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Abstract— Vector-field-based methods are typical feedback
planning algorithms, especially eligible for the motion planning
of nonholonomic robots. Nevertheless, most existing vector fields
(VF) do not account for the prevalent constraints on robot’s
kinematics. This paper addresses the motion planning problem
for 3D nonholonomic robots with trajectories featuring upper
bounded curvature. To this end, a curvature-constrained VF
over R3 is proposed, whose integral curves guarantee an upper-
bound of curvature as well as an almost-global attraction
region towards the desired position with a specified heading
direction. Moreover, a control strategy is presented to determine
the robot’s control inputs subject to the curvature constraint.
Under the designed control laws, the robot is guaranteed
to track the VF while ensuring that the actual trajectory
adheres to the curvature constraint. Finally, the efficacy of the
presented motion planning algorithm is validated by numerical
simulations.

I. INTRODUCTION

Motion planning focuses on finding feasible paths or
trajectories to guide a robot from its initial condition to
the specified destination under certain constraints [1], [2].
Due to the physical interaction between robots and their
environment, as well as the concern for motion capabilities
of robots, nonholonomic constraint is prevalent in many
robotic systems. In literature, it is customary to model
a 3D nonholonomic robot as a 6-DOF rigid body with
merely four control inputs, including a surge velocity and
three angular velocity components [3], [4]. Nevertheless,
physical limitations such as actuator saturation and maximum
overload impose an upper bound on the curvature of robot’s
trajectory, leading to the curvature constraint in kinematics.
As a result, both nonholonomic and curvature constraints
have posed challenges to the application of existing motion
planning methodologies.

Traditional motion planning approaches, such as the al-
gorithms based on roadmap [5], cell decomposition [6] and
sampling [7], usually neglect differential constraints to sim-
plify the problem. Consequently, they cannot accommodate
the nonholonomic constraint in kinematics. Although post-
processing [8] and optimization [9] enable motion planning
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algorithms to address kinematic constraints, they are bur-
dened by heavy computational demands. More importantly,
these aforementioned methods are open-loop and require
replanning when the system deviates significantly from the
planned trajectories.

In the quest for feedback motion planning, scholars have
investigated vector field (VF)-based approaches. VF is a map
that assigns each point in workspace with a vector, specifying
the desired velocity and the heading direction of nonholo-
nomic robots simultaneously. Therefore, VF-based motion
planning is naturally suitable to handle the nonholonomic
constraint. The most common way to generate a VF is to
calculate the gradient of an artificial potential field (APF)
[10], [11], [12]. However, the implementation of the gradient-
based vector field is challenging, stemming from the possible
local minima in APF and the difficulty in constructing an
APF free of local minima. To avoid the inherit drawbacks of
APF, a handful of works design the VF in non-gradient ways
[13], [14], [15], [16]. Despite those non-gradient-based VFs
are easy to utilize and present almost global convergence,
they do not consider the curvature constraint arising from
the robot’s kinematics. Consequently, curvature-constrained
robots may not be able to follow these VFs, and hence fail
to accomplish the motion task.

In order to handle the curvature constraint, Dubins car
and Dubins curve are initially introduced in [17] and several
curvature constrained path planning approaches are presented
[18], [19]. Nonetheless, these algorithms, while considering
both nonholonomic and curvature constraints, lack a feed-
back structure and thus are open-loop. To the knowledge
of the authors, only a few papers integrate nonholonomic
and curvature constraint into the framework of feedback
motion planning. In [20], a gradient-based VF is proposed to
generate trajectories satisfying curvature constraint. Authors
in [21] present a local steering law for cruising UAV based
on a parametric function to avoid collision under curvature
constraint. Although [20], [21] are both closed-loop motion
planning methods, they solely demonstrate the satisfaction
of curvature constraint by tuning parameters in simulation
results rather than theoretically analyzing the conditions to
satisfy the curvature constraint.

In this paper, we propose a motion planning algorithm
for 3D nonholonomic robots based on a non-gradient-based
VF, where the robot is modeled as a 6-DOF rigid body with
four control inputs and the curvature constraint is particularly
taken into consideration. The contributions of this paper are
twofold. Firstly, the workspace of the nonholonomic robot
is elaborately divided into two regions so that the curvature
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constrained VFs can be designed for each region separately.
The integral curves (IC) of the proposed VF not only have
an upper bounded curvature, but also are attracted from
almost all initial conditions to the desired position along
a specified tangent vector direction. Secondly, a control
strategy is presented based on the VF with the curvature
constraint. Under the proposed control laws, the robot is
guaranteed to track the VF in a finite time and then move
along the IC, such that it arrives at the desired position
with a specified heading direction with an upper-bounded-
curvature trajectory. Compared to our previous work [15],
this paper further focuses on the crucial curvature constraint
in the motion planning of nonholonomic robots, especially
presenting novel VF and corresponding control laws, which
guarantees the robot’s trajectory is of bounded curvature.

The paper is organized as follows. Section II presents
the 3D nonholonomic robot’s kinematics and the problem
formulation. The curvature-constrained VF and the control
laws are proposed in Section III and IV, respectively. In
Section V, numerical simulations are conducted to examine
the efficacy of the proposed motion planning algorithm.
Finally, Section VI provides the conclusion and future work.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Nonholonomic Robots with Curvature Constraint

Consider a 6-DOF nonholonomic robot modelled as a
rigid body. Let F i and Fb denote the earth-fixed frame and
the body-fixed frame, with canonical basis

␣

eix, e
i
y, e

i
z

(

and
␣

ebx, e
b
y, e

b
z

(

, respectively. The position of the robot in F i

is specified by the position vector p “ rx, y, zs
T, and the

attitude is described by the rotation matrix R “ rebx eby ebzs P

SOp3q. For simplicity, the linear velocity v “ rvx, vy, vzs
T

and the angular velocity Ω “ rΩx,Ωy,Ωzs
T are provided

in the body-fixed frame Fb. Then, the kinematics of the 3D
rigid body robot can be given by

9R “ RΩ^, (1a)
9p “ Rv, (1b)

where the map ^ is defined by pa^qb “ aˆ b, @a, b P R3.
In this paper, we take into account both nonholonomic

and curvature constraints on robot’s kinematics. Owing to
the nonholonomic constraint, the robot can only move along
it’s heading direction ebx, implying vx ě 0, vy ” vz ” 0 and
thereby

9p “ vxe
b
x. (2)

Due to the physical limitations of the robot in real-
world scenarios, the curvature of the robot’s trajectory is
usually bounded by a maximum curvature κmax. In practice,
the value of κmax is easy to determine via experiments.
Therefore, we assume that the maximum curvature κmax

is a known constant in the rest of this paper. By taking
derivative of (2) and combining (1a), we can write the
trajectory curvature of the nonholonomic robot as

κ “

b

Ω2
y ` Ω2

z

vx
ď κmax. (3)

The aforementioned kinematics is a suitable modelling
for a large number of realistic systems including fixed-wing
UAV and autonomous underwater vehicles.

B. Problem Formulation

Motion Planning Problem: Consider a robot with kine-
matics given by (1)-(3). Let pd and ed denote the desired
position and the heading direction in F i, respectively. The
objective of motion planning under consideration is to gener-
ate a trajectory pptq of the nonholonomic robot by designing
the linear velocity vptq and the angular velocity Ωptq such
that

lim
tÑ8

}pptq ´ pd} “ 0; (4a)

lim
tÑ8

}ebxptq ´ ed} “ 0; (4b)
b

Ω2
y ` Ω2

z{vx ď κmax,@t ě 0. (4c)

The above planning objectives require the robot to con-
verge to the desired position denoted by (4a) with a
curvature-bounded trajectory denoted by (4c), whose tangent
vector points to the desired heading direction at the desired
position denoted by (4b). Such a problem formulation is
more challenging than simply guiding robots to certain
positions as in [14] and [20], since nonholonomic robots
cannot directly rotate to the desired heading direction while
remaining at the desired position after the convergence of
position.

III. CURVATURE-CONSTRAINED VECTOR FIELD

This section will present the non-gradient-based VF con-
sidering the curvature constraint. Compared with existing
VFs, the proposed VF accounts for the curvature constraint
and meanwhile exhibits almost global convergence since it
does not suffer from local minima as those gradient-based
ones.

Several relevant definitions are introduced in the follow-
ing.

Definition 1. A vector field is a map F : Rn Ñ Rn. Further,
F is continuous if each component of F is continuous.

Definition 2. A singular point of the vector field is the point
where Fppq “ 0.

Definition 3. The integral curve Ipt,p0q of a vector field F
on t ě 0 is the solution to 9pptq “ Fppptqq, pp0q “ p0.

Definition 4. A manifold M Ď Rn is positively invariant
w.r.t. F if p0 P M implies Ipt,p0q P M,@t ě 0.

We scheme to utilize the dipole-like VF inspired by [14]
and [15], which is of desirable convergence properties, to
navigate the robot. Nevertheless, the ICs of such a VF do
not have bounded curvature in certain region. To this end,
we divide the workspace R3 into two regions, so that we can
redesign the curvature unbounded part of the dipole-like VF
while keeping the part whose curvature is bounded. Firstly,
we specify a set by

C “ tp P R3 | x “ 0, y2 ` z2 “ 4ρ2u,
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where ρ “ 1{κmax is the minimum turning radius. The set C
represents a circle in yOz plane of F i and is located at the
origin with radius 2ρ. Next, the distance between a given
point p and C is defined as dcppq “

a

x2 ` pdx ´ 2ρq2,
where dxppq “

a

y2 ` z2 is the distance from p to the x-
axis of F i. In accordance with dc, we divide the workspace
R3 into the following two regions:

R1 “
␣

p P R3 | dc ă 2ρ
(

, (5)

R2 “
␣

p P R3 | dc ě 2ρ
(

, (6)

and design VF for each region respectively. Note that the
region R1 is an open set of points whose distance to C is
less than 2ρ, while R2 is the complementary set of R1 in
R3.

By now, we are ready to propose the curvature-constrained
VF. For p P R1, the redesigned VF is specified by

F1 ppq “
1

dx

»

–

Kdxx ´ d2xdc ` 2ρdxdc
dcxy ` Kdxy ´ 2Kρy
dcxz ` Kdxz ´ 2Kρz

fi

fl , (7)

where K “
a

4ρ2 ´ d2c . It should be noted that dx ‰ 0 in
R1 and thus F1 is well defined. For p P R2, we employ the
dipole-like VF in [15], which is given by

F2 ppq “

»

–

x2 ´ y2 ´ z2

2xy
2xz

fi

fl . (8)

In order to generate a continuous VF over R3 except for
singular points of Fi, i “ 1, 2, we normalize the VFs, i.e.,

F ppq “

" Fi

}Fi}
, }Fi} ‰ 0,

0, }Fi} “ 0.
(9)

Let Si denote the singular point set of Fi. According to (7)
and (8), we know that S1 “ tp P R3 | dc “ 0u “ C and
S2 “ tp “ 0u. Hence, the singular point set of F is given
by S “ S1

Ť

S2. The proposed VF is shown in Figure 1,
where the ICs of VF are depicted by solid lines.

Lemma 1. The plane defined by Σab “ tp P R3 | ay`bz “

0, a2 ` b2 ‰ 0u is a positively invariant manifold w.r.t. the
VF F proposed in (9).

Proof. Denote the normal vector of Σab as nab “ r0, a, bsT.
Based on (7), (8) and (9), it can be shown that

nab ¨ p “ 0, nab ¨ Fppq “ 0, @p P Σab. (10)

According to (10), for any p P Σab, the corresponding vector
Fppq is also confined in Σab. Therefore, it is straightforward
that the IC of F with p0 P Σab is also confined in the Σab

and Σab is an invariant manifold w.r.t. F.

Theorem 1. Denote χ` “
␣

p P R3 | x ą 0, y “ z “ 0
(

,
χ´ “

␣

p P R3 | x ă 0, y “ z “ 0
(

and define the non-
converging set N “ χ`

Ť

S. The VF F proposed in (9)
has following properties:

1) F is continuous on D “ R3zS.
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Fig. 1. Plots of the proposed VF F and its ICs, where VF and ICs are
presented by arrows and solid curves respectively.

2) For all initial conditions p0 P R3zN , the origin is
attractive for the dynamics 9p “ Fppq, and the tangent
vector of Ipt,p0q coincides with eix at the origin.

3) For all initial conditions p0 P R3zS, the curvature of
Ipt,p0q satisfies κptq ď κmax,@t ě 0.

Proof. 1) Referring to the continuity criteria in [22], we
know that F is continuous on both R1zS1 and R2zS2.
Therefore, F is continuous on D “ R3zS if it is continuous
on BR1zS2, namely, the boundary between R1 and R2

excepting the singular point S2. The continuity on BR1zS2

could be proved by simple calculations and hence F is
continuous over D. However, the above discussions do not
imply the smoothness of proposed VF.

2) The proof in this part can be divided into two cases,
depending on the initial position p0.

• Case 1: p0 P R2zpχ`

Ť

S2q.
Since we utilize the dipole-like VF in R2, we can directly

write the expressions of ICs in this case by carrying on time
reparametrization (refer to [23]) on the ICs in [15, Theorem
1]. We begin with the trivial situation where p0 P χ´. There
is

Ipt,p0q “

"

rt ` x0, 0, 0sT, 0 ď t ď tf ,
0, t ą tf ,

(11)

where tf “ ´x0. Obviously, the tangent vector of such IC
at the origin is eix.

For the general situation where p0 P R2zpχ´

Ť

χ`

Ť

S2q,
consider the coordinates pr, ϕ, θq transformed by

x “ r cosϕ, (12a)
y “ pr sinϕ ` rq cos θ, (12b)
z “ pr sinϕ ` rq sin θ. (12c)

Then the IC for p0 P R2zpχ´

Ť

χ`

Ť

S2q is given by

rptq “ r0, ϕptq “
t

r0
` ϕ0, θptq “ θ0, @t ď tf2, (13)

where pr0, ϕ0, θ0q is the initial condition in the transformed
coordinates and tf2 “ r0p3π{2 ´ ϕ0q. It should be noted
that (13) reveals that the evolution of IC is a uniform circular
motion with radius r0, which is tangent to the x-axis of F i at
the origin. Therefore, the tangent vector of IC at the origin
is also eix. After tf2, the IC stays at the origin since the
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singular point of F is also an equilibrium for the dynamics
9p “ Fppq.

• Case 2: p0 P R1zS1.
The IC starting in R1zS1 consists two segments. The first

segment within R1 is specified in the following while the
second can be considered as a special case of (13). Firstly,
define new coordinates pr, ϕ, θq slightly different from (12)

x “ r cosϕ, (14a)
y “ pr sinϕ ` 2ρq cos θ, (14b)
z “ pr sinϕ ` 2ρq sin θ, (14c)

where the positively invariant manifold Σab is specified by
θ “ atan2p´a, bq and the basis along pr, ϕ, θq can be
obtained by [24]:

rer eϕ eθs “ rex ey ezsR1pθqR3pϕq, (15)

with R1p¨q and R3p¨q being the rotation matrices about x-
and z- axes, respectively. Therefore, the relationship between
IC and VF in R1 can be written as

F “ Frer ` Fϕeϕ ` Fθeθ, (16a)
dr

dt
“ Fr, r

dϕ

dt
“ Fϕ, r

dθ

dt
“ Fθ, (16b)

where Fr “
a

4ρ2 ´ r2{p2ρq, Fϕ “ r{p2ρq and Fθ “

0, referring to (7). Integrating (16b) with initial condition
pr0, ϕ0, θ0q gives

rptq “ 2ρ cospϕ1´ϕptqq, ϕptq “
t

2ρ
`ϕ0, θptq “ θ0,@t ă tf1,

(17)
where tf1 “ 2ρpϕ1 ´ ϕ0q and ϕ1 “ ϕ0 ` arccospr0{p2ρqq.
Equation (17) shows that the IC is a circular arc with radius
ρ, starting from pr0, ϕ0, θ0q and ending at p2ρ, ϕ1, θ0q in
the coordinates given in (14). Additionally, denote the point
specified by p2ρ, ϕ1, θ0q as p1. It can be seen that p1 P

BR1 Ď R2, which implies that the IC enters R2 while being
tangent to BR1 at time t “ tf1. Since the transformations
(12) and (14) are equivalent on BR1, the second segment can
be obtained by plugging p2ρ, ϕ1, θ0q as the initial condition
into (13). Then we have that

rptq “ 2ρ, ϕptq “
t

2ρ
`ϕ1, θptq “ θ0, @tf1 ď t ď tf1`tf2,

(18)
where tf2 “ 2ρp3π{2 ´ ϕ1q. Equation (18) implies that the
IC in this case arrives at the origin alone eix. After the arrival
at the origin, the IC in Case 2 stays at the origin as in Case
1.

3) Given (13), (17) and (18), it becomes obvious that the
ICs of F are of bounded curvature. For (13) and (18), there
are κ “ 1{r0 ď 1{p2ρq ă κmax. While the curvature of (17)
is given by κ “ 1{ρ “ κmax. As for the trivial situation
where p0 P χ´ Y χ`, the IC is a straight line evolving on
the x-axis and thus is of zero curvature.

So far, the curvature-constrained VF F with origin and eix
as the desired position and the heading direction is presented.

To arbitrarily specify pd and ed as suggested by (4a) and
(4b), we propose the following corollary.

Corollary 1. For Fdppq “ RdFpR´1
d pp ´ pdqq, which is

also continuous almost everywhere, the ICs converge to pd

along ed “ Rde
i
x with curvature no larger than κmax except

for initial positions in the non-converging set Nd “ tp |

R´1
d pp ´ pdq P χ`

Ť

Su.

Proof. The transformation from F to Fd is a composition
of translation and rotation. Under such transformation, the
attractor for dynamics 9p “ Fdppq is translated to pd and the
the tangent vector of IC approaching pd is rotated to ed. The
singular point set for Fd is specified by Sd “ tp | R´1

d pp´

pdq P Su, which is still a lower dimensional manifold w.r.t.
R3. Therefore, the transformed VF is also continuous almost
everywhere. Similarly, the non-converging set Nd after the
transformation is also a lower dimensional manifold, imply-
ing the almost global convergence of 9p “ Fdppq towards pd

along ed. Since the composition of translation and rotation
is a positive isometry that preserves the curvature properties
[25], we know that Fd is also curvature-constrained.

IV. CONTROLLER DESIGN

Theorem 1 and Corollary 1 together have defined the
VF whose ICs are curvature-bounded and are attracted to
the desired position pd along ed. It is natural to come up
with the idea of aligning the robot’s velocity with the VF
such that the robot can move along the IC and eventually
achieve pd with heading direction ed. Since the VF has only
specified the expected orientation of ebx in F i, we can take
the Frenet-Serret frame of IC as the expected orientation of
Fb. Therefore, we define the reference attitude by

Rr “ rT N Bs P SOp3q. (19)

In (19), the IC’s tangent vector T “ Fd is determined by the
proposed VF. Enlightened by Lemma 1, the binormal vector
perpendicular to the positively invariant plane of Fd is given
by B “ edˆpp´pdq{}edˆpp´pdq} and the normal vector
is N “ B ˆ T .

It is noticeable that when the robot’s actual attitude R
tracks the reference attitude Rr, the attitude tracking error
defined as Re “ R´1

r R is stabilized to the identity matrix
I . When Re is stabilized, ebx aligns with Fd and hence the
robot moves along the IC of Fd, eventually arriving at pd in
the direction of ed. Aiming to stabilize Re in a finite time,
the attitude control law is proposed in the following lemma.

Lemma 2. Under the attitude control law

Ω^ “ ´kω 9τ logSOp3qpReq ` R´1 9RrR
´1
r R, (20)

the attitude tracking error Re is stabilized in a specified
finite time T for any initial attitude Rp0q “ R0 P SOp3q

such that tracepRep0qq ‰ ´1, where τ “ ln T
T´t is the time

scaling function, logSOp3q is the logarithmic map on SOp3q

and kω ą 0 is a scalar gain.

Proof. Referring to [15, Lemma 4], the proof of this lemma
becomes a first-order special case of [26].
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During the stabilization process of Re, the actual trajec-
tory of robot still possibly differs from the IC and measures
should be taken to ensure the curvature constraint is not
violated. In response to this concern, an appropriate linear
velocity control law is proposed as follows.

Lemma 3. For t P r0, T q, the linear velocity control law is

vx “ kv

b

Ω2
y ` Ω2

z ` vmin, (21)

where kv ě 1{κmax is the scalar gain and vmin ą 0 is the
speed lower bound. Then, the curvature of nonholonomic
robot’s trajectory is guaranteed to be κ ă κmax.

Proof. The proof is completed by plugging (21) into (3)

Let pT and vT denote the position and the linear velocity
at time t “ T , respectively. When Re is stabilized, the
attitude control law (20) is reduced to

Ω^ “ R´1 9RrR
´1
r R, (22)

and the linear velocity control law is redesigned by

vx “ vT
}p ´ pd}

}pT ´ pd}
. (23)

Under (22) and (23), the robot converges to pd along ed
by following the IC of Fd from pT to pd under continuous
control inputs. The control laws for curvature-constrained
motion planning of nonholonomic robots are summarized in
the following theorem.

Theorem 2. Driven by control laws (20), (21) on time inter-
val t P r0 T q and (22), (23) for t ě T , the trajectory of the
closed-loop nonholonomic robot satisfies motion planning
objectives in (4), for any initial position p0 P R3zNd and
initial attitude R0 P SOp3q such that tracepRep0qq ‰ ´1.

Proof. Under the attitude control laws (20) and (22), there is
Reptq “ I , @t ě T according to Lemma 2, meaning that the
robot’s velocity aligns with Fd. According to [23], we know
that the trajectory of robot follows the same geometric path
of Ipt ´ T,pT q on t ě T , which is the IC of Fd, starting
from pT and arriving at pd along ed.

On the time interval r0, T q, Lemma 3 indicates that the
trajectory curvature is bounded by κmax. As for t ě T ,
the trajectory of robot overlaps with the IC and hence is of
curvature no larger than κmax, referring to Corollary 1.

To show the convergence of position, we assume that the
robot converges to p1

d P tIpt ´ T,pT q | t ě T u and p1
d ‰

pd. To achieve convergence, there should be 9p “ 0 at p1
d.

However, according to (23), 9p “ 0 if and only if p “ pd.
Since the points on the IC forms a closed set according to the
proof of Theorem 1, the robot converges to pd, i.e., (4a) is
satisfied. Furthermore, based on Corollary 1, there hold (4b)
and (4c) for initial condition p0 P R3zNd and R0 P SOp3q

such that tracepRep0qq ‰ ´1.

V. NUMERICAL SIMULATION RESULTS

To verify the effectiveness of the proposed algorithm,
several simulation cases with different initial conditions are
conducted in two examples. For each case in Example 1,
the nonholonomic robot starts from R1 while the desired
position and heading direction are specified by pd “

r3, 6, 9sT and ed “ r 12 ,
1
2 ,

?
2
2 sT. As for Example 2, the

initial conditions lie in R2 and pd “ r´15, 5,´10sT,
ed “ r 34 ,´

?
3
4 ,´ 1

2 sT. The maximum curvature is set as
κmax “ 0.2 in both examples. The initial attitude of the
robot is depicted by roll-pitch-yaw Euler angles denoted as
α0, β0, γ0 and the initial conditions are given in Table I
where the Euler angles are in radian.

The trajectories and state evolution of simulation results
are presented in Figures 2 and 3, respectively. The curves in
Figures 3 and 4 use the same colors as the icons in Figure 2
for each case. In the attitude evolution of Figure 3, we show
components of the heading direction ebx “ rR11, R21, R31sT

in accordance with motion planning objective (4b). These
results indicate the satisfaction of objectives (4a) and (4b),
i.e., robots with distinct initial conditions all converge to the
desired position with specified heading direction. Figure 4
shows the trajectory curvature κ and relevant control inputs
w.r.t. time while κmax is illustrated by red dotted line. It is
obvious that the curvature constraint (4c) is guaranteed under
the proposed algorithm. Moreover, the curvature converges
to a constant value in each case, which verifies the fact that
each segment of IC in R1 and R2 has constant curvature.

TABLE I
INITIAL CONDITIONS OF DIFFERENT CASES.

Initial position Initial attitude

x0 y0 z0 α0 β0 γ0

Example 1

Case 1 -5.8 12.2 22.2 2.6 -0.4 3.1
Case 2 8.2 -0.5 19.8 2.4 -0.8 -2.4
Case 3 13.1 7.7 9.1 -3.0 -0.5 0.5
Case 4 4.8 12.8 10.0 -2.2 -0.9 1.2

Example 2

Case 1 10.9 -4.2 -3.3 2.7 -0.2 0.7
Case 2 -10.4 -19.7 -13.3 -2.1 0.9 -1.3
Case 3 -16.9 0.2 -32.7 -2.8 0.6 -0.3
Case 4 1.4 17.8 -23.7 1.2 -2.2 1.9
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Fig. 3. State evolution in different examples
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Fig. 4. Curvature and relevant control inputs, κmax presented by red
dotted line

VI. CONCLUSIONS

This paper has proposed a motion planning algorithm
based on a curvature-constrained vector field for 3D non-
holonomic robots, whose trajectories are subject to upper
bounded curvature. The integral curves of proposed vector
field satisfy the curvature constraint and are almost globally
attracted to the desired position with a specified heading di-
rection. Furthermore, the attitude and linear velocity control
laws are designed, under which the nonholonomic robot can
track the integral curve of the vector field in a finite time and
converge to the desired states. Future research will investigate
smooth VF for better control performance and consider more
complex scenarios such as input saturation, obstacle and
collision avoidance under the curvature constraint.
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