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Abstract— The performance of microbial chemical produc-
tion can be improved by incorporating inducible synthetic gene
circuits which ‘switch’ the microbial cell factories from growth
to production. Here, we consider the design of an inducible
switch, implemented as a small-scale gene regulatory network,
in the context of host processes. We show that by accounting
for the non-regulatory interactions which arise between host
and circuit processes due to natural metabolic and ribosomal
constraints the design of the gene circuit can be simplified
with little cost to performance. We show that whilst optimal
performance is achieved by engineering the full three-gene
controller, a partial system composed of fewer regulated genes
can still achieve near optimal performance. This may allow for
engineering controllers in living cells with fewer time consuming
and expensive experimental steps.

I. INTRODUCTION

Engineering metabolic pathways in microorganisms pro-
vides a route to the manufacture of commodity and high
value chemicals from sustainable feedstocks. However, en-
gineered processes impose a “burden” on the cell: engineered
microbes show reduced growth rate due to both (i) co-option
of the cell’s ribosomes for new enzyme production and (ii)
diversion of metabolic fluxes from key growth processes to
the new metabolic product. These processes are interlinked
as gene expression utilises metabolic resources (e.g. ATP,
amino acids) and metabolic precursors are generated by
enzymes, which themselves are produced by gene expression
resources (Fig. 1). These interactions limit the production
efficiency of microbial cell factories by reducing volumetric
productivity (the total product synthesised per unit total
batch culture time, limited by poor growth) and yield (the
substrate to product conversation ratio, limited due to host
cell production). Temporally separating growth and produc-
tion processes enables improved performance of microbial
cell factories (reviewed in [1]). This can be achieved using
synthetic genetic control systems (depicted as blue blocks
in Fig. 1) which activate the engineered process (the green
blocks of E ′) and concurrently inhibit host processes (e.g.
deactivating E) at some optimal batch culture time [2]. To
date, a number of simple systems have been designed and
successfully engineered into living cells (reviewed in [3]).
However, how to construct the circuits to maximise the
production performance in light of the complex constraints
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imposed by host metabolic and gene expression interactions
remains an open question.

Gene expression in E. coli is known to be limited by the
availability of free ribosomes (e.g. [4]) which results in the
emergence of non-regulatory interactions between genes. For
example, as expression of one gene increases, the expression
of others must fall [5]. These interactions can complicate
synthetic circuit design [6], [7]. Recent results also demon-
strate a complex interplay between the cell’s metabolism
and expression of synthetic genes (e.g. [8]). These resource
limitations create an additional layer of feedback, which
we term natural feedback, but is often neglected during
controller design. In this paper, we analyse the performance
of a simple growth-production switch in the presence of
natural feedback mediated by the host’s processes. In Section
II we develop multi-scale models of the controller in the
absence and presence of these natural feedbacks. In Section
III we demonstrate that natural feedback can enhance the
production of an engineered pathway. In Section IV, we
use multi-objective optimisation to design controllers which
maximise key industrial performance metrics (yield and
volumetric productivity). We then show that natural host
feedback can simplify the design of the proposed control
system by enabling near optimal performance to be achieved
by regulating fewer genes.
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Fig. 1. Block diagram of host-pathway interactions. Host processes are
shown in black, the synthetic pathway is highlighted in green and control
system depicted in blue. The extracellular substrate S is imported by
transporters T and converted, by enzyme E, to metabolic resources. The
engineered process produces P via enzyme E ′. The controller input (inducer)
I acts via the transcription factor T F on E and E ′.

II. CONTEXT-BASED MODEL OF THE GENETIC SWITCH

A. Model of the pathway and regulatory switch

We consider a simple dynamic model of metabolism where
an extracellular substrate S is imported into the cell at rate
vuptake to form a pool of internalised substrate sin. This
substrate is then utilised for growth processes at rate vhost
(e.g. energy production) or the engineered process at rate
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vprod . Growth at rate λ leads to dilution of all species.
Applying the law of mass action, the substrate sin and product
pin dynamics within the cell are:

ṡin = vuptake(S, pT )− vhost(sn, pE)− vprod(sin, pE ′)−λ · sin
(1)

ṗin = vprod(sin, pE ′)−λ · pin (2)

We model the reaction rates with Michaelis-Menten kinetics,
where the rate of reaction catalysed by pY is:

vrxn(x, pY ) =
vY · x · pY

κY + x
(3)

where x is the substrate concentration and pY is the concen-
tration of the catalysing enzyme with a turnover number of
vY and Michaelis constant of κY . We denote the enzyme of
the engineered production pathway as E ′.

The gene expression model of protein Y is composed of an
mRNA (mY ), which is born spontaneously at rate TX (e, pT F)
(where e is the cell’s internal energy supply and pT F is
the regulating transcription factor (see Eq. 10). The mRNA
(reversibly) binds to free ribosomes R to produce translation
complexes cX . These undergo translation (protein birth) at
rate TL(cY , e) to produce proteins (pY ). All species dilute
due to cell growth at rate λ and mRNAs are also subject to
decay at rate δm. Applying the law of mass action, we model
the dynamics of mRNA, translation complex and proteins as:

ṁY = TX (e, pT F)−bY ·R ·mY +uY · cY − (λ +δm) ·mY , (4)
ċY = bY ·R ·mY −uY · cY −TL(cY , e)−λ · cY , (5)
ṗY = TL(cY , e)−λ · pY . (6)

Note that for ease of comparision to the host model described
in Section II-D, we do not reduce the dimension of this model
by assuming the quasi-steady states as is typically done.

We consider a genetic switch system based on a single
transcription factor which regulates both host enzymes, E,
and pathway enzymes, E ′, as shown in Fig. 1. This transcrip-
tion factor exists in two states: pT F (the (functional) DNA-
binding form) and pT Fc (the non-functional inert complex
bound by two molecules of the inducer Iin). The inducer is
introduced as I which is then internalised at rate vI to form
Iin. The switch dynamics are:

ṗT F = TL(cT F ,e)−λ · pT F − kI, f · I2
in · pT F + kI,r · pT Fc (7)

ṗT Fc = kI, f · I2
i · pT F − kI,r · pT Fc −λ · pT Fc (8)

İin = vI(I)−2 · kI, f · I2
in · pT F +2 · kI,r · pT Fc −λ · Iin (9)

where kI, f and kI,r are the rates of Iin binding and unbinding
from the transcription factor species pT F and pT Fc, respec-
tively. vI(I) captures the internalisation of the inducer and is
described in Section II-B.

The core controller motif is based on a dual regulation
scheme, as depicted in Fig. 1, where the transcription factor
activates expression of the host pE and inhibits expression of
the pathway pE ′ . Upon addition of I, the TF is sequestered
causing pE transcription to fall (due to loss of activation)
and pE ′ transcription to rise (due to loss of repression). The
regulation is captured in the TX (·) transcription rate function.

The transcription rate TX (e, pT F) of a regulated gene is
a nonlinear function of the cell’s internal energy (e) and
regulation by pT F , where pT F can be either an activator or
inhibitor:

TX (e, pT F) (10)

=



θY ·

(
ωY · e
πY + e

)
·

(
ω0 +

KY · pT F

KY · pT F +1

)
[Activation]

θY ·

(
ωY · e
πY + e

)
[Constitutive (no regulation)]

θY ·

(
ωY · e
πY + e

)
·

(
ω0 +

1
KY · pT F +1

)
[Repression]

where ωY is the maximal expression rate, ω0 is the constant
‘leaky’ expression, KY is the effective strength of pT F . Here
we set synthetic gene expression ωE ′ to 20 mRNAs per min
and set the host values ωY where Y = {T, E, H, R,r} to the
values reported in [10]. Our nominal value for synthetic gene
expression represents approximately five times the mRNA
synthesis rate for the host enzymes. We introduce θY as an
adjunct scaling factor which enables us to tune these nominal
values in our simulations and optimisations (see Section IV).
The e/(πY + e) expression scales the promoter activity by
the cell’s internal energy which is either constant (see II-C)
or dynamically calculated (see II-D). The parameter θY is an
adjunct scaling factor required for our optimization approach
(see IV).

Proteins are produced by translation at rate TL(cY , e):

TL(cY , e) =
1

nY
·
(

γmax · e
κγ + e

)
· cY · (11)

where nY , κγ and γmax represent the protein peptide length,
translational energy threshold and maximum translation rate.
For the model without host processes e = e0 (a constant)
while for the host-aware model e is calculated dynamically.

B. Batch fermentation model

The four state biotechnological process is composed of:
the cell population (N), the external substrate (S), which
is taken up by cells, the extracellular product (P) which is
exported from the cell and the extracellular inducer (I). The
dynamics of this system are:

Ṅ = λ ·N (12)

Ṡ =−vuptake(S, pT ) ·N (13)
Ṗ = vprod(sin, pE ′) ·N (14)
İ =−vI(I) ·N (15)

The inducer uptake rate vI is calculated based on the differ-
ence between the internal and external concentration:

vI = kI,D · (I · (Vcell/Vcult − Iin)λ ·N (16)

C. Model in the absence of host feedback

To model the process and switch controller in Section II-
A in the absence of host-circuit interactions, we set the host
energy e and free ribosome concentration R to constants e0
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and R0, equivalent to the steady state values of the host model
energy species e and free ribosomes R as calculated numer-
ically (see Appendix). We also set the rate vuptake(S, pT ) to
its steady state value. To assess the impact of diverting sin
from growth to product synthesis, we estimate the growth
rate based on the sin and pE concentration

λ =

(
ΦE

τE

)
·

(
sin

κE + sin

)
(17)

where the mass fraction of the host protein E (ΦE ) is given
by (nE · pE)/M0 and the time taken to generate sufficient
energy to produce a protein is given by τE = nE/(φe · vE).
The parameters nE , M0, φe and vE correspond to enzyme E
length in amino acids, total cell mass in amino acids, nutrient
quality and enzyme E turnover number, respectively. See [9]
for the derivation. We hereafter refer to this model as the
”original” model.

D. Model augmented with host feedback

We embed the model from Section II-A in a previously
described coarse grained model of E. coli [10]. This non-
linear ‘self-replicator’ model, hereafter referred to as the
”host-aware model”, is composed of 16 ordinary differential
equations that capture the interaction between the cell’s
metabolism and gene expression by capturing the time evo-
lution of a simple metabolism (consisting of substrate sin
and universal energy carrier e), gene expression of a coarse
grained proteome (consisting of transporters pT , metabolic
enzymes pE , host proteins pH and ribosomal proteins pR,
each with a corresponding mRNA mi and translation complex
ci modelled as in Eq. 4-6), translational resource biogen-
esis (consisting of the transcription of rRNAs, r, and the
formation of ribosomes from r and pR) and cell growth.
The metabolic model in Section II-A is augmented by the
introduction of a dynamic e species, produced from sin and
consumed by translation:

sin
vhost (sin, pE )−−−−−−−−−−−→ e

∑(TL(cY , e))−−−−−−−−−−−→ /0 (18)

The dynamic nature of e causes the transcription and transla-
tion rates of the model’s genes to dynamically respond to the
impact of the engineered pathway flux (through Eq. 10 and
11). The model captures gene expression resource limitations
and competition through the free ribosome dynamics:

Ṙ = bρ · pR · r−uρ ·R−λ ·R... (19)

...+∑
X

(
TL(cX , e)−bX ·mX ·R+uX · cX

)
where pR and r are ribosomal (r)-proteins and rRNAs,
respectively, which form the functional free ribosome and
construct all other proteins: X = {T, E, H, R, E ′,T F}. All
genes within the model are connected to this single pool
by ribosome-mRNA association reactions through the ∑X (·)
term. As one gene Y increases the R −→ cY rate increases
which perturbs the other genes in the set X through the ∑X (·)

𝒗𝑬′
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Fig. 2. Comparing the impact of varying θE ′ in both the original and host-
aware model. θE ′ is the scaling factor for the transcription rate pE ′ , see Eq.
10. vE ′ is varied on a log-scale from 0 (blue) to 5,800min−1 (yellow). (a)
The impact of varying enzyme induction (production) rate θE ′ and enzyme
turnover number (speed of action) vE ′ on λ in the original model. (b) The
impact of varying θE ′ and vE ′ on vprod in the original model. (c) The
relationship between λ and vprod in the original model. (d) The impact
of varying θE ′ and vE ′ on λ in the host-aware model. (e) The impact of
varying θE ′ and vE ′ on vprod in the host-aware model. (f) The relationship
between λ and vprod in the host-aware model.

term. We define the growth rate as a function of the total
cellular translation rate:

λ =
1

M0
·

(
γmax · e
κγ + e

)
·∑

X

(
cX

)
(20)

See [10] for a full description.

III. NATURAL FEEDBACK ENHANCES PATHWAY
PERFORMANCE

To understand how the synthetic enzyme expression (and
subsequent flux redirection) impacts host growth we sim-
ulated the original and host-aware models with varying
transcription rates and turnover number of E ′. We find
that the original model (Section II-C) shows an inverse
linear relationship between growth rate and enzyme turnover
number vE ′ (Fig. 2a,c) with production flux (vprod) increasing
monotonically with enzyme transcription (θE ′ ) across all vE ′

(Fig. 2b). However, the host-aware model (Section II-D)
shows a more complex relationship due to pE ′ production
dynamics and host feedback. Whilst the impact of θE ′ is
qualitatively the same, λ falls significantly at high θE ′ due
to ribosomal burden (Fig. 2d). Therefore the vprod flux is
non-monotonic with θE ′ with a peak in flux at intermediate
values of θE ′ . Increasing vE ′ reduces the growth rate for a
given θE ′ and results in the peak of production flux occuring
at a lower transcription rate. In the presence of host feedback
the vprod-λ relationship is no longer linear (Fig. 2f). The
point at which the system is ‘overloaded’ (i.e. when more
pE ′ does not increase vprod but instead causes λ to fall),
increases with increasing vE ′ .

Assessing the dynamics of the internal processes of the
host-aware model shows that host-mediated feedback en-
hances pathway performance (Fig. 3) [9]. The impact of the
engineered pathway (sin −→ pin) catalysed by the pathway
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Fig. 3. Natural feedback enhances pathway performance. The model is
simulated with vE ′ = 0 min−1 to assess the impact of protein burden and
vE ′ = 5,800 min−1 to assess the combined impact of protein burden and
sin −→ e reduction. The colours in the right hand panel correspond to the flux
through the respective enzyme. T represents the host transport proteins; E,
the host metabolic enzyme; H, the host q-proteins which are nonfunctional
in the model but generate biomass (see [10]); R, the ribosomes (both free
and translating); E ′, the synthetic pathway enzymes.

enzyme pE ′ has an additive impact to protein production
despite the fact that it increases burden (and reduces growth).
Graphically this can be seen as a shift in the host proteome
to the left in its response to θE ′ (see Fig. 3). For example,
pE ′ reaches a mass fraction of 0.2 at a lower θE ′ value when
vE ′ > 0 than when vE ′ = 0. As πX (where X ̸= r, R) is less
than πr and πR, the non-ribosomal proteins are less sensitive
to these changes in e. As the ribosomal mass fraction (R in
Fig. 3) falls, the mass fraction of other proteins (including
host enzymes) rises. Therefore, the impact of these non-
regulatory interactions (i.e. host feedback) counter-intuitively
enhances pathway performance: the addition of a foreign
enzyme causes the cell to become an enzyme-dominated
proteome which can further enhance the foreign enzyme
production. This results in an increase in flux through the
transporter, T . Even though the host enzyme pE rises, the
flux through vhost decreases as the sin decreases due to the
increased flux through vprod .

IV. DESIGN OF SWITCHING SYSTEMS IN ORIGINAL AND
HOST-AWARE FRAMEWORKS

The purpose of our control strategy is to optimise
two key biotechnology metrics: yield (which governs
process/production efficiency) and volumetric productivity
(which governs production times and is a key driver of pro-
cess costs). These objectives are often opposed, therefore we
employ a multiobjective optimisation routine (see Appendix)
to evaluate a number of controllers across any potential
trade-off. To characterise a controller design, the system
of equations are simulated until all substrate is depleted
(S(t) = 0), at which point we define time as tend and calculate
the yield (Jy) and volumetric productivity (Jvp) as:

Jy = P(tend)/S(0) and Jvp = P(tend)/tend . (21)

For each controller we optimise the parameters in the set
k representing the expression and control of the pathway
enzymes, including their transcriptional scaling factor θZ ,
Z (= {E, E ′, T F}), and regulation strength, if any, KZ . The
induction time tind (when I = 0 to I = Imax) is also optimised.

Given these objectives vary over orders of magnitude we
took a multi-step optimisation approach to the controller
parametric design. Firstly, we utilised a genetic algorithm to
solve two single-dimensional optimisation problems which
maximise yield (Jy) and volumetric productivity alone (Jvp):

maximise
k={θ , K,}, tind

(Jy) or (Jvp)

subject to
lb ≤ k ≤ ub, 0 ≤ tind ≤ tmax.

(22)

We denote these maximal yield and volumetric productivity
as Jy,max and Jvp,max, respectively and their designs as ky
and kvp. Next to identify the Pareto optimal designs and the
performance trade-off, if any, between these two extremes,
we used a multi-objective genetic algorithm to solve the
following optimisation problem:

maximise
k={θ , K}, tind

(
Jy/Jy,max, Jvp/Jvp,max

)
subject to

lb ≤ θ ≤ ub, 0 ≤ tind ≤ tmax.

(23)

To increase the efficiency of the optimisation we initialised
the multi-objective optimisation with a population of initial
points draw between the optimal designs ky and kvp.

The normalisation of each objective (e.g. Jy) by its pre-
viously identified optimal value (for Jy this is Jy,max) scales
each objective to vary between 0 and 1 ensuring they are on
the same scale and increasing the performance of the multi-
objective genetic algorithm.

We optimised the control system in the two proposed
modelling frameworks; the original model without host-
circuit interactions (Section II-C) and the host-aware model
(Section II-D). We optimised the strength of the growth
branch (via θE ), the strength of the production branch (via
θE ′ ) and the regulation parameters (KE , KE ′ , θT F ), and the
induction time tind . We set the lower and upper bound of θ

values to 10−3 and 2, corresponding to biologically realistic
values of nearly abolishing expression and modest two fold
up-regulation. The bounds of association constant K bounds
were 10−6 and 1, corresponding to dissociation constants in
the nM range (e.g. LacI, tetR) and no binding. We set the
induction time bounds to 1 min (i.e. instantly) and 24 h.

Both model frameworks show a trade-off between volu-
metric productivity and yield (Fig. 4a,b) with similar trends
in their design rules across the Pareto fronts (Fig. 4c,d). Note,
however, that the host-aware model suggests higher θE values
are needed than in the original model to offset the effects
of competition between pE and other genes. The strength
of the production branch (via θE ′ ) varies significantly. In
the original model, without host context, θE ′ should be
maximised while the host-aware model implies it should
be minimised (although still non-zero). This suggests that
incorporation of host processes changes the nature of the
control problem.

To assess the necessity of each regulatory linkage, we set
the regulation of each arm of the controller to 0 (i.e. we
remove the regulation by rendering the node constitutive).
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a

c

b

d

Original model without host context Host-aware model

Fig. 4. Trade-off between the yield and volumetric productivity. The Pareto
front identified in the optimisation routine described in Section IV. The lines
are denoted G(C) where G is the gene and N is the regulation with C =+1
is activation by pT F , C =−1 is inhibition by pT F and C = 0 is unregulated
(constitutive) expression. The x-axis of both (c) and (d) is the order of the
points along the yield axis. (a) The three Pareto fronts for the original model
without host constraints outlined in Section II-C. The three Pareto fronts
for the host-aware model which accounts for host constraints as outlined
in Section II-D. (c) The optimal designs corresponding to the fronts shown
in (a). (d) The optimal designs corresponding to the fronts shown in (b).
(Note that θE ′ has identified the upper bound. The optimisation was repeated
with an upper bound of 10 and still identified the upper bound: these high
θ values yield non-biologically feasible solutions as the synthetic protein
mass fraction exceeds those tolerated [4].)

We name these controllers based on their topology where
each gene is noted G(C) with G being the gene and C
being the regulation (+1, activation, −1 inhibition, and
0, unregulated (constitutive) expression). In the absence of
host constraints, it appears that regulation of only the E ′

branch is required for optimal performance with E(1)E ′(−1)
showing the same performance as E(0)E ′(−1) (Fig. 4a).
However, this relationship is inverted in the presence of host
constraints: where the regulation of the E is crucial. The
E(+1)E ′(0) topology shows near equivalent performance
to E(+1)E ′(−1). Both frameworks show simplified motifs
can be optimal, however, they suggest opposite motifs. This
demonstrates again that the incorporation of host-mediated
feedback significantly changes the nature of the control
problem, which in this case means host-feedback can allow
construction of simpler circuit designs without much cost to
performance.

V. ANALYSIS OF SIMPLIFIED MOTIFS IN PRESENCE OF
HOST CONSTRAINTS

Although the single branch and dual branch regulation
topologies (E(+1)E ′(0) and E(+1)E ′(−1) , respectively)
have the same performance, they have significantly different
design rules (Fig. 4d). The switch induction time tind governs
the trade-off between yield and productivity in both systems

with shorter tind increase yield at a cost of volumetric produc-
tivity. The dual regulation system has low expression (θE and
θE ′ ) while the E(+1)E ′(0) topology requires much higher θE
values to overcome the impact of the constant sin −→ pin flux
(and therefore lower e) due to constant E ′ activity and the
competition for translational resources between E and E ′.

To establish why the two topologies produce similar
performance, we simulated the controller dynamics for a
similar volumetric productivity (Fig. 5b). This shows that in
addition to the E(+1)E ′(−1) controller acting to decrease
pE and increase pE ′ , it also increases pT due to (i) reducing
e increasing TX (e) of the T species (Fig. 5a) and (ii) reducing
translational competition enabling higher T translation (Fig.
5b). This results in a concurrent increase in flux through T
(Fig. 5d). The E(+1)E ′(0) topology shows similar qualita-
tive dynamics (Fig. 5). As E falls after tind , non-regualtory
interactions enable T and E ′ to rise. Whilst both T and E ′

rise by 58%, the higher mRNA birth rate of T over E ′ means
the impact of the former is more significant.

a

c

b

d

Fig. 5. Internal dynamics of the cell for selected E(+1)E ′(0) and
E(+1)E ′(−1) controllers. Selected dynamics of controllers from Fig. 4b
are shown for systems with the same volumetric productivity (≈ 5× 1019

molecules per min). (a) Relative transcription rates, scaled by the sum of the
transcription rates. (b) Relative translation rates, scaled by the sum of the
translation rates. (c) Protein dynamics for E, E’ and the transporter T. (d)
Flux catalysed by the protein shown. E: sin −→ e, E ′: sin −→ pin, T : S −→ sin.

VI. GENERALISING TO OTHER HOST
PARAMETERISATIONS

To assess the robustness of our observations to other
parameterisations of the host model, we varied a selection
of parameters in the host and repeated our analysis. Re-
sults are shown in Fig. 6 for the following representative
parameters from [10]: vT (the turnover rate - the maximum
efficiency, of the import protein pT which governs substrate
import), kH (the regulation threshold of the host q-proteins, a
smaller value increases the proteome space occupied by host
enzymes and ribosomes), γmax (the maximal translation rate
with increasing rates increasing the speed of protein produc-
tion), ωR (the maximal r-protein production rate, reducing
this value reduces the number of functional ribosomes R in
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Original model

Host-aware model
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b

𝟓𝒗𝑻 𝟎. 𝟓𝒌𝑯 𝟏. 𝟑𝜸𝒎𝒂𝒙

𝟎. 𝟓𝝎𝑹 𝟓𝝎𝑻, 𝟓𝝎𝑬

𝟓𝒗𝑻 𝟎. 𝟓𝒌𝑯 𝟏. 𝟑𝜸𝒎𝒂𝒙

𝟎. 𝟓𝝎𝑹 𝟓𝝎𝑻, 𝟓𝝎𝑬

Fig. 6. The results are generalisable to different parameterisations of the
host model. Pareto fronts were determined as outlined in Figure 4. The x-
axis is the yield between 0.8 and 1. The y-axis is the volumetric productivity
between 0 and 6.1× 1019. The y-axis of the panels representing vT and
ωT /ωE is between 0 and 1.1× 20. The different colored fronts represent
different controllers using the same legend in Figure 4. vT , kH , γmax, ωR,
ωT , and ωE are parameters in the host model [10] representing biological
rates depicted in the main text. (a) The original model in the absence of
host constraints was simulated parameters optimised as detailed in the main
text. For each new host parameterisation the parameters e0, R0 and vuptake
were calculated as in Appendix. (b) The Pareto fronts of the controllers
implemented different parameterised host models.

the model), and ωT and ωE (the two rates which determine
transporter and host metabolic enzyme mRNA transcription
rate). In all settings, except where vT is varied, the original
model predicts that the E(0)E’(-1) topology performs nearly
as well as the E(+1)E’(-1) topology. The model with host-
constraints predicts that the E(+1)E’(0) topology gives near
optimal performance in all tested settings.

VII. CONCLUSIONS

In the paper we developed a dynamic model of an
engineered metabolic pathway subject to substrate uptake,
metabolic competition and ribosome limitations. We showed
that the perturbation engineered pathways cause to their
host cell can lead the cell to adopt a favourable proteome
allocation: expression of pathway enzymes enhances their
own expression as pathway burden causes the host to adopt
an ‘enzyme dominated’ growth strategy. We proposed the
topology of genetic growth-production switch and show
that the non-regulatory interactions which emerge from the
presence of metabolic and ribosomal limitations can enable
redesign of the switch with fewer regulatory linkage making
the systems easier to engineer experimentally. These results
enable the engineering of simple growth-production switches
enabling the advantages of such systems to be achieved with
fewer costly and time consuming experimental steps.

APPENDIX

The model was implemented in MATLAB 2020a with
dynamics simulated with the in-built stiff solver ode15s

with tolerances of 10−6 and NonNegative such that no
states could be negative. To achieve specific designs (i.e.
design parametrisations), we utilised the ga and gamulti
functions from MATLAB’s Global Optimisation Toolbox
(version 4.4). The initial conditions for the multiscale sim-
ulation were determined by simulating the cell and process
model (i.e. dN/dt = dS/dt = dP/dt = dI/dt = 0) to steady
state from N(0) = 0, S(0) = 104, sin(0) = 106, e = 106,
pT (0) = pE(0) = R(0) = 100 and pT F(0) = 1. Multiscale
model simulations were then initialised with N(0) = 106,
S(0) = 4.18 × 1022 (10 g glucose in a culture vessel of
1.25 L), P(0) = I(0) = 0. At t = tind , I is raised to 1023

as a step input. Models were simulated to a tmax equivalent
to 7 days. The host model parameters are φe = 0.5, vT =
728 min−1, vE = 5800 min−1, κE = κT = 1000 molecules,
ωT = ωE = 4.14 mRNAs · min−1, ωH = 948.93 mRNAs ·
min−1, ωr = 3170 mRNAs · min−1, ωR = 930 mRNAs ·
min−1, πT = πE = 4.38 molecules, πR = 426.87 molecules,
nT = nE = nH = 300 amino acids, nR = 7459 amino acids,
bT = bE = bH = bR = 1, uT = uE = uH = uR = 1, bρ =
1, uρ = 1, δm = 0.1 min−1, κH = 121775.2 molecules,
hH = 8, γmax = 1260 amino acids per min, γκ = 7 molecules,
M0 = 108 amino acids. The circuit and pathway parameters
(where X = {E ′,T F}) are w0 = 10−4, ωX = 20 mRNAs ·
min−1, πX = 4.38 molecules, nX = 300 amino acids, bX = 1,
uX = 1, vE ′ = 5800 min−1, κE ′ = 1000 molecules. kI,D =
3600/60 min−1, Vcell = 10−15 L, Vcult = 1.25 L, kI, f =
1057.7/60 molecules−2 ·min−1, kI,r = 1292.1/60 min−1.
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[5] A. Gyorgy, J. I. Jiménez, J. Yazbek, H.-H. Huang, H. Chung, R. Weiss,
and D. Del Vecchio, “Isocost Lines Describe the Cellular Economy of
Genetic Circuits,” Biophysical Journal, vol. 109, no. 3, pp. 639–646,
2015.

[6] A. P. S. Darlington and D. Bates, “Host-aware modelling of a synthetic
genetic oscillator,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
EMBS, vol. 2016-Octob, 2016.

[7] Y. Qian, H.-H. Huang, J. I. Jiménez, and D. Del Vecchio, “Resource
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