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Abstract— In this paper we propose an extended version of
the Friedkin-Johnsen (FJ) model that accounts for the effects
of homophily mechanisms on the agents’ mutual appraisals.
The proposed model consists of two difference equations. The
first one describes the opinions’ evolution, namely how agents
modify their opinions taking into account both their personal
beliefs and the influences of other agents, as in the standard
FJ model. Meanwhile, the second equation models how the
influence matrix involved in the opinion formation process
updates according to a homophily mechanism, by allowing
both positive and negative appraisals. We derive necessary and
sufficient conditions for the proposed time-varying version of
the classical FJ model to asymptotically converge to a constant
solution. In the case of a single discussion topic, asymptotic
convergence is always ensured and the limit behavior of the
system is derived in closed form.

I. INTRODUCTION

During the last decades, understanding and describing
the way we communicate and exchange ideas has been
the focus of extensive investigation. Opinion dynamics has
become a very lively research field that attracts and combines
concepts and techniques from different disciplines, ranging
from sociology, psychology and economy, to mathematics
and control engineering. Such strong interest resulted in a
large number of models trying to capture and mathemati-
cally formalize the process of opinion formation in a social
network. Despite the clear simplifications that the proposed
models have introduced, they have been able to provide
many insights into the dynamical processes of diffusion and
evolution of opinions in human population [16]. While the
initial interest focused mainly on models aimed at explaining
consensus [6], more recently a lot of models have been
proposed to justify observed behaviors of social groups such
as disagreement, polarization and conflict [1], [8], which
are even more frequent than consensus in real scenarios.
Among them, one of the most famous is surely the Friedkin-
Johnsen (FJ) model [8], that captures the fact that the opinion
of an individual on a topic evolves under the effects of
two main driving forces. On the one hand, the individual
(in the following also referred to as “agent”) is influenced
by the opinions on the same topic of his/her neighbours
in the social network, each one weighted by the appraisal
that the agent has of them. On the other hand, agents tend
to “stick” to their own initial opinions (prejudices), that
therefore keep affecting their opinions at each subsequent
time. This asymptotically leads to opinions which are closer
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to each other than the initial opinions, but not identical,
namely consensus is no longer reached. In the original FJ
model [8] opinions are expressed on a single topic and
the influence matrix, that quantifies how much each agent
values the opinions of the others, is constant and row
stochastic. Later on, the model has been extended to the
case of multiple topics [7], [14], [15], with time-varying row
stochastic influence matrices [17], and recently a version of
the FJ model whose influence matrix has both positive and
negative entries has been proposed [9], thus accounting for
the fact that relationships among individuals in a network
may also be competitive/antagonistic (see [2], [18]).

In all such models the influence matrix is either constant
or time-varying, nonnegative or real valued, but it is always
assumed to be independent of the dynamics of the agents’
opinions. This assumption does not seem to be realistic since
in real life very often the interpersonal relationships among
the agents depend on the comparison of their opinions,
following a homophily mechanism, namely the tendency
of individuals to associate and interact more intensively
with like-minded people [3], [4], [12], [13]. In other words,
agents tend to be influenced by individuals who hold similar
opinions and, conversely, give little or even negative weights
to the opinions of agents with whom they mostly disagree.

In recent times, an interesting model of the interplay
between homophily-based appraisal dynamics and influence-
based opinion dynamics has been proposed by F. Liu et
al. [11]. The model explores for the first time how the
evolution of the opinions of a group of agents on a certain
number of issues/topics is influenced by the agents’ mutual
appraisals and, conversely, the agents’ mutual appraisals
are updated based on the agents’ opinions on the various
issues, according to a homophily principle. More recently, a
simplified version of the model, that does not quantify the
level of mutual appraisal but only its sign, has been proposed
in [5]. It has been shown that this model is simpler and yet
equally accurate in predicting the asymptotic evolution of the
individuals’ opinions in small networks, as the ones we will
consider in this paper.

In this contribution we propose an extended version of
the FJ model whose influence matrix is generated according
to a homophily mechanism, by keeping into account only
the signs of the agents’ appraisals. In the general case,
we provide a necessary and sufficient condition for the
opinion matrix of a group of n agents on m topics to
asymptotically converge to a constant solution, that depends
on the agents’ initial opinions as well as on the agents’
stubbornness coefficients. Finally, we consider the special
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case where there is only one discussion topic and provide an
explicit expression of the agents’ asymptotic opinions.

The paper is organized as follows: Section II introduces
the model explaining the meaning of all the quantities
involved. Section III provides the main results about the
dynamics of the model. Section IV addresses the single-topic
case. Finally, in Section V, a numerical example is proposed.

Notation. Given two integers k and n, with k ≤ n,
the symbol [k, n] denotes the set {k, k + 1, . . . , n}. We let
1n (0n) denote the n-dimensional vector with all unitary
(zero) entries. We denote by ei the i-th canonical vector
of dimension n, where n is always clear from the context.
In the sequel, the (i, j)-th entry of a matrix A is denoted
by [A]ij , while the i-th entry of a vector v by vi. The
function sgn : Rn×m → {−1, 0, 1}n×m is the function
that maps a real matrix A into a matrix taking values
in {−1, 0, 1}, in accordance with the sign of its entries,
namely [sgn(A)]ij = sgn([A]ij) for every i, j. The max
norm of a matrix A ∈ Rn×n is defined as ‖A‖max :=
maxi,j∈[1,n] |Aij |. The Euclidean norm of a vector v ∈ Rn

is defined as ‖v‖2 :=
(∑n

i=1 v
2
i

)1/2
.

In this paper by an undirected and signed graph we mean
a triple G = (V, E ,A), where V = [1, n] is the set of nodes
(or vertices), E ⊆ V × V is the set of edges (or arcs) and
A ∈ {−1, 0, 1}n×n is the adjacency matrix of the graph
G. An arc (j, i) ∈ E if and only if [A]ij 6= 0. When so,
[A]ij represents the (positive or negative) weight of the arc.
Moreover, due to the fact that the graph is undirected, the
matrix A is symmetric and so (i, j) ∈ E if and only if
(j, i) ∈ E . Since the adjacency matrix A uniquely identifies
the graph, in the following we will use the notation G(A).
A graph G is said to be structurally balanced [2], [18] if
the set of its nodes can be partitioned into two disjoint
subsets such that (s.t.) the weights of the edges between
nodes belonging to the same subset are nonnegative, and the
weights of the edges between nodes belonging to different
subsets are nonpositive.

II. THE MODEL

Given a group of n agents expressing their opinions on
m distinct topics, we denote by Y (t) ∈ Rn×m the opinion
matrix at time t, whose (i, j)-th entry represents the opinion
that agent i has about topic j at time t ∈ Z+.
We denote by W (t) ∈ Rn×n the influence matrix at time
t, whose (i, j)-th entry represents the influence that agent j
has on agent i at time t. Specifically, we assume that:
• [W (t)]ij > 0 ⇔ i positively regards the opinion of j;
• [W (t)]ij < 0 ⇔ i negatively regards the opinion of j;
• [W (t)]ij = 0 ⇔ i neglects the opinion of j.

We assume that at every time t the influence that agent j has
on agent i is given by agent i’s appraisal of agent j. On the
other hand, the appraisal that i has of j at time t is based on
a homophily mechanism [3], [12], since it depends on the
comparison of the opinions that agents i and j have about
all the topics at time t− 1. As in [5], we consider only the

signs of the mutual appraisals, rather than their values. This
is motivated by the fact that from a practical viewpoint it
is complicated to quantify the appraisals each individual has
of the others, but, on the contrary, it is easy to recognize if
the relationship between two agents is friendly or hostile.
Moreover, this choice is more robust to modelling errors
and more realistic, because agent j can influence positively
or negatively agent i’s opinion about a certain topic, but
this influence does not necessarily scale with the absolute
value of their mutual appraisal. Furthermore, we have chosen
to account also for the fact that two agents decide not to
rely on each other’s opinions, i.e., [W (t)]ij = 0. Indeed,
in small-size networks, as the ones we are considering, this
corresponds to the case where agent i knows agent j, but
decides to neglect his/her opinions, for lack of correlation
between their evaluations. Therefore, the fact that the mutual
appraisal is zero is an information that should be considered,
justifying the choice of dividing each row of the influence
matrix by n, instead of by the number of its non-zero entries.
However, it is worth noticing that condition [W (t)]ij = 0 is a
very rare occurrence, as it will be clear in the following, since
it corresponds to the case where the (real-valued) opinion
vectors of agent i and j at time t− 1 (i.e., the i-th and j-th
rows of Y (t− 1)) are orthogonal.

Based on these premises, in this paper we propose the
following model, representing the intertwining between an
FJ-type opinion dynamics and a homophily-based appraisal
mechanism:

Y (t+ 1) = (In −Θ)W (t+ 1)Y (t) + ΘY (0), (1)

W (t+ 1) =
1

n
sgn

(
Y (t)Y (t)>

)
, (2)

where Θ ∈ Rn×n is a diagonal matrix. For every i ∈ [1, n],
the nonnegative diagonal entry θi = [Θ]ii of Θ represents the
stubbornness of agent i in preserving the original opinion.
In the paper we will steadily assume:

Assumption 1. For every i ∈ [1, n] the stubbornness of
agent i satisfies 0 < θi < 1.

It is easy to see that if the i-th row of Y (0) is zero, then
the i-th row of Y (t) is zero for every t ≥ 0. This corresponds
to the case where the i-th agent has no interest in any of the
topics, and gives zero weight to the others’ opinions. We rule
out this pathological case.

Assumption 2. The matrix Y (0) ∈ Rn×m is devoid of
zero rows.

Finally, it is worth noticing that the influence matrix W (t+
1), as defined, is a symmetric matrix for every t ≥ 0.

III. GENERAL RESULTS

In order to investigate the asymptotic behavior of the
opinion matrix, we first provide an alternative way to express
the opinion matrix at time t, by introducing the transition
matrix M(t), relating Y (t) to Y (0). In the following we
will steadily resort to the following notation:

S0 := Y (0)Y (0)>. (3)
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Proposition 1. For every Y (0) ∈ Rn×m, at every time t ≥ 0
we have

Y (t+ 1) = M(t+ 1)Y (0), (4)

where

M(t+ 1) = (In −Θ)W (t+ 1)M(t) + Θ, (5)
M(0) = In, (6)

W (t+ 1) =
1

n
sgn(M(t)S0M(t)>). (7)

Proof. We prove the result by induction on t. We first show
that the result is true for t = 0. We observe that

W (1) =
1

n
sgn(Y (0)Y (0)>) =

1

n
sgn(M(0)S0M(0)>),

and hence

Y (1) = [(In −Θ)W (1) + Θ]Y (0)

= [(In −Θ)W (1)M(0) + Θ]Y (0) = M(1)Y (0),

where
M(1) = (In −Θ)W (1)M(0) + Θ.

Now we assume that equations (4), (5) and (7) are true for
t < t̄ and prove that they hold true also for t = t̄.
From W (t̄ + 1) = 1

n sgn(Y (t̄)Y (t̄)>), by the inductive
assumption (on the expression of Y ), we obtain W (t̄+ 1) =
1
n sgn(M(t̄)S0M(t̄)>). On the other hand,

Y (t̄+ 1) = (In −Θ)W (t̄+ 1)Y (t̄) + ΘY (0)

= [(In −Θ)W (t̄+ 1)M(t̄) + Θ]Y (0)

= M(t̄+ 1)Y (0),

where M(t̄+ 1) = (In −Θ)W (t̄+ 1)M(t̄) + Θ.

Based on Proposition 1, we now derive the main re-
sult regarding the asymptotic behavior of the sequence
{M(t)}t∈Z+ .

Theorem 2. For every Y (0) ∈ Rn×m, the solution of
the system in (5)-(6)-(7) is bounded, and specifically1

‖M(t)‖max ≤ 1 for all t ∈ Z+. Moreover, the following
conditions are equivalent:

(i) There exists M∞ := limt→+∞M(t);
(ii) There exists T ∈ Z+, T ≥ 1, such that W (t) =

W (T ) =: W∞, for every t ≥ T .
If either of the above equivalent conditions holds, then

M∞ = (In −Θ)W∞M∞ + Θ. (8)

Proof. We prove the result by induction on t ∈ Z+. We first
observe that ‖M(0)‖max = ‖In‖max = 1. We now assume
that ‖M(t)‖max ≤ 1 and prove that ‖M(t + 1)‖max ≤ 1.
From (5) we get

‖M(t+ 1)‖max = ‖(In −Θ)W (t+ 1)M(t) + Θ‖max

≤ ‖(In −Θ)
1

n
1n1>n 1n1>n + Θ‖max

= ‖(In −Θ)1n1>n + Θ‖max = 1.

1Note that W (t + 1), t ∈ Z+, is always bounded, since it takes values
in {−1/n, 0, 1/n}.

(i) ⇒ (ii) From (5) we easily deduce that

M(t+ 1)−M(t) = (In −Θ)W (t+ 1)M(t)

− (In −Θ)W (t)M(t− 1),

= (In −Θ)[W (t+ 1)−W (t)]M(t)

+ (In −Θ)W (t)[M(t)−M(t− 1)].

This implies

‖M(t+ 1) − M(t)‖max ≥
≥ ‖(In −Θ)[W (t+ 1)−W (t)]M(t)‖max (9)
− ‖(In −Θ)W (t)[M(t)−M(t− 1)]‖max.

We notice that

‖(In −Θ) W (t)[M(t)−M(t− 1)]‖max
≤ n‖(In −Θ)W (t)‖max‖M(t)−M(t− 1)‖max
< ‖M(t)−M(t− 1)‖max, (10)

where we used the fact that ‖AB‖max ≤ n‖A‖max‖B‖max
and that ‖(In − Θ)W (t)‖max ≤ maxi

1−θi
n < 1

n . So, (9)
and (10) together lead to

‖M(t+ 1) − M(t)‖max + ‖M(t)−M(t− 1)‖max

> ‖(In −Θ)[W (t+ 1)−W (t)]M(t)‖max. (11)

From equation (5) we deduce

M(t) = (In −Θ)W (t)M(t− 1) + Θ

= (In −Θ)W (t)M(t)

+ (In −Θ)W (t)[M(t− 1)−M(t)] + Θ,

that leads to

M(t) = [In − (In −Θ)W (t)]−1[(In −Θ)W (t) ·
· (M(t− 1)−M(t)) + Θ], (12)

where we used the fact that (In − Θ)W (t) is Schur2 and
hence In − (In −Θ)W (t) is nonsingular.
Assume, now, that there exists limt→+∞M(t). This means
that for every ε > 0 there exists T ∈ Z+ such that for
every t ≥ T we have ‖M(t) −M(t − 1)‖max < ε. If ε is
sufficiently small, this also ensures that, for every t ≥ T , the
matrix M(t)−M(t+1) is infinitesimal, and hence the matrix
(In −Θ)W (t)(M(t− 1)−M(t)) + Θ ≈ Θ is nonsingular.
As a consequence, (12) leads to

M(t)−1 = [(In −Θ)W (t)(M(t− 1)−M(t)) + Θ]−1 ·
· [In − (In −Θ)W (t)].

To summarize, for every t ≥ T the matrix M(t)−1 exists
and is a bounded matrix (being the product of two bounded
matrices). This guarantees that there exists b > 0, such that

‖M(t)−1‖max < b, ∀t ≥ T. (13)

Now, we use the fact that

‖(In −Θ)[W (t+ 1)−W (t)]‖max
= ‖(In −Θ)[W (t+ 1)−W (t)]M(t)M(t)−1‖max
≤n‖(In −Θ)[W (t+ 1)−W (t)]M(t)‖max‖M(t)−1‖max
2The result can be easily proved by resorting to Gershgorin Circles

Theorem [10].
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and hence
‖(In −Θ)[W (t+ 1)−W (t)]M(t)‖max ≥

‖(In −Θ)[W (t+ 1)−W (t)]‖max
n‖M(t)−1‖max

.
(14)

By replacing (14) in (11), and keeping into account (13), we
obtain

‖M(t+ 1)− M(t)‖max + ‖M(t)−M(t− 1)‖max

>
1

nb
‖(In −Θ)[W (t+ 1)−W (t)]‖max. (15)

This guarantees that for every t ≥ T

2ε >
1

nb
‖(In −Θ)[W (t+ 1)−W (t)]‖max.

Since the matrix W takes values in a finite set, and hence
the nonzero entries of W (t+1)−W (t) cannot be arbitrarily
small, this ensures that W (t+ 1) = W (t), ∀t ≥ T .

(ii) ⇒ (i) If condition (ii) holds, then for every t ≥ T we
have

M(t) = (In −Θ)W (t)M(t− 1) + Θ

= (In −Θ)W∞M(t− 1) + Θ,

and hence

M(t+ 1)−M(t) = (In −Θ)W∞[M(t)−M(t− 1)].

This implies that for every t ≥ T
‖M(t+ 1) − M(t)‖max

= ‖(In −Θ)W∞[M(t)−M(t− 1)]‖max

≤ n‖(In −Θ)W∞‖max‖M(t)−M(t− 1)‖max

≤ α‖M(t)−M(t− 1)‖max

≤ αt−T+1‖M(T )−M(T − 1)‖max,

where we used the fact that ‖AB‖max ≤ n‖A‖max‖B‖max
and that ‖(In − Θ)W∞‖max ≤ maxi

1−θi
n = α

n , α :=
maxi∈[1,n](1− θi) < 1. This ensures that

lim
t→+∞

‖M(t+ 1)−M(t)‖max = 0

and hence there exists M∞ = limt→+∞M(t).
Condition (8) follows immediately.

The main consequence of Theorem 2 is that, for every
Y (0) ∈ Rn×m for which ∃M∞ = limt→+∞M(t), we
can also ensure that ∃Y∞ := limt→+∞ Y (t) and Y∞ =
M∞Y (0). Moreover, starting from some T ∈ Z+, T ≥ 1,
we have W∞ = W (T ), and hence

W∞ =
1

n
sgn

(
M(T )S0M(T )>

)
∈
{
− 1

n
, 0,

1

n

}n×n
. (16)

We now explore some interesting properties of M∞.

Proposition 3. Given Y (0) ∈ Rn×m, if there exists M∞ =
limt→+∞M(t), then M∞ is nonsingular and ∀i ∈ [1, n]

(i) ‖M∞ei‖∞ := maxj∈[1,n] |[M∞]ji| = |[M∞]ii|;
(ii) [M∞]ii > 0.

Proof. We first prove that M∞ is nonsingular. Suppose, by
contradiction, that v ∈ Rn, v 6= 0n, belongs to the kernel
of M∞, i.e., M∞v = 0n. Then, by making use of (8), we
obtain

0n = M∞v = (I −Θ)W∞M∞v + Θv ⇒ Θv = 0n,

which is not possible as each θi ∈ (0, 1), by Assumption 1.
(i) Let i be any index in [1, n]. Then

M∞ei = (I −Θ)W∞M∞ei + Θei.

If we permute the entries of M∞ei, using an n × n per-
mutation matrix P , in such a way that ṽ := P>M∞ei =[
ṽ1 . . . ṽn

]>
, with |ṽ1| ≥ |ṽ2| ≥ · · · ≥ |ṽn|, we obtain

ṽ = P>M∞ei = P>(I −Θ)PP>W∞PP
>M∞ei +

+ P>ΘPP>ei = (I − Θ̃)W̃∞ṽ + Θ̃ej , ∃j ∈ [1, n],

where Θ̃ = P>ΘP = diag{θ̃1, . . . , θ̃n} and W̃∞ =
P>W∞P . The first component of ṽ, i.e., ṽ1, satisfies

ṽ1 = (1− θ̃1)e>1 W̃∞
[
ṽ1 . . . ṽn

]>
+ θ̃1e>1 ej ,

which implies that

|ṽ1| ≤ (1− θ̃1)

n∑
i=1

|ṽi|
n

+ θ̃1e>1 ej . (17)

Therefore, if j 6= 1, the right-hand side of (17) would be

(1− θ̃1)

n∑
i=1

|ṽi|
n

<

n∑
i=1

|ṽi|
n
≤ |ṽ1|,

a contradiction. Thus, it must be j = 1 and θ̃1 = θi.
So, we have ṽ1 = [M∞ei]i = [M∞]ii. This means that
maxj∈[1,n] |[M∞]ji| = |[M∞]ii|. Clearly, this is true for
every index i ∈ [1, n], namely for every column of M∞.

(ii) We want to prove that [M∞]ii > 0,∀i ∈ [1, n], which
is equivalent to showing that ṽ1 > 0, by referring to the
notation adopted in part (i). Suppose, by contradiction, that
ṽ1 ≤ 0. Then, we get

ṽ1 = (1− θ̃1)e>1 W̃∞
[
ṽ1 . . . ṽn

]>
+ θ̃1

= (1− θ̃1)[W̃∞]11ṽ1 + (1− θ̃1)
∑
j 6=1

[W̃∞]1j ṽj + θ̃1.

Consequently,(
1− (1− θ̃1)[W̃∞]11

)
ṽ1 − θ̃1 = (1− θ̃1)

∑
j 6=1

[W̃∞]1j ṽj .

Note that since

[W̃∞]11 =

[
1

n
sgn(P>Y (T )Y (T )>P )

]
11

=
1

n
sgn(e>1 P

>Y (T )Y (T )>Pe1)

=
1

n
sgn(‖Y (T )>Pe1‖22)
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for some T ∈ Z+, [W̃∞]11 belongs to {0, 1
n}, and 1− (1−

θ̃1)[W̃∞]11 > 0. If ṽ1 ≤ 0, we get(
1− (1− θ̃1)[W̃∞]11

)
|ṽ1|+ θ̃1

=
∣∣∣(1− (1− θ̃1)[W̃∞]11

)
ṽ1 − θ̃1

∣∣∣
= (1− θ̃1)

∣∣∣∑j 6=1 [W̃∞]1j ṽj

∣∣∣ ≤ (1− θ̃1)n−1
n |ṽ1|,

which implies that[
1− (1− θ̃1)

(
[W̃∞]11 +

n− 1

n

)]
|ṽ1|+ θ̃1 ≤ 0. (18)

Since [W̃∞]11 belongs to {0, 1
n}, then 1 − (1 −

θ̃1)
(

[W̃∞]11 + n−1
n

)
> 0. So, all quantities on the left-

hand side of (18) are nonnegative and, in particular, θ̃1 is
positive. This contradicts inequality (18). Therefore, ṽ1 must
be positive, which is equivalent to saying that [M∞]ii >
0,∀i ∈ [1, n].

The previous result means that, in case of convergence to
a constant solution, the initial opinion of each agent impacts
more on his/her own final opinion than on the final opinions
of the other agents. In other words, the agent that weights
more agent i’s initial opinion is agent i himself/herself.
Moreover, (and not unexpectedly!) such impact is always
positive.

IV. SINGLE-TOPIC CASE

We now address the case where m = 1, namely there is
only one discussion topic. When so, the opinion matrix is a
column vector, that we now denote by y(t) ∈ Rn, containing
the opinions of the agents on the topic. It is easy to see
that if we define v(t) := sgn(y(t)), then sgn

(
y(t)y(t)>

)
=

v(t)v(t)>, and model (1)-(2) becomes:

y(t+ 1) = (I −Θ)W (t+ 1)y(t) + Θy(0) (19)

W (t+ 1) =
1

n
sgn

(
y(t)y(t)>

)
=

1

n
v(t)v(t)>, (20)

leading to the difference equation:

y(t+ 1) =
1

n
(I −Θ)v(t)v(t)>y(t) + Θy(0). (21)

We also note that in this context Assumption 2 amounts to
imposing that y(0) is devoid of zero entries. In fact, condition
yi(0) = 0 would lead the i-th agent to remain isolated and
stick to the zero opinion.

Under the previous hypotheses, we can derive the follow-
ing results.

Lemma 4. For m = 1,

v(t) = sgn(y(t)) = sgn(y(0)) = v(0), ∀ t ∈ Z+.

Consequently,

W (t+ 1) = W (1) =
1

n
v(0)v(0)>, ∀t ≥ 1,

namely the influence matrix remains constant.

Proof. By induction on t. For t = 1, we have v(1) =

sgn(y(1)) = sgn
[
(I − Θ) 1

nv(0)v(0)>y(0) + Θy(0)
]

=

sgn(y(0)) = v(0), where we used the fact that v(0)>y(0) =
sgn(y(0))>y(0) =

∑n
i=1 |yi(0)| > 0 (Assumption 2 rules

out the case y(0) = 0n). Suppose, now, that the result holds
for t < t̄. For t = t̄:

v(t̄+ 1) = sgn(y(t̄+ 1))

= sgn
[
(I −Θ)

1

n

=v(0)︷︸︸︷
v(t̄) v(t̄)>y(t̄)︸ ︷︷ ︸∑n

i=1 |yi(t̄)|>0

+Θy(0)
]

= v(0),

where we used the inductive assumption v(t̄) = sgn(y(t̄)) =
sgn(y(0)) = v(0) that ensures, in particular, y(t̄) 6= 0n. The
second part immediately follows.

As a consequence of the previous lemma, for m = 1 the
model in (19)-(20) becomes time-invariant and the dynamics
of y(t) can be expressed as:

y(t+ 1) =
1

n
(I −Θ)v(0)v(0)>y(t) + Θy(0). (22)

Lemma 4 implies that the whole opinion dynamics evolves
at each time step with an influence matrix that corresponds
to a situation of structural balance [2], [18], by this meaning
that G(W (t + 1)) is structurally balanced for every t ≥ 0.
We can now derive the following result.

Theorem 5. For m = 1, the matrix sequence {M(t)}t∈Z+

always converges to a constant limit matrix M∞ and

M∞ =

[
In +

1∑n
i=1 θi

(In −Θ)v(0)v(0)>
]

Θ, (23)

W∞ =
1

n
v(0)v(0)>,

Proof. Lemma 4 ensures that W (t) = 1
nv(0)v(0)> for every

t ≥ 1. So, by Theorem 2, we can claim that ∃M∞ =
limt→∞M(t) and that W∞ = 1

nv(0)v(0)>.
Moreover, from (8) we get [In − (In − Θ)W∞]M∞ = Θ.
By Gershgorin Circles Theorem [10] and Assumption 1,
we can claim that (In − Θ)W∞ is Schur stable and hence
In − (In −Θ)W∞ is invertible. Consequently,

M∞ = [In − (In −Θ)W∞]−1Θ.

Finally,

[In−(In −Θ)W∞]−1=In +
∑+∞
k=1 [(In −Θ) 1

nv(0)v(0)>]k

= In + [(In −Θ) 1
nv(0)v(0)>]

∑+∞
k=1

(∑n
i=1 (1− θi)

n

)k−1

= In +
1∑n
i=1 θi

(In −Θ)v(0)v(0)>.

Thus, M∞ is expressed as in (24).

To conclude, we can provide an explicit expression for the
agents’ asymptotic opinions y∞ := limt→+∞ y(t), namely

y∞ =

[
In +

1∑n
i=1 θi

(In −Θ)v(0)v(0)>
]

Θy(0).
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Note, finally, that

W∞ =
1

n
sgn(y∞y

>
∞) =

1

n
sgn(M∞y(0)y(0)>M>∞).

V. EXAMPLE

Example. We consider a group of n = 6 agents discussing
m = 6 topics. We assume that θ1 = θ6 = 2

3 , θ2 = θ5 =
1
2 , θ3 = θ4 = 1

3 and that Y (0) is:

Y (0) =


−0.1317 1.7035 −0.2350 0.0802 0.7824 −0.6380
0.2968 −0.6272 0.9015 −0.4425 −0.1206 −0.7040
−0.6075 −0.3453 0.3935 −0.9496 0.5671 −0.3654
0.5217 −0.2691 −0.2884 −0.1193 −0.3721 −1.1914
0.0244 −0.2168 −0.2278 1.1211 −0.3104 −0.7398
−0.3392 0.7993 0.1429 −0.9816 −1.4906 0.2002

 .

The evolutions of the opinions on the 6 topics as well as the
evolution of the influence matrix (that becomes stationary at
time t = 2) and its graph of W∞ are illustrated in Fig. 1.
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Fig. 1: Evolutions of the opinions on the 6 topics (top); Evolution of the
influence matrix (middle); Graph associated with W∞ (bottom).
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