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Abstract— This work is concern with achieving circular
formation in a Multi-agent system (MAS) where each agent
has the same linear dynamics. The approach taken here have
several desirable features: (i) it requires at the minimum only
one agent to know its own position while the rest need only
relative position information from their neighbors; (ii) the
approach is based on the output regulation methodology but
uses the output feedback controller instead of the popular
error feedback controller. The output feedback scheme has the
advantage of a simpler design as the parameters are decoupled.
With minimal modifications, the approach provided can be
used to achieve MAS with user-defined center of the circle
with different radii and elliptical formation. These features are
illustrated using several examples.

I. INTRODUCTION

Achieving formation of a multi-agent system (MAS) has
been an active research area in recent years. One choice that
is of great interest is the circular formation where agents
move in a circle. Past works in this area are restricted to
agents ([1], [2], [3], [4], [5], [6], [7], [8]) having special
models, like unicycle [1], [2], [3], [4], [5], [6] or single
integrator [7], [8]. There has been limited works on agents
having general linear dynamics. Those that consider general
linear dynamics typically use the approach of output regula-
tion [9], [10], [11], [12].

Several considerations are important in the study of cir-
cular formation MAS. One is the amount of sensory in-
formation available to each agent. Obviously, an approach
with fewer sensory feedback is desirable. In this regard,
past works in the literature for general linear dynamics
typically assumes all agents can measure its own position.
The exception being the case of [5] where the minimum
of one agent needs to know its own location while the rest
require only relative position from its neighbors. Another
consideration is the ability to specify the center of the
circle and have a controller that realizes such a formation.
Unfortunately, very few works deal with this aspect despite
it being a useful requirement for practical implementations.

This work proposes a distributed controller, based on the
output regulation approach, for circular formation of a MAS
having agents with general linear dynamics. It differs from
past approaches in the following ways. First, the proposed
approach achieves circular formation with a user-specified
radius and center of the circle. Second, the approach does
not require all agents to know their own absolute positions;
it requires that at least one agent knows its own position and
assumes that the rest can measure the position of its neighbor
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relative to their own. This requirement is similar to that of
[5] except that ours is for general linear dynamics while [5]
is for unicycle models. Third, our approach uses a differ-
ent controller from the standard controller used for output
regulation. Specifically, standard output regulation approach
uses the error feedback controller while our approach uses
the output feedback controller. The use of output feedback is
an important element in achieving distributed controllers and
has the advantage of a decoupling design. Since the radius of
the circle is bounded in value, an output feedback controller
is feasible for circular formation while error feedback con-
troller is particularly useful in tracking unbounded references
like a ramp signal. Lastly, the approach can easily be adapted
to tracking of an elliptical formation.

The notations used in this paper are standard. The sets
of real numbers, n-dimensional real vectors and n by m
real matrices are R,Rn,Rn×m respectively. The transpose
of matrix A is AT . Given A ∈ Rn×m, B ∈ Rq×r, A⊗B ∈
Rnq×mr is the Kronecker product of A and B. vec(A) is a
vector in Rnm and it is obtained by rearranging the columns
of A in ascending order. ei is column vector of all zeros with
the ith element being 1. For a square matrix Q, Q ≻ (⪰)0
means Q is positive definite (semi-definite) and σ(Q) denotes
the set of all eigenvalues of Q. A directed graph is denoted
by G = (V, E) with V = {1, . . . , N} being the nodes of the
graph and E ⊆ V × V being the set of edges. Hence, j is
a neighbor of i if (j, i) ∈ E and Ni denotes the neighbors
of i in V . Associated with each (j, i) ∈ E is the weight αij .
Its value is such that αii = 0, αij > 0 when (j, i) ∈ E and
αij = 0 otherwise. The Laplacian of G is L = [lij ] ∈ RN×N ,
where lii =

∑N
j=1 αij and lij = −αij if i ̸= j.

II. PRELIMINARIES AND PROBLEM STATEMENT

All agents are assumed to have the same dynamics,

ẋi = Axi +Bui i ∈ V (1)

with A ∈ Rn×n, B ∈ Rn×m. The outputs available to the
agents depend on whether i is a leader or a follower agent.
For this purpose, let V = VL ∪ VF with VL ∩ VF = ∅
and VL ⊂ V(VF ⊂ V) containing the indices of the leader
(follower) agents. A leader agent is assumed to have

yi = Cxi i ∈ VL (2)

where yi ∈ R2 refers to the 2-dimensional positional
vector of agent i. Follower agents do not have positional
information at their outputs. Instead, they are equipped with
sensors that measure positions of its neighbors relative to
its own position, explicitly represented by yij(= yi − yj)
as an entity for i ∈ VF and j ∈ Ni. Leader agents can also
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Fig. 1: A circular formation for 4 agents when t = 0

measure the relative positions yij and, since yi is measurable
independently, means that yi and yj are available separately
to i ∈ VL. More information on the graph structure is given
in section IV.

The objective of this work is to construct a distributed con-
troller such that the MAS system achieves circular formation
that is defined below.

Definition 1: (Circular Formation) Given a center c̄ ∈ R2,
angular velocity ω ̸= 0, radius r > 0, and a set of phases
{ϕ1, ϕ2, . . . , ϕN} where ϕi ∈ [0, 2π) for all i ∈ V . Denote
the reference trajectories by

yri (t) := c̄+ (r cos(ωt+ ϕi), r sin(ωt+ ϕi))
T (3)

If yi(t) → yri (t) for i ∈ V , the agents are said to have
achieved a circular formation.
An example of circular formation with 4 agents for the case
where c̄ = 0 is shown in Fig.1.

The following assumptions are needed for our purpose.
(A1) The pair (A,B) is stabilizable.
(A2) (C,A) is detectable.

Clearly, these assumptions are mild requirement. Addi-
tional assumption on network connectivity is given in section
IV. The next two sections contain discussions for the case
with c̄ = 0 in (3). The case of non-zero c̄ is discussed in
subsection III-B.

III. CIRCULAR MOTION FOR A SINGLE AGENT

This section discusses the design of a controller for one
single agent to follow the prescribed circular path. Since
only one agent is involved, subscript i is dropped from the
expressions of (1), (2) and (3). Our approach follows the
output regulation approach but uses an output feedback con-
troller instead of the standard error feedback controller [13].
Our choice of controller is motivated by two considerations:
(i) output feedback controller provides greater flexibility as
the conditions needed to ensure tracking are decoupled, see
Remark 1 in the sequel; (ii) the output feedback controller
structure facilitates the tracking of circular formation in a
multi-agent setting. These points will be made specific after
the necessary exposition.

A. The case of c̄ = 0

Like standard output regulation [13], a model that specifies
the reference trajectories is given by

v̇ = Sv =

(
0 −ω
ω 0

)
v, (4)

yr = Qv (5)

Clearly, v(t) = exp (St)v(0) =

(
cosωt − sinωt
sinωt cosωt

)
v(0) =(

r cos(ωt+ ϕ)
r sin(ωt+ ϕ)

)
when v(0) = (r cosϕ, r sinϕ)T and

yr(t) = v(t) when Q = I2. The proposed output regulation
controller is a dynamic compensator given by{

ξ̇ = Fξ +Gy + L2v

u = Kξ + L1v
(6)

where ξ ∈ Rl is the state of the controller, L1, L2, F,G and
K are the controller parameters. The combined system of
(1), (4) and (6) is ẋ

ξ̇
v̇

 =

 A BK BL1

GC F L2

0 0 S

 x
ξ
v

 (7)

The following properties of this system is known and is given
next.

Lemma 1: (Output regulation via Output Feedback) Con-
sider the system of (7) with (A1), (A2) holding. Then, (i)
there exists {K,G,F} such that

Af :=

(
A BK
GC F

)
(8)

is stable. (ii) Suppose {K,G,F} has been found such that
Af is stable. The system of (7) achieves

lim
t→∞

(y(t)−Qv(t)) = 0 (9)

for any {x(0), ξ(0), v(0)} if and only if there are {L1, L2}
such that  ΠS = AΠ+BKΣ+BL1

0 = CΠ−Q
ΣS = GCΠ+ FΣ+ L2

(10)

has a solution {Π,Σ}.
Proof: Given in the appendix.

In the standard literature of output regulation, two con-
troller schemes [13] are typically used: full-state feedback
and error feedback. It is also known [13], [14] that feasibility
of the full-state feedback conditions will lead to the feasi-
bility conditions of the error feedback condition under (A1)
and (A2) (Theorem 1.4.1 at page 19 of [13]). This result also
holds for the case of the proposed controller under (A1) and
(A2) and is shown next. Specifically, the conditions needed
for a standard full-state feedback output regulation condition
is that the set of matrix equation{

ΠS = AΠ+BΓ

0 = CΠ−Q
(11)
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has a solution {Π,Γ}. While the full-state feedback con-
troller is different from our proposed controller, the solv-
ability of (10) is similar to that of (11). This connection is
now made.

Lemma 2: Suppose {K,G,F} are chosen such that Af is
stable. Then, there exists some {L1, L2} such that (10) has
a solution {Π,Σ} if and only if (11) has a solution {Π,Γ}.

Proof: (⇒) Suppose a solution {Π,Γ} of (11) is
known. Let L1 = Γ−KΣ and L2 = ΣS −GCΠ− FΣ for
any arbitrary Σ and they satisfy (10). (⇐) Let Γ = KΣ+L1

and then the first two equations of (10) becomes (11).
Remark 1: In the standard error feedback controller [13],

the controller is of the form{
u = Kξ

ξ̇ = Fξ +G(y −Qv)

(where y − Qv is the error term) and the conditions to be
satisfied by {K,G.F} are (i) Af of (8) is stable and (ii) the
set of equations  ΠS = AΠ+BKΣ

0 = CΠ−Q
ΣS = FΣ

has a solution {Π,Σ}. Hence, the choice of {K,G.F}
has to simultaneously satisfy conditions (i) and (ii). This
is a harder design problem than that given in Lemma 1.
More exactly, the proposed approach allows the design of
{K,G,F, L1, L2} to be decoupled into two separate design
problems: (i) the design of {K,G,F} such that Af is stable,
and (ii) the design of {L1, L2} such that (10) admits a
solution {Π,Σ} for the choice of {K,G,F} obtained from
(i).

B. The case of non-zero c̄

The preceding section assumes that yr(t) = (r cos(ωt +
ϕ), r sin(ωt+ϕ))T . In this section, the design of a controller
that tracks yr(t) = c̄ is first discussed. Consider the reference
model of

˙̄v = S̄v̄ =

(
0 0
0 0

)
v̄, v̄(0) = c̄ (12)

Clearly, the solution of the above is v̄(t) = c̄ for all t.
Suppose {K,G,F} have been chosen based on the procedure
given in section III-A. Using the same procedure as in
section III-A but with Q = I2 and S replaced by S̄ of
(12), it is possible to obtain L̄1 and L̄2 from (10). With
L1, L2 and L̄1, L̄2 available, the controller that can track
yr(t) = c̄+ (r cos(ωt+ ϕ), r sin(ωt+ ϕ))T is given by{

u = Kξ + L1v + L̄1v̄

ξ̇ = Fξ +GCx+ L2v + L̄2v̄
(13)

This result holds since the combined system of (13) and (1)
is (

ẋ

ξ̇

)
=

(
A BK
GC F

)(
x
ξ

)
+

(
BL1

L2

)
v

+

(
BL̄1

L̄2

)
v̄ (14)

y =Cx (15)

and that the output is given by y(t) = y1(t) + y2(t) where
y1(t) is the output of the single agent with u(t) given by (6)
with L1, L2 obtained from (10) with S being that of (4) and
y2(t) is the output of the same system with u(t) given by
(6) with L̄1, L̄2 obtained from (10) using S̄ of (12).

IV. CIRCULAR FORMATION FOR THE MULTI-AGENT
SYSTEM

This section deals with the controller design for circular
formation for the multi-agent system (1) consisting of |VL|
leaders and |VF | followers. Like the discussion in section
III, the controller consists of two parts: one for the case of
c̄ = 0 and the other when c̄ ̸= 0. Since the case of c̄ ̸= 0
is relatively simple, the focus here is on the case of c̄ = 0.
Without loss of generality, let Q = I2 in this section. To
distinguish leaders and followers in G, an additional virtual
node, node 0, is introduced. The resulting graph is denoted
by G = (V̄, Ē) with V̄ = V ∪ {0} and Ē includes all edges
to the virtual node in addition to the original E . As usual,
αij is the weights associated with the edge from node j to
node i and for the virtual node,{

αi0 > 0 when i ∈ VL,

αi0 = 0 when i ∈ VF .

Note that G is the graph representation among agents for both
relative position sensing and general communications. Both
modes of information exchanges are needed in implementing
the controller, as shown in the following paragraphs.

Consider the reference system for agent i as given in (4).
The reference model for the combined N agents is

v̇c = Scvc = (IN ⊗ S)vc (16)

vc =
(
vT1 vT2 · · · vTN

)T
(17)

yrc (t) = ((yr1)
T , · · · , (yrN )T )T = (IN ⊗ I2)vc (18)

with S of (4) and vi(0) = (r cosϕi, r sinϕi)
T for all i ∈ V .

The controller for the ith agent is given by{
ui = Kξi + L1civc

ξ̇i = D1ξi +D2ηi + Ezi + L2civc
(19)

where {D1, D2, E,K} and {L1ci, L2ci} are the parameters
to be designed. Here zi :=

∑
j∈Ni

αijyij+αi0yi and ηi :=∑
j∈Ni

αij (ξi − ξj)+αi0ξi. Note that zi can be evaluated
by all i including the follower since only relative states yij
are needed and αi0 = 0 when i ∈ VF . Similarly, ηi can
be evaluated as ξj for j ∈ Ni is obtained from neighboring
agent j via communication. For (19) to be a truly distributed
controller, additional conditions on L1ci and L2ci are needed
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so that only vj with j ∈ Ni∪{i} are used. Specifically, L1ci

and L2ci of (19) are to be chosen such that{
L1civc = L1vi

L2civc = L21vi + L22ζi
(20)

where ζi :=
∑

j∈Ni
αij (vi − vj)+αi0vi. Similar to ηi, ζi

can also be evaluated by agent i since vj for j ∈ Ni is
available via communication. L1, L21, L22 are parameters to
be designed. In this form, (19) is a distributed controller of
the form{

ui = Kξi + L1vi

ξ̇i = D1ξi + L21vi +D2ηi + Ezi + L22ζi
(21)

For subsequent discussion, the following assumption is
needed.
(A3) The interaction graph G has a directed spanning graph
with the node 0 as its root.

(A3) is made for connectivity requirement. It also implies
that there is at least one agent in VL, which is a minimum
requirement for our approach although the general case is
when there are multiple leaders. Combining the model of
agents (1) and the controller (21), the overall system becomes(

ẋc

ξ̇c

)
=

(
Ac BcKc

H ⊗ EC IN ⊗D1 +H ⊗D2

)(
xc

ξc

)
+

(
BcL1c

L2c

)
vc

:=Afc

(
xc

ξc

)
+

(
BcL1c

L2c

)
vc (22)

yc =Ccxc (23)

where H := L + diag
(
α10 . . . αN0

)
, Ac := IN ⊗

A,Bc := IN ⊗ B,Kc := IN ⊗ K, Cc := IN ⊗ C

xc :=
(
xT
1 xT

2 · · · xT
N

)T
, ξc :=

(
ξT1 ξT2 · · · ξTN

)T
, L1c :=(

LT
1c1 LT

1c2 · · · LT
1cN

)T
, and L2c is similarly defined.

The rest of the discussion here follows that of section III
- to first design {D1, D2, E,K} to stabilize Afc to be
followed by the result that yi(t) → yri (t) for all i ∈ V .
One such design procedure is given in [15] and [16] under
assumptions (A1), (A2) and (A3) where there exists {K,E}
with D1 = A + BK, D2 = −EC such that Afc is stable.
Specifically, K is chosen such that A + BK is stable and
E = ( min

λ∈σ(H)
Re (λ))−1P−1CT where P is the solution of

the equation ATP + PA− 2CTC ≺ 0.
The next theorem shows the procedure to determine that

values of L1ci and L2ci of (20).
Theorem 1: Suppose Afc of (22) is stable. Then yc(t) →

yrc (t) with the distributed controller (21) if (11) with Q = I2
has a solution {Π,Γ}.

Proof: Suppose (11) with Q = I2 has a solution {Π,Γ}.
Let Πc = IN ⊗Π, Γc = IN ⊗ Γ and Ic := IN ⊗ I2. Then it
follows from (11) that{

ΠcSc = AcΠc +BcΓc

0 = CcΠc − Ic
(24)

Now let L1 = Γ − KΣ for an arbitrary Σ ∈ Rl×2 which
results in

L1c = IN ⊗ (Γ−KΣ) = Γc −KcΣc (25)

where Σc = IN ⊗Σ. Using this choice of Γc in (24) results
in

ΠcSc = AcΠc +BcKcΣc +BcL1c (26)

Now let L21 = ΣS − D1Σ and L22 = −(ECΠ + D2Σ)
resulting in

L2c =IN ⊗ (ΣS −D1Σ)−H ⊗ (ECΠ+D2Σ)

= (ΣcSc − (IN ⊗D1) Σc)

− ((H ⊗ EC)Πc + (H ⊗D2) Σc)

=ΣcSc − (H ⊗ EC)Πc

− (IN ⊗D1 +H ⊗D2) Σc

=ΣcSc −GcCcΠc − FcΣc (27)

where Gc := H ⊗ EC and Fc := IN ⊗ D1 + H ⊗ D2.
Combining the results of (24), (26) and (27), yields ΠcSc = AcΠc +BcKcΣc +BcL1c

0 = CcΠc − Ic
ΣcSc = GcCcΠc + FcΣc + L2c

(28)

These equations are the equivalent of (10) for the single
combined system given by (22) and (23) for the reference
system of (16). Hence, using the result of Lemma 1, yc(t) →
yrc (t).

Remark 2: The discussion thus far is for achieving circu-
lar formation where all agents move along a circle of the
same radius. The procedure above can be easily modified
to achieve circular formation where each agent is on a
circle of different radius, ri. This is done by choosing
vi(0) = (ri cosϕi, ri sinϕi)

T . The procedure can be further
generalized to track elliptical path of different sizes by
choosing yri (t) = Qvi(t) where Q is a positive definite
matrix and vi(0) = (ri cosϕi, ri sinϕi)

T .

V. NUMERICAL EXAMPLE

Example 1 has 4 agents having dynamics of (1) with

A =


0 1 0 1
0 0 1 −1
0 0 −1 1
0 0 0 0

 , B =

(
0 1 0 0
0 0 0 1

)T

, C =

(
1 0 0 0
0 0 1 0

)
. x1 (0) =

(
−10 0 −14 0

)T
, x2 (0) =(

6 0 −12 0
)T

, x3 (0) =
(
−14 0 10 0

)T
, x4 (0) =(

−7 0 6 0
)T

. Also, ξc(0) = 0 and the communication
graph is as shown in Fig. 2 where agent 3 is the leader.
The yri of (3) is given by ω = 1, c̄ = (2 7)T with
ϕi = {0, 2

3π,
4
3π, π} and r = 7.

The values of {D1, D2, E,K} in (21) are D1 = A+BK,

D2 = −EC, K =

(
−1.47 −2.43 −0.71 −0.14
−0.91 −0.14 −0.39 −2.30

)
and

E =

(
6.30 3.77 0.34 0.94
0.34 −3.96 3.02 4.11

)T

. Note that when ω =
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Fig. 2: The interaction graph G
.
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Fig. 3: The trajectories of 4 agents in the circular formation

1, (11) with Q = I2 has a solution which implies, following
Theorem 1, that

L1 =

(
0.95 4.98
4.03 0.20

)
L21 =

(
−0.27 3.41 0.16 3.07
−1.80 3.22 0.20 0.28

)T

L22 =

(
−1.12 −2.42 1.20 1.54
4.86 4.33 −0.76 −0.66

)T

The controller parameters needed to shift the center of the

circle are L̄1 =

(
1.47 −1.58
0.91 2.55

)
, L̄21 = BL̄1, L̄22 = 0. The

simulation results are shown in Fig. 3, 4 and 5. It is clear
from Fig. 3 and Fig. 4 that the agents achieved the specified
circular formation with the center at c̄. Since vi(t) and v̄i(t)
are bounded for the circular formation, the input ui is also
bounded, as seen in Fig. 5.
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Fig. 4: Norm of yi(t)−Qvi(t)− v̄i(t) for the case in Fig. 3
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Fig. 5: Norm of ui for the case in Fig. 3

The next example is similar to Example 1 in all as-
pects except for the values of Q as mentioned in Remark

2 and vi(0). Specifically, Q =

(
1.5 0
0 1

)
and vi(0) =

(ri cosϕi, ri sinϕi)
T where ri = {4, 4, 7, 7} while ϕi re-

mains unchanged from those in Example 1. With ω = 1 and

Q =

(
1.5 0
0 1

)
, (11) has a solution and following Theorem

1,

L1 =

(
0.45 4.98
4.03 0.20

)
L22 =

(
−4.27 −4.30 1.03 1.07
4.86 4.33 −0.76 −0.66

)T

while L21 is same as in Example 1. The simulation results
are shown in Fig. 6, 7 and 8.

-15 -10 -5 0 5 10 15

x position

-10

-5

0

5

10

15

y 
po

si
tio

n

Agent1
Agent2
Agent3
Agent4

Fig. 6: The trajectories of 4 agents in the elliptical formation
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Fig. 7: Norm of yi(t)−Qvi(t)− v̄i(t) for the case in Fig. 6
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Fig. 8: Norm of ui for the case in Fig. 6

VI. CONCLUSIONS

This work provides a design procedure that achieves circu-
lar formation for a Multi-Agent System using a distributed
control law. The controller design is based on the output
regulation approach but uses output feedback instead of the
typical error feedback. Using the output feedback control
scheme has the advantage of a decoupled design and is
an important element in having the properties needed for
circular formation. The other advantages of the approach
include the ability to achieving circular formation with
arbitrary radius and center, only one of the agents needs
to know its own location and easy extension to achieving
elliptical formation.

VII. APPENDIX

Proof: (i) It is well-known ([17] Chapter 3.5) that a
stabilizable and detectable system can be stabilized using a
dynamic compensator. In this case, Af can be stabilized by
letting F = A+BK−GC since both A+BK and A−GC
are stable under (A1) and (A2).

(ii) The proof follows similar reasoning as Lemma 1.4.1
in [13] except for the use of L1 and L2.

(⇒) If {L1, L2} are such that (10) has a solution {Π,Σ},
then by the first and the third equation in (10) and using the
coordinate transformation,

x̃ = x−Πv, ξ̃ = ξ − Σv (29)

(7) could be rewritten as ˙̃x
˙̃
ξ
v̇

 =

 A BK 0
GC F 0
0 0 S

 x̃

ξ̃
v

 (30)

Since Af is stable and the system is decoupled, it follows
that x̃ → 0 and ξ̃ → 0 for all {x(0), ξ(0), v(0)}. The tracking
error becomes

y −Qv =Cx−Qv = C (x̃+Πv)−Qv

=Cx̃+ (CΠ−Q) v. (31)

Since x̃ → 0 and CΠ−Q = 0 in (10), (Cx(t)−Qv(t)) → 0
for all {x(0), ξ(0), v(0)}.

(⇐) The following fact is first established. Since S is
unstable and Af is stable, there is no common eigenvalue
between S and Af . It then implies that the following

Sylvester equation has a unique solution {Π,Σ} for any
{L1, L2},(

Π
Σ

)
S =

(
A BK
GC F

)(
Π
Σ

)
+

(
BL1

L2

)
. (32)

Define x̃ and ξ̃ as in (29) and perform the coordinate
transformation from (x, ξ, v) to (x̃, ξ̃, v) leading to (30). The
only if part is now shown. Since e = y − Qv → 0 for any
{x(0), ξ(0), v(0)}, this implies Cx̃+(CΠ−Q)eStv(0) = 0.
Since Af is stable, x̃ → 0 which implies that CΠ−Q = 0.
Combining CΠ−Q = 0 and (32) result in (10).
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