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Abstract— We study output-feedback control of 1D stochastic
semilinear heat equation with constant input delay and nonlin-
ear multiplicative noise where the nonlinearities satisfy globally
Lipschitz condition. We consider the Neumann actuation and
nonlocal measurement. To compensate delay r, we construct
a chain of M + 1 sub-predictors in the form of ODEs that
correspond to the delay fraction r/M. Differently from the
deterministic case, we add an additional sub-predictor to the
chain that leads to the closed-loop system with the stochastic
infinite-dimensional tail and the finite-dimensional part that
consists of non-delayed stochastic equations and delayed deter-
ministic ones. The latter essentially simplifies the Lyapunov-
based mean-square L2 exponential stability analysis of the
full-order closed-loop system. We employ corresponding Itô’s
formulas for stochastic ODEs and PDEs, respectively. Our
stability analysis leads to LMIs which are shown to be feasible
for any input delay provided M and the observer dimension
are large enough and Lipschitz constants are small enough. A
numerical example demonstrates the efficiency of the proposed
approach.

I. INTRODUCTION

In recent years, estimation and control problems for
stochastic PDEs become popular due to their wide appli-
cations in many areas of science, engineering, and finance.
However, control theory for stochastic PDEs is still at its
very beginning stage and many tools and methods, which
are effective in the deterministic case, do not work anymore
in the stochastic setting [1]. Finite-dimensional controllers
for parabolic systems via the modal decomposition approach
are very attractive in applications [2], [3]. This approach
was extended to the stochastic setting in [4] for additive
noise under output-feedback controllers and in [5] for multi-
plicative noise under state-feedback control. However, in [2],
[3], [4], [5], efficient bounds on the observer or controller
dimensions were not provided. In recent paper [6], the
first constructive LMI-based method for finite-dimensional
observer-based controller of deterministic parabolic PDEs
was suggested, where the observer dimension was found
from simple LMI conditions. In our recent paper [7], the con-
structive method in [6] was extended to stochastic parabolic
PDEs with nonlinear multiplicative noise under boundary
control and observer.

Robustness with respect to small delays and/or sampling
intervals for deterministic heat equations was studied in
[8] for distributed static output-feedback control, in [9] for
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boundary state-feedback and in [10] for boundary controller
based on PDE observer. Delayed implementation of finite-
dimensional observer-based controllers for 1D heat equa-
tions was introduced in [11] for deterministic case and in
[12] for stochastic case. For the estimation of deterministic
heat equations with a large input/output delay, a PDE sub-
predictor was presented in [13] and a chain of observers was
designed in [14]. Finite-dimensional observer-based classical
predictors and sub-predictors were introduced in [15], [16],
[17] for linear parabolic PDEs. In [18], finite-dimensional
observer-based sub-predictors for semilinear parabolic PDEs
were explored. However, for stochastic systems, there are
few results on predictor-based control, and all existing results
are confined to stochastic linear ODEs (see, e.g., [19], [20]).
To the best of our knowledge, predictor-based control for
stochastic PDEs has not been studied yet.

In the present paper, for the first time, we provide efficient
finite-dimensional observer-based sub-predictors design for
stochastic heat equations with constant input delay. We
consider the 1D stochastic semilinear heat equation with
nonlinear multiplicative noise under Neumann actuation and
nonlocal measurement, where the nonlinearities satisfy glob-
ally Lipschitz condition. To compensate delay r, we construct
a chain of M + 1 (M ≥ 1) sub-predictors in the form of
ODEs that correspond to the delay fraction r/M. Differently
from [15], [18] for deterministic heat equations where M
sub-predictors were constructed, we add an additional sub-
predictor to the chain that leads to the closed-loop system
with the stochastic infinite-dimensional tail and the finite-
dimensional part that consists of non-delayed stochastic
equations and delayed deterministic ones. We construct
an appropriate Lyapunov functional for mean-square L2

exponential stability of full-order closed-loop system and
employ corresponding Itô’s formulas for stochastic ODEs
and PDEs. Note that the Lyapunov functional depends only
on the deterministic finite-dimensional part of the closed-
loop system. We present LMI conditions for finding M, the
observer dimension and Lipschitz constants that preserve the
exponential stability. We show that for any input delay, the
LMIs are feasible for large enough M and observer dimen-
sion, and small enough Lipschitz constants. In the case of one
sub-predictor (i.e., M = 0), our method degenerates into the
observer-based control with the delay robustness (as studied
in [11] in the deterministic case). We also consider the sub-
predictors construction similar to the deterministic case [18]
and construct Lyapunov functional that depends both on
the deterministic and stochastic parts. A numerical example
demonstrates that the two methods lead to complementary
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results, whereas additional sub-predictor for the stochastic
case leads to a larger delay for comparatively large M.

Notations: Let (Ω,F ,P) be a complete probability space
with a filtration {Ft}t≥0 of increasing sub σ-fields of F

and let E{·} be the expectation operator. Denote by W (t)
the 1D standard Brownian motion defined on (Ω,F ,P).
For f ∈ C([0,1]), let ‖ f‖[0,1] = maxx∈[0,1] | f (x)|. Denote by
L2(0,1) the space of square integrable functions with inner
product 〈 f ,g〉=

! 1
0 f (x)g(x)dx and induced norm ‖ f‖2

L2 = 〈 f , f 〉.
Let L2(Ω;L2(0,1)) be the set of all F0-measurable random
variables z ∈ L2(0,1) with E‖z‖2

L2 < ∞. H1(0,1) is the Sobolev
space of functions f : [0,1] −→ R with a square integrable
weak derivative. The norm defined in H1(0,1) is ‖ f‖2

H1 =

‖ f‖2
L2 + ‖ f ′‖2

L2 . The Euclidean norm is denoted by | · |. For
P ∈ Rn×n, P > 0 means that P is symmetric and positive
definite. The symmetric elements of a symmetric matrix will
be denoted by ∗. For 0 < P ∈ Rn×n and x ∈ Rn, we write
|x|2P = xTPx. Let N denote the set of positive integers.

Consider the Sturm-Liouville eigenvalue problem
φ ′′+λφ = 0, x ∈ (0,1), φ ′(0) = φ ′(1) = 0.

This problem induces a sequence of eigenvalues with corre-
sponding eigenfunctions given by:

φ1(x) = 1, λ1 = 0,
φn(x) =

√
2cos(

√
λnx), λn = (n−1)2π2, n ≥ 2.

(1)

The eigenfunctions {φn}∞
n=1 form a complete orthonormal

system in L2(0,1). Given a positive integer N and h ∈ L2(0,1)

satisfying h L2

= ∑∞
n=1 hnφn, we denote ‖h‖2

N = ∑∞
n=N+1 h2

n.

II. MAIN RESULTS

A. System under consideration

Consider the following stochastic semilinear heat equation
under delayed Neumann actuation with known delay r > 0:

dz(x, t) = [ ∂ 2

∂x2 z(x, t)+g(z(x, t))]dt +σ(z(x, t))dW (t), t ≥ 0,
zx(0, t) = 0, zx(1, t) = u(t − r),
z(x,0) = z0(x),

(2)

where z0 ∈ L2(Ω;L2(0,1)), u is the control input to be de-
signed, σ(z(x, t))dW (t) is the nonlinear multiplicative noise
which appears due to the random parameter variation of
g(z(x, t))dt. Nonlinear functions σ ,g : R→ R satisfy

σ(0) = 0, |σ(z1)−σ(z2)|≤ σ̄ |z1 − z2|,
g(0) = 0, |g(z1)−g(z2)|≤ ḡ|z1 − z2|, ∀z1,z2 ∈ R,

(3)

for some ḡ, σ̄ > 0. Here σ̄ describes the upper bound of noise
intensity. We consider the non-local measurement output:

y(t) = 〈c,z(·, t)〉, c ∈ L2(0,1). (4)

Following [7], we present the solution to (2) as
z(x, t) = ∑∞

n=1 zn(t)φn(x), zn(t) = 〈z(·, t),φn〉, (5)

where {φn}∞
n=1 are given in (1). By differentiating zn in (5)

and using integration by parts, we arrive at the following
infinite stochastic equations

dzn(t) = [−λnzn(t)+gn(t)+bnu(t − r)]dt +σn(t)dW (t), (6)

for n ≥ 1, where
gn(t) = 〈g(∑∞

j=1 z j(t)φ j),φn〉,σn(t) = 〈σ(∑∞
j=1 z j(t)φ j),φn〉,

b1 = 1, bn = (−1)n−1
√

2, n ≥ 2.
(7)

By (1) and the integral convergence test, we have

∑∞
n=N+1

b2
n

λn
≤ 2

π2 (
1

N2 +
! ∞

N
1
x2 dx) = 2(N+1)

π2N2 , N ≥ 1. (8)

Let δ > 0 be a desired decay rate and let N0 ∈ N satisfy
−λn + ḡ+ 1

2 σ̄2 <−δ , n > N0, (9)

where N0 is used for the controller design. Let N ∈N, N ≥ N0,
where N will be the dimension of the observer.

Introduce
zN0(t) = [z1(t), . . . ,zN0(t)]

T, B0 = [b1, . . . ,bN0 ]
T,

zN−N0(t) = [zN0+1(t), . . . ,zN(t)]T, B1 = [bN0+1, . . . ,bN ]
T,

A0 = diag{−λn}N0
n=1, A1 = diag{−λn}N

N0+1,

σN0(t) = col{σn(t)}N0
n=1, σN−N0(t) = col{σn(t)}N

n=N0+1,

GN0(t) = col{gn(t)}N0
n=1, GN−N0(t) = col{gn(t)}N

n=N0+1.

From (6) we find that zN0(t) and zN−N0(t) satisfy
dzN0(t) = [A0zN0(t)+GN0(t)+B0u(t − r)]dt +σN0(t)dW (t),
dzN−N0(t) = [A1zN−N0(t)+GN−N0(t)

+B1u(t − r)]dt +σN−N0(t)dW (t).
(10)

Let cn = 〈c,φn〉, C0 = [c1, . . . ,cN0 ]. Assume that

cn ∕= 0, 1 ≤ n ≤ N0. (11)

Then, the pair (A0,C0) is observable by the Hautus lemma.
Choose L0 = [l1, . . . , lN0 ]

T such that
Po(A0 −L0C0)+(A0 −L0C0)

TPo <−2δPo, (12)

where 0< Po ∈RN0×N0 . Furthermore, following [6] we let ln =
0, N0 < n ≤ N. Since bn ∕= 0, n ≥ 1 (see (7)), the pair (A0,B0)

is controllable by the Hautus lemma. Let K0 ∈R1×N0 satisfy
Pc(A0 −B0K0)+(A0 −B0K0)

TPc ≤−2δPc, (13)

where 0 < Pc ∈ RN0×N0 .

B. Sub-predictors

Consider stochastic systems (10). In order to deal with the
input delay r > 0, we fix M ∈ N and divide r into M parts of
equal size r

M . We design a chain of sub-predictors

ẑ j
1(t − r) ,→ . . . ,→ z j

i (t −
M−i+1

M r) ,→ . . .

,→ ẑ j
M(t − 1

M r) ,→ ẑ j
M+1(t) ,→ z j(t), j ∈ {N0,N −N0},

(14)

where ẑ j
i (t −

M−i+1
M r) ,→ ẑ j

i (t −
M−i

M r) means that ẑ j
i (t) predicts

the value of ẑ j
i (t +

r
M ). Similarly, ẑ j

M+1(t) ,→ z j(t) means that
ẑ j

M+1(t) predicts the value of z j(t). The sub-predictors satisfy

dẑN0
M+1(t) = [A0ẑN0

M+1(t)+ ĜN0
M+1(t)+B0u(t − r)]dt

−L0[C0ẑN0
M+1(t)+C1ẑN−N0

M+1 (t)− y(t)]dt,
dẑN−N0

M+1 (t) = [A1ẑN−N0
M+1 (t)+ ĜN−N0

M+1 (t)+B1u(t − r)]dt,
dẑN0

i (t) = [A0ẑN0
i (t)+ ĜN0

i (t)+B0u(t − i−1
M r)]dt

−L0[C0ẑN0
i (t − r

M )+C1ẑN−N0
i (t − r

M )

−C0ẑN0
i+1(t)−C1ẑN−N0

i+1 (t)]dt,
dẑN−N0

i (t) = [A1ẑN−N0
i (t)+ ĜN−N0

i (t)
+B1u(t − i−1

M r)]dt, 1 ≤ i ≤ M, t ≥ 0,

(15)

subject to ẑN0
i (t) = 0, ẑN−N0

i (t) = 0, t ≤ 0, 1 ≤ i ≤ M+1, where
y(t) is given by (4), C1 = [cN0+1, . . . ,cN ],

ĜN0
i (t) = col{ĝ(i)n (t)}N0

n=1, ĜN−N0
i (t) = col{ĝ(i)n (t)}N

n=N0+1,

ĝ(i)n (t) = 〈g(Φ1(·)ẑN0
i (t)+Φ2(·)ẑN−N0

i (t)),φn〉,
Φ1(x) = [φ1(x), . . . ,φN0(x)], Φ2(x) = [φN0+1(x), . . . ,φN(x)].

Remark 1: Differently form [18], we introduce additional
sub-predictor ẑ j

M+1 ( j ∈ {N0,N−N0}). This splits the stochastic
term and delay term into separate systems. See closed-loop
system (27) below, where delay term appears only in system
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e j
i , i = 1, . . . ,M and stochastic term appears only in system

z j, e j
M+1 (cf. (25)). The latter allows us to avoid stochastic

terms in the corresponding Lyapunov functional (see (28)
below). Besides, here (due to ẑ j

M+1) we have at least two
sub-predictors. In Sec. II-F we will present conventional
sub-predictors (without ẑ j

M+1 in (14)), where M = 1 corre-
sponds to observer-based control with delay robustness and
where Lyapunov functional depending on the deterministic
and stochastic parts is used (see (57) that follows [21]).
From the numerical example in Sec. III, we find that the
constructions of sub-predictors with ẑ j

M+1 and without ẑ j
M+1

lead to complementary results.
Note that as i increases, the input delay on the right hand-

side of (15) decreases by r
M . The finite-dimensional observer

ẑ(x, t) of the state z(x, t), based on (15), is given by

ẑ(x, t) = Φ1(x)ẑ
N0
1 (t − r)+Φ2(x)ẑ

N−N0
1 (t − r). (16)

The controller is further chosen as
u|[−r,0] = 0, u(t) =−K0ẑN0

1 (t), t > 0, (17)

where K0 ∈ R1×N0 is determined by (13).

C. Well-posedness of the closed-loop system

For well-posedness we introduce the change of variables
w(x, t) = z(x, t)−ψ(x)u(t − r), (18)

where ψ(x) =− 2
π cos( π

2 x) which satisfies

ψ ′′(x) =−µψ(x), µ = π2

4 , ψ ′(0) = 0,ψ ′(1) = 1. (19)

We have the equivalent stochastic heat equation

dw(x, t) = [ ∂ 2

∂x2 w(x, t)+g(w(x, t)+ψ(x)u(t − r))]dt
−ψ(x)[µu(t − r)dt +du(t − r)]
+σ(w(x, t)+ψ(x)u(t − r))dW (t), t ≥ 0,

wx(0, t) = 0, wx(1, t) = 0.

(20)

Let A = diag{A1,A2} where
A1 = IM+1 ⊗diag{A0,A1}+ J0,M+1 ⊗C0,
A2 : D(A2)⊆ L2(0,1)→ L2(0,1), A2h = h′′,
D(A2) = {h ∈ H2(0,1)|h′(0) = h′(1) = 0}.

(21)

Here C0 =
!

L0C0 L0C1
0 0

"
, J0,M is an upper triangular Jor-

dan block of order M with zero diagonal and ⊗ is the
Kronecker product. Let ξ (t) = col{Ẑ(t),w(·, t)} where Ẑ =

col{ẑN0
1 , ẑN−N0

1 , . . . , ẑN0
M+1, ẑ

N−N0
M+1 }. Without loss of generality we

assume z(·, t) = z0(·) for t < 0. Then (15) and (20) subject to
the control input (17) can be presented as

dξ (t) = [A ξ (t)+G(t)+ f1(t)]dt +Σ(t)dW (t),

where

f1(t) =
!

∑M+1
i=1 BiK0 ẑ

N0
1 (t − i−1

M r)−C0 Ẑ(t − r
M )+C1 Ẑ(t)+L0〈c,w(·, t)〉−L0〈c,ψ〉K0 Ẑ(t − r)

ψ(·)K0 f2(t − r)

"
,

G(t) =

#

$
col{Ĝ1(t), . . . , ĜM (t)}

Ĝ
N0
M+1(t)−L0(C0 ẑ

N0
M+1(t)+C1 ẑ

N−N0
M+1 (t)−〈c,z(t)〉)

Ĝ
N−N0
M+1 (t)

g(w(t)−ψ(·)K0 ẑ
N0
1 (t − r))

%

&, L0 =

'
0MN×1

L0
0(N−N0)×1

(
,

C0 =
!

IM ⊗C0 0
0 0N×N

"
, C1 =

!
IM ⊗C0 0

0 −C0

"
,

f2(t) = (µI +A0 −B0K0)ẑ
N0
1 (t)+ ĜN0

1 (t)−L0[C0ẑN0
1 (t − r

M )

+C1ẑN−N0
1 (t − r

M )−C0ẑN0
2 (t)−C1ẑN−N0

2 (t)],
Bi = col{0(i−1)N×1,B0,B1,0(M−i+1)×1}, i = 0,1, . . . ,M+1,

Ĝi(t) =
'

Ĝ
N0
i (t)

Ĝ
N−N0
i (t)

(
, Σ(t) =

!
0(M+1)N×1

σ(w(t)−ψ(·)K0 ẑ
N0
1 (t − r))

"
.

Let H = R(M+1)N × L2(0,1) be a Hilbert space with norm
‖ · ‖2

H = | · |2 + ‖ · ‖2
L2 . Consider V = R(M+1)N ×H1(0,1) with

norm ‖ · ‖2
V = | · |2 + ‖ · ‖2

H1 , and V ′ = R(M+1)N × H−1(0,1).
Hence, V ⊂ H ⊂ V ′. The duality scalar product between
V ′ and V is denoted by 〈·, ·〉V ′,V . Then A : V → V ′ is
a closed linear operator with domain D(A ) dense in H .
For any ξi ∈ V , i = 1,2, we can easily check that A

satisfies |〈A ξ1,ξ2〉V ′,V | ≤ α‖ξ1‖V ‖ξ2‖V and 〈A ξ1,ξ1〉V ′,V ≤
−β‖ξ1‖2

V + γ‖ξ1‖2
H for some α,β > 0 and γ ∈ R. Since σ ,g

satisfy the global Lipschitz condition (3), by the step method
on [ i

M r, i+1
M r] (i = 0,1, . . . ) with initial conditions ξ ( i

M r) ∈
D(A ) (see [12]), we obtain, for z0 ∈ D(A2) almost surely,
existence of a unique solution ξ ∈ L2(Ω;C([0,∞)\J ;H ))∩
L2(Ω× [0,∞)\J ;V ), where J = { i

M r}∞
i=0, such that ξ (t) ∈

D(A ), t ≥ 0, almost surely.

D. Mean-square L2 stability analysis

Define the estimation errors as follows
e j

i (t) = ẑ j
i+1(t −

M−i
M r)− ẑ j

i (t −
M−i+1

M r),1 ≤ i ≤ M,

e j
M+1(t) = z j(t)− ẑ j

M+1(t), j ∈ {N0,N −N0}.
(22)

Then the last term on the right-hand-side of system ẑN0
M+1(t)

in (15) can be presented as

C0ẑN0
M+1(t)+C1ẑN−N0

M+1 (t)− y(t)
(4)
= −[C0eN0

M+1(t)+C1eN−N0
M+1 (t)+ζ (t)].

(23)

where ζ (t) = ∑∞
n=N+1 cnzn(t). Furthermore, by (22), we get

ẑN0
1 (t − r)+∑M+1

i=1 eN0
i (t) = zN0(t). (24)

In particular, if the errors eN0
i (t), 1 ≤ i ≤ M + 1 converge to

zero, from (24) we have ẑN0
1 (t)→ zN0(t+r), meaning that ẑN0

1 (t)
predicts the future system state zN0(t+r). Using (10), (15) and
(23), we arrive at

deN0
M+1(t) = [(A0 −L0C0)e

N0
M+1(t)+HN0

M+1(t)
−L0C1eN−N0

M+1 (t)−L0ζ (t)]dt +σN0(t)dW (t),
deN−N0

M+1 (t) = [A1eN−N0
M+1 (t)+HN−N0

M+1 (t)]dt +σN−N0(t)dW (t),
deN0

M (t) = [(A0 −L0C0)e
N0
M (t)+L0C0ϒN0

M,r(t)
+HN0

M (t)−L0C1eN−N0
M (t)+L0C1ϒN−N0

M,r (t)
+L0(C0eN0

M+1(t)+C1eN−N0
M+1 (t)+ζ (t))]dt,

deN0
i (t) = [(A0 −L0C0)e

N0
i (t)+L0C0ϒN0

i,r (t)+HN0
i (t)

+L0C0(e
N0
i+1(t)−ϒN0

i+1,r(t))−L0C1(e
N−N0
i (t)−ϒN−N0

i,r (t))
+L0C1(e

N−N0
i+1 (t)−ϒN−N0

i+1,r (t))]dt, 1 ≤ i ≤ M−1,
deN−N0

i (t) = [A1eN−N0
i (t)+HN−N0

i (t)]dt, 1 ≤ i ≤ M.

(25)

Here ϒ j
i,r(t) = e j

i (t)− e j
i (t −

r
M ), H j

M+1(t) = G j(t)− Ĝ j
M+1(t),

H j
i (t) = Ĝ j

i+1(t−
M−i

M r)−G j
i (t−

M−i+1
M r), 1 ≤ i ≤ M, j ∈ {N0,N−

N0}. Introduce the notations
Xz(t) = col{zN0(t),zN−N0(t)}, B = col{B0,B1},
Xe(t) = col{eN0

1 (t), . . . ,eN0
M+1(t),e

N−N0
1 (t), . . . ,eN−N0

M+1 (t)},
ϒr(t) = col{ϒN0

1,r(t), . . . ,ϒ
N0
M,r(t),ϒ

N−N0
1,r (t), . . . ,ϒN−N0

M,r (t)},
H(t) = col{HN0

1 (t), . . . ,HN0
M+1(t),H

N−N0
1 (t), . . . ,HN−N0

M+1 (t)},
σ(t) =

!
σN0 (t)

σN−N0 (t)

"
, G(t) =

!
GN0 (t)

GN−N0 (t)

"
, Fz =

!
A0 −B0K0 0
−B1K0 A1

"
,

I2 =

#

$
0MN0×N0

0
IN0

0
0M(N−N0)×N0

0

0 IN−N0

%

&, Lζ =

)
0(M−1)N0×1

L0
−L0

0(M+1)(N−N0)×1

*
,

Fe =
!

IM+1 ⊗ (A0 −L0C0)+ J0,M+1 ⊗L0C0 −IM+1 ⊗L0C1 + J0,M+1 ⊗L0C1
0 IM+1 ⊗A1

"
,

Λe = [IM ⊗L0C0 − J0,M ⊗L0C0, IM ⊗L0C1 − J0,M ⊗L0C1],
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I1 = col{IMN0 ,0((M+1)N−MN0)×MN0
},K0 = [K0,01×(N−N0)],

I0 = [IN0 , . . . , IN0 ,0N0×(M+1)(N−N0)] ∈ RN0×(M+1)N . (26)
Then from (6), (10), (17), (24), (25) and (26), we arrive at
the following system for t ≥ 0,

dXz(t) = [FzXz(t)+BK0I0Xe(t)+G(t)]dt +σ(t)dW (t), (27a)
dXe(t) = F(t)dt +I2σ(t)dW (t), (27b)
F(t) = FeXe(t)+Lζ ζ (t)+I1Λeϒr(t)+H(t),

dzn(t) = [−λnzn(t)+gn(t)−bnK0Xz(t)
+bnK0I0Xe(t)]dt +σn(t)dW (t), n > N. (27c)

For mean-square L2-stability analysis of (27), we consider
the Lyapunov functional:

V (t) =Vnom(t)+VPe(t)+VSe(t)+VRe(t),
Vnom(t) =VPz(t)+ρ ∑∞

n=N+1 z2
n(t), VPz(t) = |Xz(t)|2Pz

,

VPe(t) = |Xe(t)|2Pe
,VSe(t) =

! t
t− r

M
e−2δ (t−s)|I3Xe(s)|2Se

ds,

I3 =
!

IMN0
0MN0×N0

0 0MN0×(N−N0)
0 0 IM(N−N0)

0

"
,

VRe(t) =
r
M

! 0
− r

M

! t
t+θ e−2δ (t−s)|I3F(s)|2Re

dsdθ ,

(28)

where Pz, Pe, Se, Re are positive matrices of appropriate
dimensions and ρ > 0 is a scalar. Without loss of generality
we assume that z(·, t) = z(·,0) for t < 0. In this regard, Xz(t)
for t < 0 is well-defined. The terms VSe(t), VRe(t) compensate
the delay term ϒr(t) in (27b). Note that VRe(t) has the
same form as in [18], since it compensates delay in e j

i
(i= 1, . . . ,M), whereas ODEs for these e j

i do not contain noise.
The stochastic term appears only in systems z j, e j

M+1 where
no delay term appears. Therefore, we do not need to construct
the noise-dependent functional as introduced in [12], [21].

By Parseval’s equality and the change of variables (18),
we present Vnom(t) in (28) as

Vnom(t) =VPz(t)−V1(t)+V2(w(t), t),V1(t) = ρ|Xz(t)|2,
V2(t) = ρ‖w(·, t)+ψ(·)u(t − r)‖2

L2 .
(29)

For functions VPz and V1, calculating the generator L along
stochastic ODE (27a) (see [22, P. 149]), we have

LVPz(t)+2δVPz(t) = XT
z (t)[PzFz +FT

z Pz +2δPz]Xz(t)
+σT(t)Pzσ(t)+2XT

z (t)PzBK0I0Xe(t)+2XT
z (t)PzG(t),

LV1(t)+2δV1(t) = ρ ∑N
n=1 2(−λn +δ )z2

n(t)+ρ|σ(t)|2
+ρ ∑N

n=1 2zn(t)[gn(t)−bnK0Xz(t)+bnK0I0Xe(t)].

(30)

From (15) and (17) we have du(t − r) = Fu(t − r)dt, where
Fu(t) =−K0(A0 −B0K0)ẑ

N0
1 (t)−K0ĜN0

M (t)−K0L0C0ẑN0
2 (t)

+K0L0C0ẑN0
1 (t − r

M )+K0L0C1[ẑ
N−N0
1 (t − r

M )− ẑN−N0
2 (t)].

Recalling A2 in (21), we can rewrite (20) subject to (17) as
dw(t) = [A2w(t)+g(w(t)+ψ(x)u(t − r))−ψ(·)µu(t − r)
−ψ(·)Fu(t − r)]dt +σ(w(t)+ψ(·)u(t − r))dW (t), (31)

where w(t) = w(·, t). Note that w(t) is a strong solution to (31)
(see Sec. II-C). For V2(t), calculating the generator L along
(31) (see [23, P. 228]) we obtain

LV2(t)
(3),(18)
≤ 2ρ〈A2w(t)+g(z(t)),z(t)〉L2

−2ρ〈µψ(·)u(t − r),z(t)〉L2 +ρσ̄2‖z(t)‖2
L2

= 2ρ ∑∞
n=1 zn(t)〈A2w(t),φn〉+2ρ ∑∞

n=1 zn(t)gn(t)
+2ρ ∑∞

n=1 zn(t)〈−µψ(·)u(t − r),φn〉+ρ ∑∞
n=1 σ̄2z2

n(t).

(32)

Using integration by parts, (1) and (19), we arrive at
〈A2w(t),φn〉=−λnwn(t) =−λnzn(t)+λn〈ψ,φn〉u(t − r),
〈−µψ(·)u(t − r),φn〉= [bn −λn〈ψ,φn〉]u(t − r). (33)

Substituting (33) into (32) and using (17), (24), we arrive at

LV2(w(t), t)+2δV2(w(t), t) = ρ ∑∞
n=1 2(−λn +δ + σ̄ 2

2 )z2
n(t)

+ρ ∑∞
n=1 2zn(t)[gn(t)−bnK0Xz(t)+bnK0I0Xe(t)]. (34)

Let α1,α2,α3 > 0. By the Young inequalities we have

∑∞
n=N+1 2zn(t)gn(t)≤ ∑∞

n=N+1
z2

n(t)
α1

+α1 ∑∞
n=N+1 g2

n(t)
(7)
≤ ∑∞

n=N+1
1

α1
z2

n(t)−α1|G(t)|2 +α1 ∑∞
n=1 g2

n(t),
∑∞

n=N+1 2zn(t)[−bnK0Xz(t)+bnK0I0Xe(t)]
(8)
≤ ∑∞

n=N+1
λn
α2

z2
n(t)+

2α2(N+1)
N2π2 |K0Xz(t)|2

+∑∞
n=N+1

λn
α3

z2
n(t)+

2α3(N+1)
N2π2 |K0I0Xe(t)|2.

(35)

By Parseval’s equality we have

∑∞
n=1 g2

n(t)
(3)
≤ ḡ2|Xz(t)|2 + ḡ2 ∑∞

n=N+1 z2
n(t). (36)

Combination of (30), (34), (35) and (36) yields
LVnom(t)+2δVnom(t)≤ XT

z (t)[PzFz +FT
z Pz +2δPz

+
2ρα2(N+1)

N2π2 K T
0 K0 +ρ(σ̄2 +α1ḡ2)I]Xz(t)

+σT(t)[Pz −ρI]σ(t)+∑∞
n=N+1 χnz2

n(t)
+2XT

z (t)Pz[BK0I0Xe(t)+G(t)]
+

2ρα3(N+1)
N2π2 |K0I0Xe(t)|2 −ρα1|G(t)|2,

(37)

where χn = 2ρ(−λn +δ + σ̄ 2

2 + α1
2 ḡ2 + 1

2α1
+ λn

2α2
+ λn

2α3
). For VPe ,

VSe , VRe , calculating the generator L along (27b) (see [22, P.
149]), we have

LVPe(t)+2δVPe(t) = XT
e (t)[PeFe +FT

e Pe +2δPe]Xe(t)
+2XT

e (t)Pe[Lζ ζ (t)+I1Λeϒr(t)+H(t)]+ |I2σ(t)|2Pe
,

LVSe(t)+2δVSe(t)≤ |I3Xe(t)|2Se
− εM |I3Xe(t)−ϒr(t)|2Se

,

LVRe(t)+2δVRe(t)≤ r2

M2 |I3F(t)|2Re
− rεM

M
! t

t− r
M
|I3F(s)|2Re

ds,
(38)

where εM = e−2δ r/M . By Jensen’s inequality, we obtain
r
M

! t
t− r

M
|I3F(s)|2Re

ds ≥ |
! t

t− r
M

I3F(s)ds|2Re

(27b)
= |ϒr(t)|2Re

. (39)

By Parseval’s equality we have

|HN0
M+1(t)|

2 + |HN−N0
M+1 (t)|2 = ∑N

n=1 |gn(t)− ĝ(M+1)
n (t)|2

≤
! 1

0 |g(z(x, t))−g(Φ1(x)ẑ
N0
M+1(t)+Φ2(x)ẑ

N−N0
M+1 (t))|2dx

≤ ḡ2 ! 1
0 |z(x, t)−Φ1(x)ẑ

N0
M+1(t)−Φ2(x)ẑ

N−N0
M+1 (t)|2dx

≤ ḡ2|eN0
M+1(t)|

2 + ḡ2|eN−N0
M+1 (t)|2 + ḡ2 ∑∞

n=N+1 z2
n(t),

|HN0
i (t)|2 + |HN−N0

i (t)|2 ≤ ḡ2|eN0
i (t)|2 + ḡ2|eN−N0

i (t)|2,
where 1 ≤ i ≤ M, which implies

|H(t)|2 ≤ ḡ2|Xe(t)|2 + ḡ2 ∑∞
n=N+1 z2

n(t). (40)

Besides, from Parseval’s equality and (3) we have

|σ(t)|2 ≤ ‖σ(z(·, t))‖2
L2 ≤ σ̄2|Xz(t)|2 + σ̄2 ∑∞

n=N+1 z2
n(t). (41)

By Cauchy-Schwarz inequality, we have ζ 2(t) ≤
‖c‖2

N ∑∞
n=N+1 z2

n(t). Let χ̂n = χn+β1ḡ2+β2σ̄2, where β1,β2 > 0.
Then from the monotonicity of λn, we find

∑∞
n=N+1 χ̂nz2

n(t)≤ χ̂N+1‖c‖−2
N ζ 2(t) (42)

provided χ̂N+1 < 0.
Let η(t) = col{Xz(t),Xe(t),ϒr(t),ζ (t),G(t),H(t)}. By (37)-

(42) and the S-procedure [24, Sec 3.2.3], we get
LV (t)+2δV (t)+β1[ḡ2|Xe(t)|2 + ḡ2 ∑∞

n=N+1 z2
n(t)

−|H(t)|2]+β2[σ̄2|Xz(t)|2 + σ̄2 ∑∞
n=N+1 z2

n(t)− |σ(t)|2]
≤ σT(t)Ψ1σ(t)+ηT(t)Ψ2η(t)< 0

(43)

provided
Ψ1 = Pz +I T

2 PeI2 −ρI −β2I < 0, (44a)

Ψ2 = Ξ+(r/M)2ΘTReΘ < 0, (44b)
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where
Θ = [0, I3Fe, I3I1Λe, I3Lζ , 0, I3],

Ξ =

#

+$

Ψ11 PzBK0I0 0 0 Pz 0
∗ Ψ22 PeI1Λe + εMI T

3 Se PeLζ 0 Pe
∗ ∗ −εM (Se +Re) 0 0 0
∗ ∗ ∗ χ̂N+1‖c‖−2

N 0 0
∗ ∗ ∗ ∗ −α1ρI 0
∗ ∗ ∗ ∗ ∗ −β1 I

%

,&,

Ψ11 = PzFz +FT
z Pz +2δPz +

2ρα2(N+1)
N2π2 K T

0 K0
+ρ(σ̄2 +α1ḡ2)I +β2σ̄2I,

Ψ22 = PeFe +FT
e Pe +2δPe +(1− εM)I T

3 SeI3

+
2ρα3(N+1)

N2π2 I T
0 KT

0 K0I0 +β1ḡ2I.

(45)

Applying Schur complement, we find that (44b) holds iff
#

++$
Ξ1

r
M ΘTRe

!

"
0N(2M+2)×3
1 1 1
0N(M+2)×3

#

$

∗ −Re 0

∗ ∗ −diag{ α1‖c‖2
N

ρ ,
α2‖c‖2

N
ρλN+1

,
α3‖c‖2

N
ρλN+1

}

%

,,&< 0, (46)

where Ξ1 = Ξ defined in (45) with χ̂N+1 therein replaced
by 2ρ‖c‖−2

N (−λN+1 +δ + σ̄ 2

2 + α1
2 ḡ2)+β1ḡ2‖c‖−2

N +β2σ̄2‖c‖−2
N .

Summarizing, we obtain:
Theorem 1: Consider system (2) with control law (17),

measurement (4) with c ∈ L2(0,1) satisfying (11), z0 ∈ D(A2)

almost surely and z0 ∈ L2(Ω;L2(0,1)). Let N0 ∈ N satisfy (9)
and N ∈N satisfy N ≥N0. Assume that L0 and K0 are obtained
from (12) and (13), respectively. Given r > 0, if there exist
positive definite matrices Pz, Pe Se, Re, positive scalars α1, α2,
α3, β1, β2 and tuning parameter ρ > 0 such that LMIs (44a)
and (46) hold, then the solution z(x, t) to (2) subject to the
control law (17) and the corresponding observer ẑ(x, t) given
by (16) satisfy

E[‖z(·, t)‖2
L2 +‖ẑ(·, t)‖2

L2 ]≤ De−2δ tE‖z(·,0)‖2
L2 , t ≥ 0, (47)

for some D ≥ 1. Given r > 0, LMIs (44a) and (46) are always
feasible for M, N large enough and σ̄ , ḡ > 0 small enough.

Proof: First, by arguments similar to the proof of
Theorem 2.1 in [7], we can obtain from (43) that EV (t) ≤
e−2δ tEV (0), t ≥ 0. By the definition of V (t) in (28), we can
get (47).

For any given r > 0, to prove the feasibility of (44)
for large enough N, M and small enough σ̄ , ḡ > 0, we
take σ̄ , ḡ → 0+, α1 = α2 = α3 = 1, Pz = diag{P̂z, p1IN−N0},
Pe = diag{P̂e, p2I(M+1)(N−N0)}, Se = diag{Ŝe, IM(N−N0)},
Re = diag{R̂e, IM(N−N0)}, with 0 < P̂z ∈ RN0×N0 , 0 < P̂e ∈
R(M+1)N0×(M+1)N0 , 0 < Ŝe, R̂e ∈ RMN0×MN0 and p1, p2 > 0. By
using suitable congruent transformation to Ψ2, applying
Schur complement repeatedly and letting p1 → 0+, p2,β1 →∞,
we find that Ψ2 < 0 if

)
ψ̂11 P̂zB0K0 P̂zB0K0Î0 0 P̂zI1 0

∗ φ(P̂e , Ŝe , R̂e)
0 P̂e L̂02
0 0

∗ ∗ diag{−ρI,2ρχ̂N+1‖c‖−2
N }

*
+( r

M )2Θ̂TR̂eΘ̂

+
2ρ(N+1)

N2π2 diag{Î T
4 KT

0 K0Î4,Î
T
0 KT

0 K0Î0,0,0}< 0,

(48)

where

φ(P̂e, Ŝe, R̂e) =
!

ψ̂22 P̂eΛ̂e + εM Ŝe
∗ −εM (Ŝe + R̂e)

"
,Θ̂ = [0, L̂02C0,F11, Λ̂e,0, L̂02],

Fe11 = IM ⊗ (A0 −L0C0)+ J0,M ⊗L0C0,
ψ̂11 = P̂z(A0 −B0K0)+(A0 −B0K0)

TP̂z +2δ P̂z,
ψ̂22 = P̂eFe11 +FT

e11P̂e +2δ P̂e +(1− εM)Ŝe,

Î0 = [IN0 , . . . , IN0 ] ∈ RN0×(M+1)N0 , Î4 = [−IN0 , IN0 ],
Λ̂e = IM ⊗L0C0 − J0,M ⊗L0C0, L̂02 = col{0(M−1)N0×1,L0 −L0}.

For any given r > 0, we first fix very large M > 0. From
Proposition 1 in [15] we can obtain for suitable positive
matrices P̂e, Ŝe, R̂e,

φ(P̂e, Ŝe, R̂e)+( r
M )2[Fe11, Λ̂e]

TR̂e[Fe11, Λ̂e]< 0.

We replace φ(P̂e, Ŝe, R̂e) with φ(β P̂e,β Ŝe,β R̂e) = βφ(P̂e, Ŝe, R̂e),
β > 0. Let P̂z = Pc, given in (13), resulting in ψ̂11 < 0. Setting
β > 0 to be large enough, then choosing ρ =

√
N large enough,

β2 = p2
2 and applying Schur complement three times in (48),

we find that (44a) and (48) hold. Fixing such M and N and
using continuity, we have that (44) are feasible provided
σ̄ , ḡ > 0 are small enough.

E. Observer-based design: delay robustness

For the case of M = 0 in (14), ẑ j(t) = ẑ j
M+1(t), j ∈ {N0,N −

N0} satisfy
dẑN0(t) = [A0ẑN0(t)+ ĜN0(t)+B0u(t − r)]dt

−L0[C0ẑN0(t)+C1ẑN−N0(t)− y(t)]dt,
dẑN−N0(t) = [A1ẑN−N0(t)+ ĜN−N0(t)+B1u(t − r)]dt,

(49)

where Ĝ j(t) = Ĝ j
M+1(t) is defined above Remark 1. Then our

method degenerates into the observer-based control with the
delay robustness as studied in [11] for deterministic PDEs.
Following [11], we construct a finite-dimensional observer
of the form

ẑ(x, t) = Φ1(x)ẑN0(t)+Φ2(x)ẑN−N0(t), (50)

where Φ1 and Φ2 are defined below (15). We propose the
controller

u(t) = K0ẑN0(t), (51)

where K0 ∈ R1×N0 is determined by (13).
Let e j(t) = z j(t)− ẑ j(t), j ∈ {N0,N − N0}. Using (10) and

(49), we obtain
deN0(t) = [(A0 −L0C0)eN0(t)+HN0(t)

−L0C1eN−N0(t)−L0ζ (t)]dt +σN0(t)dW (t),
deN−N0(t) = [A1eN−N0(t)+HN−N0(t)]dt +σN−N0(t)dW (t),

(52)

where H j(t) = G j(t)− Ĝ j(t), j ∈ {N0,N −N0}. Introduce the
following notations:

X(t) = col{ẑN0(t), ẑN−N0(t),eN0(t),eN−N0(t)},

F =

)
A0 −B0K0 0 L0C0 L0C1
−B1K0 A1 0 0

0 0 A0 −L0C0 −L0C1
0 0 0 A1

*
, Ĝ(t) =

!
ĜN0 (t)

ĜN−N0 (t)

"
,

H(t) =
!

HN0 (t)
HN−N0 (t)

"
, I1 =

!
IN

0N×N

"
, I2 =

!
0N×N

IN

"
,

B1 = col{B0,B1,0N×1}, L0 = col{L0,0,−L0,0},
K1 = [K0,01×(2N−N0)], ϒN0

r (t) = ẑN0(t)− ẑN0(t − r).

Then, from (4), (49)-(52), we have the closed-loop systems:

dX(t) = F(t)dt + I2σ(t)dW (t),
dzn(t) = [−λnzn(t)+gn(t)−bnK1X(t)

+bnK0ϒN0
r (t)]dt +σn(t)dW (t),

(53)

where F(t) = FX(t) + I1Ĝ(t) + I2H(t) +B1K0ϒN0
r (t) +L0ζ (t),

ζ (t) = ∑∞
n=N+1 cnzn(t). Note that in (53), the stochastic term

appears only in system eN0 ,eN−N0 , whereas the delay term
appears only in system ẑN0 , ẑN−N0 . So there is still a separation
between stochastic term and delay term. For system (53), we
consider the Lyapunov functional:

V (t) =Vnom(t)+VS(t)+VR(t),
Vnom(t) =VP(t)+ρ ∑∞

n=N+1 z2
n(t), VP(t) = |X(t)|2P,

VS(t) =
! t

t−r e−2δ (t−s)|I1X(s)|2Sds,
VR(t) = r

! 0
−r

! t
t+θ e−2δ (t−s)|I1F(s)|2Rdsdθ ,

(54)
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where I1 = [IN0 ,0N0×(2N−N0)], P,S,R are positive matrices with
appropriate dimensions. The terms VS and VR are introduced
to compensate ϒN0

r in system ẑN0 . Following the arguments
similar to (29)-(46), we have

LV (t)+2δV (t)+β1[ḡ2|IT
2 X(t)|2 + ḡ2 ∑∞

n=N+1 z2
n(t)− |H(t)|2]

+β2[σ̄2|I3X(t)|2 + σ̄2 ∑∞
n=N+1 z2

n(t)− |σ(t)|2]≤ 0

provided

IT
2 PI2 −ρI −β2I < 0,#

+$
Ξ1

r
M ΘTR

%
0(4N+N0)×3
1 1 1

&

∗ −R 0

∗ ∗ −diag{ α1‖c‖2
N

ρ ,
α2‖c‖2

N
ρλN+1

,
α3‖c‖2

N
ρλN+1

}

%

,&< 0,
(55)

where Θ = I1[F, B1K0, I1, I2, L0],

Ξ =

#

$
Ψ11 PB1K0 + εrI T

1 S PI1 PI2 PL0
∗ Ψ22 0 0 0
∗ ∗ −ρα1 I −ρα1 I 0
∗ ∗ ∗ −(ρα1 +β1)I 0
∗ ∗ ∗ ∗ χN+1‖c‖−2

N

%

&,

Ψ11 = PF +FTP+2δP+
2ρα2(N+1)

N2π2 K T
1 K1 +β1ḡ2I2IT

2
+(ρσ̄2 +ρα1ḡ2 +β2σ̄2)I3IT

3 +(1− εr)I T
1 SI1,

Ψ22 =
2ρα3(N+1)

N2π2 KT
0 K0 − εr(S+R),

χN+1 = 2ρ(−λN+1 +δ + σ̄ 2

2 + α1
2 ḡ2)+β1ḡ2 +β2σ̄2,

I3 =
!

IN0 0 IN0 0
0 IN−N0 0 IN−N0

"
.

Summarizing, LMIs (55) guarantee the mean-square L2 ex-
ponential stability of system (53) with a decay rate δ .

F. Sub-predictor construction without ẑN0
M+1, ẑN−N0

M+1 .

If we ignore ẑ j
M+1(t) in the construction of sub-predictors,

i.e., ẑ j
M(t − 1

M r) ,→ z j(t) in (14) (see, e.g., [18]), the last term
for system ẑN0

M in (15) becomes −L0[C0ẑN0
M (t− r

M )+C1ẑN−N0
M (t−

r
M )− y(t)]. Define e j

M(t) = z j(t)− ẑ j
M(t − r

M ). Then from (6),
(10), (17), (24)-(26) (ignoring ẑ j

M+1(t)), we have the closed-
loop system (M ≥ 2):

dXz(t) = [FzXz(t)+BK0I0Xe(t)+G(t)]dt +σ(t)dW (t),
dXe(t) = Fe(t)dt + Iσ(t)dW (t),
dzn(t) = [−λnzn(t)+gn(t)−bnK0Xz(t)

+bnK0I0Xe(t)]dt +σn(t)dW (t), n > N,

(56)

where Fe(t) = FeXe(t)+H(t)+I1Λeϒr(t)+Lζ ζ (t − r
M ), Xz(t),

ϒr(t), Fz, Λe, G(t), σ(t), B, K0 are defined in (26),

Xe(t) = col{eN0
1 (t), . . . ,eN0

M (t),eN−N0
1 (t), . . . ,eN−N0

M (t)},
H(t) = col{HN0

1 (t), . . . ,HN0
M (t),HN−N0

1 (t), . . . ,HN−N0
M (t)},

Fe =
!

IM ⊗ (A0 −L0C0)+ J0,M ⊗L0C0 −IM ⊗L0C1 + J0,M ⊗L0C1
0 IM ⊗A1

"
,

I =

#

$
0(M−1)N0×N0

0

IN0
0

0(M−1)(N−N0)×N0
0

0 IN−N0

%

&, Lζ =

)
0(M−2)N0×1

L0
−L0

0M(N−N0)×1

*
,

I0 = [IN0 , . . . , IN0 ,0N0×M(N−N0)] ∈ RN0×MN ,
I1 = col{IMN0 ,0M(N−N0)×MN0

}.

For M = 1, we have closed-loop system (56) with Fe, Λe, Lζ
replaced by

Fe =
!

A0 −L0C0 −L0C1
0 A1

"
, Lζ =

!
−L0

0(N−N0)×1

"
, Λe = [L0C0,L0C1].

Note that in closed-loop system (56), both the stochastic
term and the delay term appear in system eN0

M , which requires
us to construct a Lyapunov functional that depends on the
deterministic and stochastic parts for the mean-square L2

exponential stability of system (56):

V (t) =Vnom(t)+Vq(t)+VPe(t)+VSe(t)+VRe(t)+VQe(t),
Vq(t) = q

! t
t− r

M
e−2δ (t−s)ζ 2(s)ds,

VSe(t) =
! t

t− r
M

e−2δ (t−s)|Xe(s)|2Se
ds,

VRe(t) =
r
M

! 0
− r

M

! t
t+θ e−2δ (t−s)|Fe(s)|2Re

dsdθ ,
VQe(t) =

! 0
− r

M

! t
t+θ e−2δ (t−s)|Iσ(t)|2Qe

dsdθ ,

(57)

with Vnom,VPz ,VPe defined in (28), where Pz, Pe, Se, Re,
Qe are positive matrices of appropriate dimensions and
ρ,q > 0 are scalars. Note that VSe and VRe are utilized to
compensate delay term ϒr(t) in system Xe, whereas func-
tional VQe(t) (depends on Iσ(t)) is introduced to compensate
the stochastic part in systems eN0

M and eN−N0
M . Let η(t) =

col{Xz(t),Xe(t),ϒr(t),ξ (t),ζ (t − r
M ),G(t),H(t)}. By arguments

similar to (29)-(46) and using Itô integral properties (see,
e.g., [12, Eq. (46)]), we have

E[LV (t)+2δV (t)]+β1E[ḡ2|Xe(t)|2 + ḡ2 ∑∞
n=N+1 z2

n(t)
−|H(t)|2]+β2E[σ̄2|Xz(t)|2 + σ̄2 ∑∞

n=N+1 z2
n(t)− |σ(t)|2]

≤ E[σT(t)Ψ1σ(t)]+E[ηT(t)Ψ2η(t)]+ Ψ3Eζ 2(t)
‖c‖2

N
< 0

provided
Ψ1 = Pz −ρI −β2I + r

M ITQeI+ ITPeI < 0,
Ψ2 = Ξ+(r/M)2ΘTReΘ < 0, Ψ3 = q‖c‖2

N + χ̂N+1 < 0,
(58)

where χ̂n is defined below (41), Θ = [0,Fe,Λe,0,Lζ ,0, I],

Ξ =

#

++$

Ψ11 PzBK0I0 0 0 0 Pz 0
∗ Ψ22 PeΛe + εM Se 0 PeLζ 0 Pe
∗ ∗ −εM (Se +Re) εM Re 0 0 0
∗ ∗ ∗ −εM (Qe +Re) 0 0 0
∗ ∗ ∗ ∗ −εM q 0 0
∗ ∗ ∗ ∗ ∗ −α1ρI 0
∗ ∗ ∗ ∗ ∗ ∗ −β1 I

%

,,&,

Ψ11 = PzFz +FT
z Pz +2δPz +

2ρα2(N+1)
N2π2 K T

0 K0
+ρ(σ̄2 +α1ḡ2)I +β2σ̄2I,

Ψ22 = PeFe +FT
e Pe +2δPe +(1− εM)Se

+
2ρα3(N+1)

N2π2 I T
0 KT

0 K0I0 +β1ḡ2I.

Applying Schur complement, we find that Ψ3 < 0 iff
'

q‖c‖2
N +2ρ(−λN+1 +δ + σ̄2

2 +
α1
2 ḡ2)+β1 ḡ2 +β2 σ̄2 1 1 1

∗ − 1
ρ diag{α1 ,

α2
λN+1

,
α3

λN+1
}

(
< 0.

Feasibility of (58) guarantees the mean-square L2 exponential
stability of the closed-loop system (56) with a decay rate δ .

III. A NUMERICAL EXAMPLE

In this section, we consider system (2) where g satisfies (3)
with ḡ = 0.5, which results in an unstable open-loop system
for σ(z) ≡ 0. Let N0 = 1 and c(x) = χ[0,0.9](x) (an indicator
function). Take δ = 4. The observer and controller gains L0
and K0 are found from (12) and (13) and are given by L0 = 5,
K0 = 4.5.

First, we consider the observer-based control for delay
robustness (i.e., Sec. II-E with delay robustness and Sec. II-
F with 1 sub-predictor). Take δ = 0, σ̄ ∈ {0.3,0.4,0.5}, ρ = 1.
The LMIs were verified, respectively, for N ∈ {4,6,8}. The
results are given in Table I, which show that Sec. II-E with
simpler LMIs (no stochastic-dependent terms in Lyapunov
functional) allows slightly larger delays.

Next, we consider the sub-predictors for any delays. Take
δ = 0, σ̄ ∈ {0.3,0.4,0.5}, ρ = 1. The LMIs in Theorem 1 and
Sec. II-F were verified, respectively, for N ∈ {4,6,8}, number
of sub-predictors chosen as 2,3,4,5,6 to obtain the maximal
values of r which preserve the feasibility of LMIs. The results
are given in Table II for LMIs in Theorem 1 (with ẑN0

M+1
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and ẑN−N0
M+1 ) and in Table III for LMIs in Sec. II-F (without

ẑN0
M+1 and ẑN−N0

M+1 ). From Tables II and III we can see that
Theorem 1 and Sec. II-F lead to complementary results,
whereas Theorem 1 leads to a larger delay for comparatively
large M and has less computational complexity for the same
number of sub-predicts and observer dimensions. Similar to
the deterministic case in [15], [18] for large number of sub-
predictors, due to the term 2ρα3(N+1)

N2π2 I T
0 KT

0 K0I0, we need
much larger N to guarantee the feasibility of LMIs in (44)
and (58). Note that differently from the deterministic case,
for larger M, we require smaller upper bounds σ̄ on the noise
intensity to guarantee the feasibility of LMIs.

TABLE I
MAXIMAL r FOR FEASIBILITY: SEC.II-E VS SEC.II-F WITH M = 1.

N = 4 N = 6 N = 8
σ̄ Sec.II-E Sec.II-F Sec.II-E Sec.II-F Sec.II-E Sec.II-F

0.3 0.235 0.231 0.240 0.237 0.241 0.239
0.4 0.225 0.220 0.230 0.225 0.231 0.227
0.5 0.215 0.208 0.219 0.213 0.221 0.215

TABLE II
MAXIMAL r FOR FEASIBILITY OF LMIS IN THEOREM 1.

N = 4 N = 6 N = 8
M+1\σ̄ 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

2 0.23 0.22 0.21 0.24 0.23 0.22 0.24 0.23 0.22
3 0.39 0.37 0.35 0.39 0.38 0.35 0.40 0.38 0.36
4 0.50 0.47 0.41 0.51 0.48 0.43 0.51 0.48 0.43
5 0.59 0.52 0.35 0.60 0.54 0.40 0.61 0.55 0.42
6 0.63 0.41 — 0.66 0.42 0.02 0.67 0.43 0.11

TABLE III
MAXIMAL r FOR FEASIBILITY OF LMIS IN SEC.II-F.

N = 4 N = 6 N = 8
M\σ̄ 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

2 0.36 0.34 0.31 0.37 0.35 0.32 0.37 0.35 0.33
3 0.46 0.43 0.39 0.48 0.44 0.40 0.48 0.45 0.41
4 0.55 0.50 0.41 0.56 0.52 0.44 0.58 0.52 0.45
5 0.60 0.48 0.21 0.63 0.53 0.33 0.64 0.55 0.36
6 0.60 0.23 — 0.65 0.40 — 0.67 0.42 0.02

IV. CONCLUSIONS

In this paper, we considered output-feedback control of 1D
stochastic semilinear heat equation with constant input delay
and nonlinear noise under Neumann actuation and nonlocal
measurement. To compensate delay we constructed a nonlin-
ear sequential sub-predictor. Improvements and extension of
predictor-based control to various stochastic PDEs may be
topics for future research.
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