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Abstract— Path planning for vehicles on large, complex, lane-

free roundabouts is challenging due to the geometrical features 

and frequent conflicts among entering, navigating, and exiting 

vehicles. A key difficulty is to properly determine the desired 

vehicle orientations on the roundabout so that vehicles enter the 

roundabout and move towards their corresponding exits 

smoothly and safely. Specification of vehicle orientations should 

consider the resulting trip distance, the angle difference from 

other vehicles, and the exploitation of the available roundabout 

surface for efficient traffic flow. This paper proposes an optimal 

control approach to determine optimal vehicle orientations at 

each point on the roundabout, in dependence of the exit branch, 

so as to minimize a weighted sum of the trip distance and the 

deviation from the circular motion. Analytical solutions for two 

extreme cases, addressing only the shortest path or only the 

minimum deviation from the circular angle, respectively, are 

derived. For the general weighted problem solution, a Dynamic 

Programming-based (backward Dijkstra) algorithm is 

employed to deliver the optimal orientations in a 2-D space-

discretized grid of the roundabout surface. In the light of the 

optimal solution, a computationally light near-optimal approach 

is also proposed. As a challenging case study, the methods are 

applied to the famous roundabout of Place Charles de Gaulle in 

Paris, which features a road width of 38 m and comprises 12 

bidirectional radial streets, hence a total of 144 origin-

destination movements for the vehicles.    

I. INTRODUCTION 

Τo tackle traffic congestion and its consequences, like 
excessive delays, environmental pollution, and reduced traffic 
safety, traffic control of various kinds [1, 2] has been 
developed for decades. More recently, the development of a 
variety of Vehicle Automation and Communication Systems 
(VACS) that significantly improve vehicles’ individual 
capabilities, have been considered in a new generation of 
traffic management tools [3, 4]. This trend continues with the 
development of high-automation or virtually driverless 
vehicles that are tested in real traffic conditions, see e.g. [5]. In 
the not-too-far future, vehicles may communicate with each 
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other and with the infrastructure; and drive automatically, 
based on own sensors, communications, and appropriate 
movement control strategies. 

Recently, the TrafficFluid concept was proposed [6], 
which is a novel paradigm for vehicular traffic, applicable at 
high levels of vehicle automation and communication. The 
TrafficFluid concept is based on two combined principles: (a) 
Lane-free traffic, whereby vehicles are not bound to fixed 
traffic lanes, as in conventional traffic, but may drive 
anywhere on the 2-D surface of the road; and (b) Vehicle 
nudging, whereby vehicles communicate their presence to 
other vehicles in front of them (or are sensed by them), and 
this may influence the movement of vehicles in front. Over the 
last couple of years, a number of movement strategies for 
automated vehicles on lane-free highways were developed, in 
accordance with the TrafficFluid paradigm, using different 
methodologies, such as: ad-hoc strategies [6], optimal model 
predictive control [9], reinforcement learning [10], nonlinear 
feedback control [11]; and a generic simulation environment 
for lane-free traffic has also been developed [12]; see [13] for 
a brief review. Most of these strategies require availability of 
a desired vehicle orientation that determines the local vehicle 
movement direction if no collision-avoidance maneuver is 
required. 

Roundabout is a key element in urban traffic which 
improves traffic efficiency in light traffic conditions [14]; but 
may become a bottleneck point in higher demands. Hence, 
efficient operation of roundabouts, which is indeed considered 
challenging because of the geometric complexities, can 
enhance traffic in its surrounding area. Several works in the 
literature focus on controlling automated vehicles on 
roundabouts, most of which addressing simple infrastructures. 
Specifically, a noticeable number of works consider single-
lane roundabouts using various control approaches. Some 
research [15-17] suggests priority management approaches, 
whereby a suitable policy, like “First-Come-First-Served”, is 
utilized to assign the priorities to vehicles. If two vehicles have 
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a conflict in the roundabout, the vehicle with a lower priority 
should stop or decrease its speed to let the higher-priority 
vehicle pass. Also, several presented methodologies [18-23] 
formulate the vehicles’ movements, either for complete 
navigation or only for the merging part, on roundabouts as an 
optimal model predictive control problem aiming to minimize 
different criteria, including travel time, fuel consumption, and 
distance from the destination. Furthermore, a hierarchical 
structure is proposed in [24], to determine the optimum 
roundabout inflow and guarantee vehicles’ safety.  

Other works propose control approaches for two-lane 
roundabouts. In [25], two fuzzy controllers, designed based on 
real data, drivers’ knowledge, and common reasoning, are 
employed to control steering angle and angular speed for a 
two-lane roundabout. Also, [26 - 28] combine optimal control 
and game theory to make decisions at the merging points or 
change lanes on the roundabout. An optimization embedded 
reinforcement learning method is suggested in [29] to make 
lane changing decisions at a four-lane roundabout.  

A lane-free roundabout was first addressed in [30], where 
we presented a comprehensive control strategy for vehicles on 
the basis of the bicycle model for vehicle dynamics. A 
nonlinear controller, which had been developed in [11] and 
guarantees several features for straight lane-free roads, 
including collision and boundary-violation avoidance, desired 
speed tracking, and convergence of acceleration and 
orientation to zero, was modified to appropriately control 
vehicles in the roundabout. Since the modified controller 
requires a desired vehicle orientation, we proposed in [30] a 
heuristic approach to determine desired orientations to be fed 
to the nonlinear controller. The approach was applied to the 
overly complex roundabout of Place Charles de Gaulle (Paris), 
which, due to its high complexity, is anyhow a lane-free road 
infrastructure even for today’s conventional traffic.   

In this paper, we present a more transparent, systematic, 
and potentially more efficient way to determine the desired 
orientation of vehicles moving on lane-free roundabouts, 
based on the current vehicle location and its destination. For 
this goal, we formulate and solve an optimal control problem 
that minimizes a weighted sum of two criteria: (a) the trip 
distance to the destination, and (b) deviation from the circular 
angle. Regarding (b), it should be noted that, if all vehicle 
orientations are close to the circular angle, then they will be 
close to each other, something that mitigates the strength of 
any required collision-avoidance maneuvers. The defined 
problem is solved analytically for two extreme cases, namely 
the shortest path and the minimum deviation from the circular 
angle, respectively. For intermediate cases, it is difficult to find 
the solution analytically. Therefore, a backward Dijkstra 
algorithm is suggested to determine the optimal orientation in 
a discretized grid of the roundabout surface. The resulting 
desired orientations can be stored as an offline database, such 
that the vehicles can extract their current desired orientation 
based on their position and exit, while moving on the 
roundabout. Alternatively, an approximation of the optimal 

orientation is also suggested, which can be implemented 
online with negligible computational requirements. The 
approximation combines locally the orientations related to the 
shortest path and the minimum angle deviation, which can be 
simply calculated. The methodologies are applied to a specific, 
overly complex case study, the roundabout of Place Charles de 
Gaulle.   

The structure of the paper is as follows. The optimal 
control problem, analytical solutions, and the backward 
Dijkstra algorithm are presented in Section II. Section III 
describes the sub-optimal approach. Demonstration results are 
presented in Section IV. Finally, concluding remarks are given 
in Section V. 

II. OPTIMAL DESIRED ORIENTATIONS  

In this section, a systematic approach is proposed to 
determine the vehicle’s desired orientation at any location 
within a circular roundabout, separately for each exit branch. 
We formulate the problem of specifying desired orientations 
for the vehicle advancement as an optimal control problem that 
minimizes a cost function consisting of two weighted terms: 
(a) the trip distance to the destination; and (b) the deviation 
from circular angle. Note that, by connecting the desired 
orientations, a complete path from any point in the roundabout 
to any exit may be obtained. 

It is important to highlight that the considered problem 
does not concern the actual vehicle movement, but merely the 
desired orientations to be fed to the vehicle’s movement 
strategy. In other words, the specified orientations would 
coincide with the actual vehicle path, only if there are no other 
vehicles around that might call for deviations from the desired 
path to avoid collisions. For the same reason, the addressed 
problem does not involve vehicle acceleration or speed, as it 
aims at merely specifying optimal orientations and resulting 
paths, whereon the vehicle may drive at acceleration and speed 
specified by its movement strategy. Therefore, our approach 
does not need a vehicle model to be explicitly considered.  

A. Continuous optimal control problem 

The optimal control problem may first be presented in a 
continuous framework. The vehicle position on the 
roundabout is represented by a radius r  and an angle   in 
polar coordinates. Since our goal is to determine the desired 
orientations without referring to the vehicle dynamics,   
(rather than the time t ) is considered as the independent 
variable, as the vehicle advances forward (increasing  ) 
within the roundabout. Thus, we have the state equation  

 :r dr d u   

where u  is the radius change rate, which may be considered 
as the control signal. For example, if 0u  , then (1) states that 
the radius does not change, hence the vehicle orientation   
equals the circular angle, i.e., it coincides with the tangent of 
the circle with the current radius r ; while the deviation s  
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from the circular angle is zero. More generally, we have the 
relationship ( 2)s       where ( 2)   is the circular 
angle. Based on elementary geometric considerations, we may 
also derive the relationship between the deviation s  and the 
control signal u  as  


1tan ( / )s u r   

The admissible state region for a circular roundabout is 
obviously in out[ , ]r R R , where  inR  and outR  are the inner 
and outer roundabout radiuses, respectively.  

For every initial angle and admissible state 0 0( , )r  , the 
final angle e  is determined by the angle of the specific 
destination branch considered; while the final state, at the exit 
angle e , is, for all branches, e out( )r R  , since all branches 
are located at the outer radius of the roundabout. The control 
objective to be minimized along the corresponding path is 
specified as  

  e

0

2 2 2( / )J u r w u r d



    

where the first term reflects the trip distance from the origin to 
the exit point; the second term penalizes quadratically the 
deviation from the circular angle (see (2)); and w  is a weight 
determining the relative importance of the two terms. Some 
control constraints may be added to the problem to suppress 
strong deviations from the circular angle. In conclusion, the 
optimal control problem (per destination) reads:  

 1

in out

out

Minimize 

s

 

ubject to:

 

    

                  

                 

                  (

(

)

tan / )

e

J

u r s

r u

r

R r R

R

 



 



 

where s  is the maximum admissible deviation.  

If the maximum-deviation constraint is disregarded, 
problem (4) can be analytically solved for two extreme cases: 
(a) the shortest path problem, i.e., for 0w  ; and (b) the 
minimum deviation problem, i.e., for w .   

B. Extreme Case 1: The shortest path problem 

The shortest path has a clear physical meaning and can be 
readily derived. For better comprehension, we distinguish 
among two distinct cases:  

Visible destination: If the straight line connecting a 
roundabout point (origin) ( , )r   with the destination lies 
completely within the roundabout, then we call the destination 
“visible”; and the shortest path obviously coincides with that 
straight line; while the slope of the line is the desired 
orientation at ( , )r  . The visible area for an exit branch, grey-
shaded in Fig. 1, is described by 

 in out vis( , ); ,0 ( )V r R r R r             (5) 

where [0,2 )    is the vehicle’s angular distance from the 
exit point, and vis ( )r  is a radius-dependent visibility 
threshold. The visible area is delineated upstream by the inner-
circle tangent connected to the exit point, which is displayed 
light blue in Fig. 1. Using trigonometric relationships, 

vis ( )r  can be derived as below:   


1

vis in vis in( ) cos ( ) ( )r R r R     

where 

 1

vis in in out( ) cos ( )R R R    

Invisible destination: The shortest path from a roundabout 
point (origin) ( , )r   to an invisible destination consists of 
three parts (Fig. 2). The first part is on the tangent of the inner 
circle that is connected to the origin, with touch point 

in tan( , ( ))R r   , where tan ( )r  satisfies 


1

tan in( ) cos ( )r R r    

The desired orientation in this part is the slope of the 
tangent. In the second part, the path follows the inner 
boundary, i.e., the desired orientation is the circular angle, 
until the destination gets visible; after which we have again the 
case of visible destination, and the desired orientation is the 
slope of a line connected to the exit point, see Fig.2.  

In conclusion, the desired orientation at every point on the 
roundabout ( , )r  , with either visible or invisible destination 

out e( , )R  , is:  
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


   


  

  (9) 

where the first condition reflects the points in the visible area 
of an exit branch; while the second and third conditions apply 
when the destination is invisible. Note that the respective 
tangent slopes, leading to the desired orientations for the first 
and third conditions, are calculated, after transforming the 
respective two points’ positions to Cartesian coordinates, as 
the ratio /y x   of their difference in y  coordinate ( y )  
over  their difference in x coordinate ( x ). 

C. Extreme Case 2: The minimum deviation problem 

If we drop the first term of the cost function, the solution 
minimizes the deviation from the circular angle. We rewrite 
(4) as below:  
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

Figure 1.  The visible area (grey-shaded) for an exit point 

 0

21
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e

J z d

r rz




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 

  

where, for convenience, z  is defined as : tan( )z s and treated 
as the control input. The Hamiltonian of this problem reads  


2

2

z
H rz   

Considering Pontryagin's principle, the optimal solution 
should satisfy the following conditions:  

 2

2

0
H

z r
z

d H
r

d r

dr H
r

d









 


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 

  
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 
  
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 

An intuitive solution is to have a constant deviation for the 
whole path, from origin to destination, i.e., 

0 e( ) ;z c      , which indeed satisfies the mentioned 
conditions in (12) and is the optimal solution of (10). To 
calculate the constant value, we solve the state equation:  

  0 0( ) exp ( )r cr r r c         

Then, by substituting the final condition, the constant value 
can be found as below:  



 out 0 0

out 0

0

exp ( )

ln( ) ln( )

e

e

R r c

R r
c

 

 

  


  



 



Figure 2.  The shortest path for an invisible destination 

Finally, the desired orientation for the minimum-deviation 
problem is  

1 out

d,MD

ln( ) ln( )
( , ) tan

2e

R r
r


  

 

  
    

 
 

D.   Backward Dijkstra algorithm 

The solutions of the mentioned extreme cases may not be 
desirable due to sharp vehicle movements or uneven 
exploitation of the roundabout area. In fact, for the shortest 
path case, many vehicles may tend to move along the inner 
circle; while for the minimum deviation case, the outer 
boundary would be more crowded. Therefore, it is interesting 
to have a combination of these two cases by choosing a finite 
and non-zero weight w  value in (3). However, finding the 
analytical solution in this general case is not straightforward. 
To overcome this issue, a Dynamic Programming-based 
approach, called backward Dijkstra algorithm, is proposed to 
compute a numerical closed-loop solution for the space-
discretized problem.  

To this end, we discretize the roundabout surface to form 
a grid of nodes, with resolution defined by a selectable radius 
step size r  and angle step size  . The angle step size 
should be sufficiently small so that at least one node is located 
at each (entrance and exit) radial branch. For the edges of the 
grid, it is reasonable to assume that vehicle paths on the 
roundabout point only forward, in discrete   steps. The next 
vehicle path radius at each forward step depends on vehicle 
orientation, i.e., we have ( 1) ( )r k r k q r    , where 

1,2,k   is the discrete angle step forward; 

 , , 1,0,1, ,q q q   reflects corresponding edges 
(transitions) to next-step nodes in the grid, with corresponding 
orientations; and q  and q  reflect lower and upper limits, 
respectively, for the admissible orientations, similarly to s  in 
(4). Clearly, the allowable range of radiuses is in out[ , ]r R R , 
and any transitions leading out of the roundabout are 
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suppressed while constructing the grid. For instance, for nodes 
on the outer boundary, it is not allowed to select a bigger 
radius, else outer-boundary violation would occur.   

The employed cost criterion for transitions between two 
nodes, where the radius changes by q  steps, is defined as  


, ,

2
( ) ( ) tan ( ( ))

r q r q
J k d sk w k   

where, as in (3), 
, ( )r qd k  and 

, ( )r qs k  are the transition distance 
and deviation from the circular angle, respectively, if the 
vehicle decides to change its current radius r  by q  steps. 
These terms can be obtained by following equations (see Fig. 
3):  


2 2 2

,
2( ) (1 cos( ))

r q
d r r q r q r          

 1

, ,0tan ( )r q rs q r d
    

This way, we have a discretized grid of the roundabout 
including all admissible transitions, along with their costs, 
which may be used for numerical optimal control problem 
solutions, separate for each exit point.  

The classical Dijkstra algorithm [31] finds the shortest 
(least-cost) paths between an origin node and all other nodes 
in a graph. However, what we need here is to find the optimal 
orientation (transition) at each discrete point (node) of the 
roundabout grid towards a specific destination point. To this 
end, we modify the Dijkstra algorithm in a Dynamic 
Programming-like way, whereby we begin from the 
destination point and move backward iteratively to determine 
the optimal transition for all nodes of the roundabout grid. The 
algorithm determines the optimal orientations at each node, 
such that the summation of the defined cost criterion from any 
origin to the exit point is minimized, i.e., the algorithm delivers 
a (discrete) closed-loop solution.  



Figure 3.  Construction of the roundabout grid 

The backward Dijkstra algorithm executes the following 
steps:  

1. Mark all nodes unvisited. Create a set of all the unvisited 
nodes, called the unvisited set. 

2. Assign to every node a tentative optimal cost (TOC) 
value; set it to zero for the final node and to infinity for all 
other nodes. [The TOC of a node v is the cost summation 
on the best path discovered so far between the node v and 
the final node. Since initially no path is known from any 
other node than the destination itself (which is a path of 
cost zero), all other tentative OCs are initially set to 
infinity.] Set the final node as current.  

3. For the current node, consider all its unvisited neighbors 
and calculate their TOC values through the current node. 
Compare the newly calculated TOC to the one currently 
assigned to that neighbor and assign it the smaller one, 
along with the corresponding tentatively optimal 
transition. [For example, if the current node A is marked 
with a TOC of 6, and the edge connecting it with a 
neighbor B has cost of 2, then the total cost to B through 
A is 6 + 2 = 8. If B was previously marked with a TOC 
greater than 8, then change it to 8; and change the optimal 
transition to point towards A; otherwise, the current TOC 
value and optimal transition are kept.] 

4. When you are done considering all the unvisited neighbors 
of the current node, mark the current node as visited and 
remove it from the unvisited set. [A visited node will 
never be checked again.] 

5. If the smallest TOC among the nodes in the unvisited set 
is infinity [occurs when there is no connection between the 
remaining unvisited nodes and the final node] or if all 
nodes have been marked visited, then stop. [The algorithm 
has finished.] 

6. Otherwise, select the unvisited node that is marked with 
the smallest TOC, set it as the new current node, and go 
back to step 3. 

At the end of iterations, the algorithm delivers, besides the 
final optimal cost, also the optimal transition (orientation) at 
each grid node towards the destination. Starting from any 
discrete point ( , )r   in the grid and following the optimal 
transitions at the encountered nodes, an optimal path 
connecting ( , )r   with the destination may be obtained. 

E.   Real-time implementation 

Due to the high computational effort of the numerical 
solution via the backward Dijkstra algorithm, specifically for 
a dense grid, it is not possible to run it online. Hence, we have 
to implement a real-time scheme to determine the optimal 
orientation for each vehicle based on its current position and 
exit branch.  

This may be achieved by storing the desired orientations 
for each roundabout location and exit branch, calculated 
offline by the backward Dijkstra algorithm, as a database 
which is accessible for the vehicles moving on the roundabout. 
At each location in the roundabout, a vehicle, depending on its 
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exit branch, recalls the optimal desired orientation for its 
current location from the corresponding table.  

III. A SUB-OPTIMAL ONLINE APPROACH 

In the light of the optimal results of the previous section, 
an alternative, sub-optimal method with negligible online 
computational effort may be proposed, which uses the optimal 
orientations related to the mentioned extreme cases that can be 
computed online very fast. Specifically, we suggest finding the 
desired orientation at any location by calculating a weighted 
average of the orientations resulted from the shortest path and 
the minimum deviation cases as below:  

 d,SP d,MD
ˆ ( , ) ( , ) (1 ) ( , )d r r r          

where d,SP ( , )r   and d,MD ( , )r   are the respective desired 
orientations corresponding to the shortest path (i.e. (9)) and the 
minimum deviation (i.e. (15)) problems. Moreover, 0 1 

is a selectable parameter. Note that the orientations derived 
from (19) combine the outcome of the two respective extreme 
problems, which is different than combining the two criteria as 
in the numerically solved general problem. 

If desired, one may offline optimize  such that (19) yields 

an orientation close, as much as possible, to the result of the 
backward Dijkstra algorithm for a specific weight w . 

Specifically, we can find   by employing a Least Square (LS) 

approach, where (19) is employed to construct a regression 
equation as below:  

 d d,MD d,SP d,MD( )θ -θ θ -θ  

where dθ  is a vector containing the desired orientation, 
determined by the backward Dijkstra algorithm, at all points 
of the roundabout grid; while d,SPθ and d,MDθ  contain the 
shortest path and the minimum deviation orientations, 
respectively, at those points. Then,   can be calculated by 
the LS solution:  

 
1

d,SP d,MD d,SP d,MD d,SP d,MD d d,MD( ) ( ) ( ) ( )T T






θ - θ θ - θ θ - θ θ - θ
 

 The easiness of producing desired orientations with this 
approach offers an additional advantage, namely the 
possibility to modify in real time the value of  , and hence 
the produced orientations, in dependence of the current traffic. 
Specifically, if the traffic density in the roundabout is low, 
vehicle conflicts are accordingly few, hence it may be 
preferable to tend towards shortest paths (  small) to save trip 
time and fuel consumption. In contrast, if the traffic density in 
the roundabout is high, vehicle conflicts are accordingly 
frequent, hence it may be preferable to tend towards minimum-
deviation paths (  big) to mitigate the required vehicle 
maneuver intensity.   

IV. RESULTS 

In this section, results of applying both above approaches to 
the Place Charles de Gaulle roundabout (Paris, France) are 
presented. Our case study has outer and inner radiuses of 84 m 
and 46 m, respectively, i.e., its width is 38 m; and comprises 
12 bi-directional radial branches, which results in 144 possible 
Origin- Destination (OD) vehicle trips.  

Despite the infrastructure complexity, it is easy to generate 
the desired orientation for the two extreme cases in the 
continuous framework. For the general case, we may generate 
the results in a discretized grid using the backward Dijkstra 
algorithm. These different solutions enable demonstration and 
comparison of the orientations and paths resulting from 
different approaches. The roundabout surface is discretized 
with 0.38r m   and 3  , which leads to a total of 
10797 grid nodes. Also, the maximum admissible deviation is 
set to 40 , which corresponds roughly to a maximum of 11 
possible transitions at each node, i.e. we set 5q q   . Note 
that, for a given maximum admissible deviation, the 
corresponding q  and q  depend on the radius and are not the 
same for different radiuses; but we run the code with a constant 
number of possible transitions for simplicity. To have visually 
understandable results, the obtained desired orientations will 
be displayed for only 20% of the nodes on the roundabout 
surface. All presented results concern one specific exit branch. 
The computation time to run the backward Dijkstra algorithm 
in Matlab code for this big roundabout and dense discretization 
(for one destination) amounts to 2557 seconds on an Intel(R) 
CoreTMi5-10500 CPU @ 3.10GHz with 8.0 GB of installed 
RAM. 

Fig. 4 shows the results of the backward Dijkstra algorithm 
for the shortest path case, i.e., for 0w  , albeit, in distinction 
to Section II.B., subject to the maximum admissible deviation 
mentioned above. It can be observed that at points from which 
the destination is not visible, vehicles tend to reach the inner 
circle as straight as possible, provided that their deviation from 
the circular angle does not violate the defined limit. 
Furthermore, where the destination is visible, orientations 
indicate an almost straight path towards it, if following the 
direct line does not cause maximum deviation violation.  

Fig. 5, on the other hand, illustrates the desired orientations 
for the case of minimum deviation, i.e., for w , again 
subject to the maximum admissible deviation. In this case, 
vehicles have mostly quasi-circular paths, approaching the exit 
branch gradually. For nodes located on the outer boundary, 
e.g., when a vehicle enters the roundabout, the orientations and 
induced paths follow the outer boundary. Note that the blank 
spaces in both (and other) figures comprise nodes that cannot 
be feasibly connected to the destination, as this would violate 
the maximum-deviation limit. Since this area is mainly 
determined by the deviation limit, it is similar for all values of 
the weight. If a vehicle is located in that blank space, the slope 
of the line connecting its current position to the exit point is 
considered as the desired orientation. 
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Figure 4.  Desired orientations for shortest path ( 0w  ) subject to the 

maximum deviation constraint 

 
Figure 5.  Desired orientations for minimum deviation ( w ) 

To reach a better exploitation level of the roundabout area 
and have smoother paths, it is preferable to use a finite and 
non-zero weight value. The result of the backward Dijkstra 
algorithm for    is depicted in Fig. 6. Paths from very far origins 
have a tendency to reach first the inner boundary; while for 
closer origins, paths do not approach the inner boundary. 
Consequently, the traffic will be more evenly distributed in the 
whole roundabout area.  

Finally, to have a comparison for a certain OD, and also to 
evaluate the sub-optimal approach, the optimal paths for a 
vehicle starting from a point in the middle of the roundabout 
with different weight values are shown in Fig. 7. It can be seen 
that for the shortest path case, the created path reaches the 
inner boundary, roughly along a tangent line, and stays thereon 
till the destination gets visible, after which it tends quasi-

linearly to the exit. Small deviations from the continuous 
solution are due to discretization or due to the imposed 
maximum-deviation limit. For the minimum deviation case, in 
contrast, the path approaches gradually the outer boundary, 
reaching it at the exit angle. When 10w  , the path lies 
between those corresponding to the mentioned extreme cases.  

Lastly, the path determined based on the sub-optimal 
approach (16), with 0.29   obtained from (21), is also 
displayed in Fig. 7. It may be seen that this path is acceptably 
close to the optimal solution. 

V. CONCLUSION 

This paper proposes a transparent and systematic way to 
determine the desired orientation of vehicles moving on large 
lane-free roundabouts, which is considered challenging 
because of complex geometrical features and numerous 
potential vehicle conflicts. The presented approach 
determines the desired orientation through solving an optimal 
control problem minimizing a weighted sum of the trip 
distance and deviation from the circular angle. An analytical 
solution is derived for two extreme cases, the shortest path 
and the minimum deviation from the circular angle, 
respectively. Furthermore, the backward Dijkstra algorithm is 
employed to find the optimal path, for general weighted 
situations. Finally, a sub-optimal scheme is suggested in the 
light of the optimal derivations. All approaches are illustrated 
and compared for an overly complex case study, the Charles 
de Gaulle roundabout in Paris, France.      

REFERENCES 

[1] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. 
Wang, “Review of road traffic control strategies”, Proceedings of the 

IEEE ,91, 2003, pp. 2043-2067. 

[2] M. Papageorgiou, M. Ben-Akiva, J. Bottom, P.H.L. Bovy, S.P. 
Hoogendoorn, N.B. Hounsell, A. Kotsialos, and M. McDonald, “ITS 

and Traffic Management”. Transportation (Handbooks in Operations 

Research and Management Science), Vol. 14), C. Barnhart and G. 
Laporte, Editors, North-Holland (Elsevier), 2007, pp. 715-774. 

[3] C. Diakaki, M. Papageorgiou, I. Papamichail, and I. Nikolos, 

“Overview and analysis of vehicle automation and communication 
systems from a motorway traffic management perspective”, 

Transportation Research Part A, 75, 2015, pp. 147–165. 

[4] I. Papamichail, N. Bekiaris-Liberis, A.I. Delis, D. Manolis, K.-
S.Mountakis, I.K. Nikolos, C. Roncoli, and M. Papageorgiou, 

“Motorway traffic flow modelling, estimation and control with vehicle 

automation and communication systems”, Annual Reviews in Control, 
48 ,2019, pp. 325-346. 

[5] M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas, Y. 

Pilat, F. Homm, W. Huber, and N. Kaempchen, “Experience, results 
and lessons learned from automated driving on Germany’s highways”, 

IEEE Intelligent Transportation Systems Magazine 7, 2015, pp. 42-57. 

[6] M. Papageorgiou, K.S. Mountakis, I. Karafyllis, I. Papamichail, and Y. 
Wang, “Lane-free artificial-fluid concept for vehicular traffic”, 

Proceedings of the IEEE, 109, 2021, pp. 114-121. 

[7] M. Malekzadeh, I. Papamichail, and M. Papageorgiou, “Overlapping 
Internal Boundary Control of Lane-free Automated Vehicle Traffic 

with State and Input Inclusion”, 30th Mediterranean Conference on 

Control and Automation (MED), Vouliagmeni, Greece, 2022, pp. 1066-
1073. 

8207



  

 
Figure 6.  Desired orientations for the general case ( 10w  ) 

 
Figure 7.  The paths for a certain OD with different weights  

[8] M. Rostami-Shahrbabaki, S. Weikl, M. Akbarzadeh, and K. 

Bogenberger, “A two-layer approach for vehicular flocking in lane-free 

environment”. 11th Triennal Symposium on Transportation Analysis 

(TRISTAN), 2022. 

[9] V.K Yanumula, P. Typaldos, D. Troullinos, M. Malekzadeh, I. 

Papamichail, and M. Papageorgiou, “Optimal path planning for 
connected and automated vehicles in lane-free traffic”. 2021 IEEE 

Intelligent Transportation Systems Conference (ITSC), Indianapolis, 

USA. September 19-21, 2021, pp. 3542-3552. 
[10] D. Troullinos, G. Chalkiadakis, I. Papamichail, and M. Papageorgiou, 

“Collaborative multiagent decision making for lane-free autonomous 

driving”, 20th Intern. Conference on Autonomous Agents and 
Multiagent Systems (AAMAS), online, 2021, pp. 1335-1343. 

[11] I. Karafyllis, D. Theodosis, and M. Papageorgiou, “Lyapunov-Based 

Two-Dimensional Cruise Control of Autonomous Vehicles on Lane-
Free Roads”, 60th IEEE conference on Decision and Control (CDC), 

Austin, TX, USA, December 13-15, 2021, pp. 2683-2689. 

[12] D. Troullinos, G. Chalkiadakis, D. Manolis, I. Papamichail, and M. 
Papageorgiou, “Lane-free microscopic simulation for connected and 

automated vehicles”, 24th IEEE International Conference on 

Intelligent Transportation (ITSC), Indianapolis, IN, USA, 2021, pp. 
3292-3299. 

[13] M. Sekeran, M. Rostami-Shahrbabaki, A.A. Syed, M. Margreiter, and 

K. Bogenberger, “Lane-Free Traffic: History and State of the Art”, 
IEEE 25th International Conference on Intelligent Transportation 

Systems (ITSC), Macao, China, 2022, pp. 1037-1042 

[14] A. Flannery and T. Datta, Operational performance measures of 
American roundabouts, Transportation research record, 1572(1), 1997, 

pp.  68-75 

[15] A. Danesh, W. Ma, C. Yu, R. Hao, and X. Ma, “Optimal roundabout 
control under fully connected and automated vehicle environment”, IET 

Intelligent Transportation Systems, 2021, pp. 1-14.  

[16] R. Azimi, G. Bhatia, R.R. Rajkumar, and P. Mudalige, STIP: Spatio-
temporal intersection protocols for autonomous vehicles. ACM/IEEE 

international conference on cyber-physical systems, 2014, pp. 1-12. 

[17] M. Martin-Gasulla, and L. Elefteriadou, “Traffic management with 
autonomous and connected vehicles at single-lane roundabouts”, 

Transportation Research Part C, 125, 102964, 2021. 

[18] K. Xu, C.G. Cassandras, W. Xiao, “Decentralized time and energy-
optimal control of connected and automated vehicles in a  roundabout 

with safety and comfort guarantees”, IEEE Transactions On Intelligent 

Transportation Systems, 2022, DOI: 10.1109/TITS.2022.3216794. 
[19] L. Zhao, A. Malikopoulos, and J. Rios-Torres, “Optimal Control of 

Connected and Automated Vehicles at Roundabouts: An Investigation 

in a Mixed-Traffic Environment”, IFAC PapersOnLine, vol. 51, no. 9, 
2018, pp. 73-78. 

[20] M. Hafizulazwan, B.M. Nor, and T. Namerikawa, “Merging of 

Connected and Automated Vehicles at Roundabout using Model 
Predictive Control”, 57th annual conference of Society of Instrument 

and Control Engineers of Japan, 2018. 

[21] R. Mohebifard, and A. Hajbabaie, “Connected automated vehicle 
control in single lane roundabouts”, Transportation Research Part C, 

131, 103308, 2021. 

[22] I.H. Zohdi, and H.A. Rakha, “Enhancing Roundabout Operations via 
Vehicle Connectivity”, Journal of the Transportation Research Board, 

2381(1), 2013, pp.91-100. 

[23] E. Debada, and D. Gillet, “Merging into Single-Lane Roundabouts in 
the Presence of Uncertainty”, IEEE 21st International Conference on 

Intelligent Transportation Systems (ITSC), 2019, pp. 3168–3175. 
[24] C.Wang, Y. Wang, S. Peeta, “Cooperative roundabout control strategy 

for connected and autonomous vehicles”, Applied Sciences, 12(24), 

2022, p. 12678 
[25] J.P. Rastelli, and M.S. Penas, “Fuzzy logic steering control of 

autonomous vehicles inside roundabouts”, Applied Soft Computing, 35, 

2015, pp. 662-669. 

[26] N. Ding, X. Meng, W. Xia, D. Wu, L. Xu, and B. Chen, “Multi-vehicle 
Coordinated Lane Change Strategy in the Roundabout under Internet of 

Vehicles based on Game Theory and Cognitive Computing”, IEEE 

Transactions on Industrial Informatics, vol. 14, no. 8, 2015. 
[27] P. Hang, C. Huang, Z. Hu, Y. Xing, and C. Lv, “Decision Making of 

Connected Automated Vehicles at an Unsignalized Roundabout 
Considering Personalized Driving Behaviours”, IEEE Transactions on 

Vehicular Technology, vol. 70, no. 5, 2021. 

[28] R. Tian, S. Li, N. Li, I. Kolmanovsky, A. Girard, and Y. Yildiz, 
“Adaptive Game-Theoretic Decision Making for Autonomous Vehicle 

Control at Roundabouts”, IEEE Conference on Decision and Control 

(CDC), 2018, pp. 321-326. 
[29] Y. Zhang, B. Gao, L. Guo, H. Guo, and H. Chen, “Adaptive Decision-

Making for Automated Vehicles Under Roundabout Scenarios Using 

Optimization Embedded Reinforcement Learning”, IEEE Transactions 
on Neural Networks and Learning Systems, vol. 32, no. 12, 2020, 

pp.5526-5538. 

[30] M. Naderi, M. Papageorgiou, I. Karafyllis, I. Papamichail, “Automated 
vehicle driving on large lane-free roundabouts”, 25th IEEE 

International Conference on Intelligent Transportation Systems (ITSC), 

Macao, China, 2022, pp. 1528-1535.  
[31] E. Dijkstra, "A note on two problems in connexion with graphs." 

Numerische Mathematik 1 (1959): pp. 269-271. 

8208


