refer the reader to [20] for the general
theory of optimal transport. Consider a Polish space (X, d),
i, v € M(X), with || = |v|, then a transference plan 7
between p and v is a measure 7 € M(X x X) such that:

T(Al X ]Rn) = ,u(Al), T(Rn X AQ) = V(AQ),

for every Borel sets Ay, Ao C X. In simple words, 7
is a generalization of a map pushing the measure p onto
the measure v. Given a transference plan 7 we can define
an associated cost by: J(1) = [y, d(z,y)dr(x,y). The
Monge-Kantorovich optimal transport problem is formulated
as the minimization of J(7) over all transference plan and
the Wasserstein distance is defined by:
X .
W (w, v) TGIPI%,E,V) J(7).

where P(u,v) is the set of transference plans between p and
v. We denote by P°P*(u,v) the set of optimal transference
plans (with cost equal to W (u,v)) and endow the space
M (X)) with the topology given by the Wasserstein distance,
which metrizes the weak convergence over compact sets. The
existence of an optimal transference plan and properties of
the Wasserstein distance can be found in [20], [21].
For future use, we state the following:

Lemma 2.1: Let (X,d) be a polish space, u, v € P(X)
with compact support and ¢ : X — R"™ Lipschitz continuous.

Then | [ ¢(du — dv)| < Lip(p) W(u,v), where Lip(p) is
the Lipschitz constant of .
Proof: Consider 7 € P°P!(u,v), then we can write

| [ eten—av)

< /X @) - ewldr(a.y) <

< Lip(p) /

XxX

dr(x,y) = Lip(p) W (i, v).

|

Following the approach of [15], we introduce the follow-
ing definition.

Definition 2.1: A Measure Vector Field (MVF) is a map
Vi M(@R") - M(TR") such that m;#V = p.
Notice that, by disintegration ([2]), for every MVF V' and
€ M(R™) there exists a family of probability measures
vy = vg[V, p] such that V[u] = p ®, v,. In simple terms,
an MVF is a map associating, to every measure on the
state space, a measure on the space of controlled velocities,
thus naturally linked to the concept of relaxed controls, as
illustrated in next section.

III. CONTROL SYSTEMS AND MEASURE VECTOR FIELDS

Our starting point is a classical control system:

&= f(z,u),

where U C (X,d), with (X,d) a Polish space, and f :
R™ x U — TR™ is a continuous map. To illustrate the main
concepts without dealing with regularity issues, we will make
the following assumptions:

reR”, uel, (D

(A) U is compact and f is Lipschitz continuous in both
variables, i.e. there exists L > 0 such that |f(z,u) —
f(y,v)| < L(|lz — y| + d(u,v)) for all z,y,u,v.

To (1) we associate the differential inclusion:

€ F(zx), Flx)={v:v=f(z,u), ueU}. (2

For the equivalence of the set of solutions to (1) and (2) we
refer the reader to [5].

A. Relaxed controls

We recall the classical definition of relaxed control [23].

Definition 3.1: A relaxed control is a probability measure
on the control space, i.e. & € P(U).

Every relaxed control gives rise to a vector field fz(x) =
J [z, u)du(u).

Definition 3.2: A relaxed feedback control is a map u :
R™ — P(U). We denote by RF(U) the set of relaxed
feedback controls.

Given a relaxed feedback u, we can associate a vector field
& = fa@) (@) = [ f(z,u)d(d(x))(u), but, as underlined in
[3], the map & — f;(,)(2) may fail to inherit regularity from
u w.r.t. to the weak convergence. Here we show how Lip-
schitz continuity w.r.t. the Wasserstein distance guarantees
the Lipschitz continuity of the associated vector field. This
is due to the fact that the Wasserstein distance metrizes the
weak convergence (on compact sets.) We have the following:
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Proposition 3.1: Consider the control system (1) satisfy-
ing (A) and a relaxed feedback control u. If @ is Lipschitz
continuous for the Wasserstein distance, then the vector field
T — fyu)(x) is Lipschitz continuous.

Proof: Define the vector field g(z) = f(y)(2). We can

estimate:
lg(z) — g(y)| =
| f(,w) d(i(x)) (w) = [ fy,u) d(@(y))(u)] <
|ff w) d(i(z))(u) — [ f(y, u) d(a(z))(u)| +
|[ fly,u)d(a(a))(u) — [ f(y,w)d(i(y))(u)| = I + L.

For I;, we have:

B < [ Lipth)le - vl da()(w) < (sup Lip(£.) [z~ .

(3)
On the other side, by Lemma 2.1, we get:

Iy < Lip(fy )W (a(z), u(y)) < Lip(fy)Lip(a) [z —yl, (4)

where Lip(@) indicates the Lipschitz constant of @ for
the Wasserstein distance. By assumption (A), we have
(sup,, Lip(fu)) < L, and (sup, Lip(f,)) < L, thus com-
bining (3) and (4) we conclude. |
We immediately get the following:

Proposition 3.2: Consider (1) satisfying (A) and a relaxed
feedback control @. If @ is Lipschitz continuous for the
Wasserstein distance, for every initial datum xg there exists
a unique solution to the Cauchy problem & = f;)(2),
z(0) = xo.

B. Random and measure vector fields

Here we introduce generalizations of relaxed controls,
starting with random vector fields.

Definition 3.3: A random vector field (briefly RVF) as-
sociated to (1) is a map v : P(R™) — P(TR") such that
Supp(v(z)) C {(z,v) :v € F(z)} C T,R™.

To every RVF v we can associate an MVF V" by setting:
Vieu] = p @ v().

Remark 1: The idea behind the definition of RVF is as
follows. For the classical control system (1), a control value
is given by u € U. This, in turn, determines a map R"” —
TR, © — f(xz,u) =: fz(x), i.e. a vector field. This can
be generalized by the concept of selection to the differential
inclusion (2), that is a map R" — TR", z — ¢(z) € F(x).
Notice that the map f; is a specific selection based on the
parametrization of F' given by the control system, see [5].
A critical aspect is the regularity of such maps. The control
value % can be seen as a constant map u : R” — U, u(z) =
4, or having the regularity of f w.r.t. to the argument u. The
same aspect of regularity is critical for selections as well, for
instance requiring the continuity of . The concept of RVF
is a natural generalization, passing from a map R™ — TR"
to a map R™ — P(TR").

Remark 2: Notice that the measure vector field V" does
not take into account the mass distribution of the argument
w. Therefore the RVF generates an MVF depending on
the independent variable € R", but not on the mass

distribution of p. The more general concept of measure
control will be introduced in Section V.
Relaxed controls can be seen as a special case of RVE.

Proposition 3.3: To every relaxed control 4 we can as-
sociate a RVF by setting v(a) : R* — TR"™, v(a)(x) =
f(x,-)#1u. The vector field associated to a relaxed control is
the average vector field obtained integrating the correspond-
ing RVF over the fibers.

Proof: ~ We have fi(z) = [ f(z,u)da(u) =
J f(z,u)d(v(a@)(x))(u) as stated. [

The generalization to measures of RVF is captured by the
concept of MVF associated to a control system defined as
follows.

Definition 3.4: An MVF associated to (1) is a map

Vi MR") — M(TR"™) such that m#V[u] = p and
Supp(V(u)) € {(x,v) : v € F(a)}.
In simple words an MVF associated to (1) is a measure
vector field that is compatible with the velocity constraints
given by the control system. Notice that, by disintegration,
for an MVF V' we can always write V[u] = p ®, v[V, pl.
This expression has to be compared with the measure vector
field defined by an RVF: V¥[u] = p ®, v(x). The crucial
difference is that the probability measure v(z) does not
depend on the argument (measure) (.

IV. TRAJECTORIES OF MEASURE VECTOR FIELDS

In this section, we discuss the construction of trajectories
for measure vector fields. Our approach follows [15]. Given
a measure vector field V' we can associate the measure
differential equation:

fo=Vlpl. )

Since the evolving object is a measure, we need to resort to
weak solutions:

Definition 4.1: A (weak) solution to (5) is a map u :
[0,T7] — M(R™) such that for every f € C°(R™) and
almost every t:

G [ f@duo@ = [ (Vi) 0) dviu)e.o),

R TR™
(6)
where we assume that [ ... (Vf(z)-v) dV[u(t)](z,v) is
defined for a.e. ¢ and belongs to L'([0,T]), and [ f du(t) is
absolutely continuous in t.
A Cauchy problem for an MDE is obtained assigning an
initial condition:

b= V[ML (7)

We now report some results from [15] on existence and
uniqueness of solutions to Cauchy problems (7). We start
formulating a sublinear growth condition on the MVF:

(H1) There exists C > 0 s.t. for every p € P(X) with
compact support it holds:

1(0) = po.

sup

v <C[1+ sup
(z,v)€Supp(V[u])

|| ] -
x€Supp(u)
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Hypothesis (H1) ensures boundedness of weak solutions.
Continuity w.r.t. the Wasserstein metrics on R™ and TR"
guarantees existence of solutions. We pass directly to for-
mulating assumptions for the existence of a semigroup of
solutions. We start introducing a functional to formulate
Lipschitz-type continuity for an MVFE.

Definition 4.2: Consider V1,V2 € P(TR"™), set p; =
m#V;, i = 1,2, define T(V1,Va) = {T € P(V1,Vs) :
ms#T € PPy, p2)}, where w3 1 (TR™)? — (R™)? is
the bases projection m13(z,v,y,w) = (z,y), and

WR) = _inf { 1=l dT(x,z,y,w}. ®)

Notice that T is the set of transference plans between V;
and V5 such that the projection on the base is optimal.
Unfortunately, W fails to be a metric since the triangular
inequality does not hold, see [15]. We are now ready to
formulate the second assumption.

(H2) For every R > 0 there exists K = K(R) > 0 such that
if Supp(u), Supp(v) C B(0, R) then

WV, VIv)) < K W(p,v). ©)

Hypothesis (H2) (together with (H1)) guarantees the exis-

tence of a Lipschitz semigroup of trajectories, defined as:
Definition 4.3: For an MVF V satisfying (H1) and 7" > 0,

S [0, T] x Mc(R™) — M_.(R™) is a Lipschitz semigroup

of trajectories if the following holds for p,v € M.(R™),

|g| = |v|, and ¢, s € [0,T):

i) Sop = p and S Ss pp = Seys

ii) the map ¢ — S;u is a solution to (5);

iii) for every R > 0 there exists C'(R) > 0 such that if

Supp(u), Supp(v) C B(0, R) then:

Supp(Sip) C B(0,e“ (R + 1)), (10)
W (Se, Syv) < e“FW (, w), (11)
W (Sip, Ssp) < C(R) |t — s|. (12)

The following holds.

Theorem 4.1: If V satisfies (H1)-(H2) then for every T" >
0 there exists a Lipschitz semigroup of trajectories.
The proof is entirely similar to the proof of the existence of
weak solutions to MDEs, see Theorem 2 of [15]. The only
difference is the extension from P(R") to M(R"™).

V. MEASURE CONTROLS

A measure vector field can be generated by control
strategies depending on the datum given by a measure
(distribution) on the state space. To capture this possibility
we give the following definition.

Definition 5.1: A measure control is a map @ : M(R") —

RF(U). We define the associated MVF by V@[u] = p ®,
(f (a, ) #(alu](2)))-
We are interested in understanding the regularity of measure
controls, in particular to ensure the existence of trajectories.
This can be achieved via the regularity of the associated
MVF and its trajectories. For this, we define the following
regularity for measure controls.

Definition 5.2: A measure control # is called Wasserstein-
Lipschitz continuous if the following holds. Given u, v €
M(R™), z € Supp(p), y € Supp(v), we have:

W (alpl(z), alp)(y)) < K(w) - |z -yl
W (alp)(x), av](z)) < K(z) - W(u,v).

Moreover, the constant K (u) is uniformly bounded for
uniformly bounded supports, and K (z) is uniformly bounded
on compact sets.

A. Trajectories of measure controls

Here we show that the introduced Wasserstein-Lipschitz
regularity is sufficient to ensure the existence of a semigroup
of trajectories. More precisely, we have the following:

Theorem 5.1: Consider a measure control @ and the asso-
ciated MVF V%_If (A) holds and 4 is Wasserstein-Lipschitz
continuous, then V% satisfies (H1) and (H2). Therefore there
exists a Lipschitz semigroup of trajectories of V%

Proof: Consider a measure i, fix (z,v) € Supp(V%[u])
and ug € U, then (assuming w.l.o.g. L > 1):

o] < sup

veSupp (f(z,)#(ilu] (2)))

< L (. u0) | +

o] <

d(u,uo)) <

sup
ueSupp (ilul(2))

< L (|f(z,u0)| + diam(U, up)),

where diam(U,ug) = maxyey d(ug,u), thus (H1) holds
true.

Let us now pass to (H2). Given u, v € M(R"™), set V; =
Vi[u]) and Vo = V&v]). We need to estimate:

W(Vy, Vo) :TeTi(anl . {/z—w| dT}.

Fix T € T(V1,V,2) and assume that T is a Dirac mass
centered at (T, Z, y,w). Then we can estimate:

/|z—w| dT = |z — 0| = | f(z,8) - £(5,9)

for some 4, v € U. Here we used the equality: V%[u] =
1R (f(z,)#(@[u)(x))), and the same for v. By assumption
(A), we have:

[f(@,a) - f(7.9)| < L-(|z -5l -|a—1|).

Since we can approximate every plan in 7 with a finite sum
of Dirac masses, we obtain:

< o ro— -
wviva) < int [ L=yl - o) ar

<L- Tnelg_ (W (p,v) + / lu —v|dr(T)), (13)

where 7(T') € P(u[p)(z),alv](y)) is obtained from T by
taking measurable inverses of the maps f(z,-), f(y,-), and
we have used the fact that m3#7T € P°P*(u,v). Notice that
for every m € P°P'(u, v) we can, by disintegration, construct
a T € 7T such that the fiber component is given by an
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arbitrary 7 € P(u[u](z),a[v](y)). Since @ is Wasserstein-
Lipschitz continuous, we can estimate:

e 1(r;f i /\u—v|dr <
W (alu](z), alpl(y)) + W (alp(y), alv](y)) <
K(p) - |z =yl + K(z) - W(u,v).

Therefore we get:

inf —v|d
et

Now, combing (13) and (14), we get:

V)+K ()W (p,v)).
(14)

7)) < (KWW (s

WV, Va) < (1+ K(p) + K(x)) - W, v).

For p, v with compact support, the constants K (1) and K (y)
are uniformly bounded, thus assumption (H2) holds true. ®

Remark 3: The assumption (A) on (uniform) Lipschitz
continuity of the map f in Theorem 5.1 can be relaxed
to local Lipschitz continuity. In fact, to prove assumption
(H2) we need only a local estimate w.r.t. the support of the
measures.

B. Stabilization via measure controls: the circle problem

A long standing problem is the existence of a continuous
stabilizing feedback, under the assumption that every single
state can be asymptotically driven to the origin. There are
well-known topological obstructions [6] preventing such a
feedback to exist.

Here we illustrate how measure controls can overcome the
classical circle stabilization problem. This is defined as
follows. Consider the control system:

f=u, wuec {-1,+1}, (15)
where # € S, the unit circle in R2. We consider an arclength
parametrization of S! so it can be identified with the interval
[0,27] (assuming O coincides with 27.) Thus the system
evolves either clockwise or counterclockwise at an angular
speed equal to 1. A continuous stabilizing feedback u(6) to
6 = 0 does not exist. This is a simple case of a cut locus for
St geodesics starting form # = 0. Stabilizing controls can
be found for instance using hybrid controls, see [12].

We now define a regular measure control stabilizing the
system (15) to & = 0. First define the sector A = {6 :
|0 — | < n}, where 0 < <m/2. Letty: A— [0,1] be a
smooth function such ¢(r £ n) =0, ¥(7) =1, Y(7r —0) =
Y(m + ), and ¢ increasing on A N [7/2,x]. Then given
€ M(S!) we define the cumulative distribution of x on
the sector A as follows. For § € A, set:

F

u(0) = p([m —n,0]).

Let m, = F,(m + 1) = n(A) and define the dynamics on
the sector A as follows. Set 6, = inf{ € A : F,(0) =

3y} and ey = Fu(0,) — 55, e = 5 —
n({0.}) = c1 + ca. We set:

F,(0,—) so that

01 0<40,

afp] =< 0-1 6>0,
ey (10 + e281) i @ = 6,, 1({6,}) > 0
(16)

In simple words, ¢, is the mid point of the mass of 1 located
in A and we move half mass to the left and half to the
right. This results in a regular measure control stabilizing
the system to # = 0. Indeed, we have the following:

Lemma 5.1: The measure control 4 given by (16) satisfies
the Wasserstein-Lipschitz continuity property.

Proof: Notice that the quantities m,, 0,, ci, and
co are Lipschitz continuous w.r.t. the Wasserstein distance.
Therefore, we conclude using standard Lipschitz regularity
w.r.t. the state space of the controlled dynamics. [ ]
We are ready to prove that the measure control % given by
(16) stabilizes the system. However, we are now dealing with
measures distributed on the state space S, thus we need to
define the appropriate concept of stabilization.

Definition 5.3: Consider a control system (1) satisfying

(A). We say that a measure control u stabilized the system
to the origin if the following holds. For every trajectory p(-)
of the corresponding MVF V% we have W (u(t), ) — 0
with convergence estimates uniform for uniformly compact
support of the initial data.
This definition implies that the convergence to the origin
is guaranteed for every initial datum for the Wasserstein
distance. In particular, the whole mass of the measure must
converge to zero as the time tends to infinity. We have the
following:

Lemma 5.2: Let @ be the measure control on S* given by
(16). Then there exists ¢ > 0 such that if u(-) is a trajectory
of the corresponding MVF V% then

plt +66)(4) < Su()(A)

Proof: Assume p absolutely continuous and define 6, /4
such that F),(01/4) = % and, similarly, 63,4 such that
F(034) = 2220 Assume [0y /4 — (7 —1)| < |03/4 — (7 +
7)| being the opposite case entirely similar. By definition
of & we have that the mass on A N [r — 0,6, ,] rotates
counterclockwise (angular speed —1) for small times. We
claim that this mass exits the sector A within time 6t =
61 /4—(m—mn). Indeed, since |0 /4 —(7—n)| < |93/47(7r+77)|
on the time interval [t,  + §t] at most mass of %) can exit
the sector A from the point 7 + 7. Therefore on the time
interval [t,¢ + dt] the mass not yet exited from A from the
point 7 — 7 is at most 4% thus @ is defined to be equal
to —1 on the time 1nterval [t,t + d0t] on AN [m—n,0(t),
where 6(t) = 6, ,, —t. Finally, at least "4 exits the sector
A within time Jt as claimed. By approximation we can treat
the case of a general measure . [ ]
We are now ready to prove the following:

Theorem 5.2: Let i be the measure control on S! given
by (16). If u(-) is a trajectory of the corresponding MVF
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V@ then W(u(t),50) — 0 as t — oo. In particular, %
asymptotically stabilized the system to 0.

Proof: Consider a trajectory 4(+) of the MVF V%, From
Lemma 5.2, we have:

k
u(t + k6t) (4) < (i) u(t)(A),

for every k € N. Therefore, for every e we can choose k
such that p(t + kdt)(A) < e. In turn, the mass outside A
will reach 0 within time 27, thus we immediately obtain
W (u(kdt + 2m),dp) < e which proves the claim. |

C. Stabilization via measure controls: two-dimensional case

We consider a two-dimensional example (see [3]), which
can be seen as a generalization of the circle problem . Let
x = (z1,22) € R2, for a # 0 define C(a) = {(z1,72) :
22 + (2 — a)? = a®} the circle centered in (0,a) with
radius a, and let ¢(x) the unit tangent vector to C'(a) at = €
C'(a) rotating counterclockwise in the upper half plane and
clockwise in the lower half plane. We complete the definition
of ¢ setting ¢(z,0) = (1,0). Consider the control system:

Jb:ue_ﬁt(x), u € [—1,1]. (17)

System (17) is smooth and for every initial condition there
exists an open-loop control driving the system to zero (just
rotate on a circle C(a)). But there exist no continuous
stabilizing feedback, classical or relaxed, even excluding x =
0. Indeed, on every C'(a) we have a circle problem. For each
circle C'(a) define a measure control as in (16), replacing the
sector A with a sector A’(a) around the point (0,2a). The
quantities m,,, 6,,, c1, and c are Lipschitz continuous w.r.t.
the variable a. Thus we can define a measure control @ on the
whole plane, which is Wasserstein-Lipschitz continuous and
stabilizes the system on each circle C(a). If o € M (R?),
then the sector A’(a) intersects the measure support only for
a on a bounded set. Therefore, if p(-) is a trajectory starting
from 1o we conclude that W (u(t),0) — O reasoning as in
the proofs of Lemma 5.2 and Theorem 5.2. Hence u is a
regular stabilizing measure control.
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VII. CONCLUSIONS AND FUTURE DIRECTIONS

Classical control problems, such as optimal control and
stabilization ones, are difficult to solve using open-loop or
feedback control. The classical concept of relaxed control,
which is a probability measure on the control set, allows
to solve a larger set of problems. However, it may be
insufficient in many instances.

In this paper, we introduced the concept of measure control,
which is a generalization of relaxed feedback control. This
new concept is inspired by recent work on differential
equations for measures. In simple terms, the state of the
system is described by a measure distributed on the state

space, and a measure control is a relaxed feedback depending
on the global structure of the measure. After proving the
existence of a Lipschitz semigroup for regular measure
controls, we showed how to solve the classical circle problem
via a regular measure control. Future developments will
include applications to other optimal control and stabilization
problems.
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