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Abstract— In this paper, the primary goal is to offer ad-
ditional insights into the value iteration through the lens of
switching system models in the control community. These mod-
els establish a connection between value iteration and switching
system theory and reveal additional geometric behaviors of
value iteration in solving discounted Markov decision problems.
Specifically, the main contributions of this paper are twofold:
1) We provide a switching system model of value iteration and,
based on it, offer a different proof for the contraction property
of the value iteration. 2) Furthermore, from the additional
insights, new geometric behaviors of value iteration are proven
when the initial iterate lies in a special region. We anticipate
that the proposed perspectives might have the potential to be
a useful tool, applicable in various settings. Therefore, further
development of these methods could be a valuable avenue for
future research.

I. INTRODUCTION

Dynamic programming [1], [2] is a general and effective
methodology for finding an optimal solution for Markov
decision problems [3]. Value iteration is a popular class of
dynamic programming algorithms, and its exponential con-
vergence is a fundamental and well-established [1], [2] result
through the contraction mapping property of the Bellman
operator.

In this paper, we offer some additional insights on the
value iteration based on switching system models [4]–[11] in
the control community. These models provide new geometric
behaviors of value iteration to solve Markov decision prob-
lems [3]. In particular, the main contributions of this paper
are twofold: 1) We present a switching system model of value
iteration and, based on it, provide a different proof for the
contraction property of value iteration. 2) Furthermore, from
the new perspectives and frameworks, we study additional
geometric behaviors of value iteration when the initial iterate
lies in a special region. More specifically, the detailed
contributions are summarized as follows:

1) A switching system model of value iteration is intro-
duced along with its special properties. Based on it,
we offer a different proof for the following contraction
property of the value iteration:

‖Qk+1 −Q∗‖∞ ≤ γ ‖Qk −Q
∗‖∞ , (1)
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where Qk is the kth iterate of the value iteration, Q∗ is
the optimal Q-function, and γ ∈ (0, 1) is the so-called
discount factor in the underlying Markov decision prob-
lem. Although this result is fundamental and classical,
the proof technique utilized in this paper is distinct from
the classical approaches, offering additional insights.

2) Furthermore, from the additional insights provided in
the first part, we prove new geometric behaviors of value
iteration when the initial iterate lies in a special region.
Specifically, when the initial iterate Q0 is within the
set Q0 ≤ Q∗ (shifted orthant), the iterates of the value
iteration remain in the set, displaying different behaviors
than the cases with a general initial iterate. When Q0 ≤
Q∗, one can establish the new contraction property

‖Qk+1 −Q∗‖M ≤ (γ + ε) ‖Qk −Q∗‖M (2)

where ‖(·)‖M =
√

(·)TM(·) is the weighted Euclidean
norm, ε > 0 is any real number such that γ+ε ∈ (0, 1),
and M is a positive definite matrix dependent on ε > 0.
This result corresponds to a contraction mapping prop-
erty of the Bellman operator in terms of the weighted
Euclidean norm, which cannot be derived from the
classical approaches. Geometrically, the sublevel sets
corresponding to the infinity norm ‖·‖∞ are squares,
while the sublevel sets corresponding to the weighted
Euclidean norm ‖·‖M are ellipsoids.
A more notable result is that when Q0 ≤ Q∗, the iterates
satisfy the linear inequality

(γ + ε)vT (Qk −Q∗) ≤ vT (Qk+1 −Q∗) ≤ 0, ∀k ≥ 0,
(3)

where ε > 0 is any real number such that γ+ε ∈ (0, 1),
and v is a positive vector dependent on ε. Geometrically,
this implies that the component along the direction of
v in Qk −Q∗ diminishes exponentially.

The analysis presented in this paper employs insights and
tools from switching systems [4]–[11], positive switching
systems [12]–[15], nonlinear systems [16], and linear sys-
tems [17]. We emphasize that our goal in this paper is to
offer additional insights and analysis templates for value
iteration via its connections to switching systems, rather
than improving existing convergence rates. We anticipate that
the proposed switching system perspectives may have the
potential to be a useful tool, applicable in various settings,
and stimulate the synergy between dynamic system theory
and dynamic programming. Thus, further development of
these methods could be a valuable avenue for future re-
search. Finally, some ideas in this paper have been inspired
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by [11], [18], which develop switching system models of Q-
learning [19]. However, most technical results and derivation
processes are nontrivial and entirely different from those
in [11], [18]. Another related work is [20], which provides a
linear programming-based analysis of value iteration and also
employs positive switching system models for their analysis.
However, the previous work merely proposed a numerical
linear programming-based analysis to verify convergence
properties and did not obtain the explicit relations given
in (1), (2) ,(3). Therefore, our analysis offers significantly
different results than those in [20].

II. PRELIMINARIES

A. Notations

The adopted notation is as follows: R: set of real numbers;
Rn: n-dimensional Euclidean space; Rn×m: set of all n×m
real matrices; AT : transpose of matrix A; A � 0 (A ≺ 0,
A � 0, and A � 0, respectively): symmetric positive definite
(negative definite, positive semi-definite, and negative semi-
definite, respectively) matrix A; I: identity matrix with ap-
propriate dimensions; |S|: cardinality of a finite set S; A⊗B:
Kronecker’s product of matrices A and B; 1: the vector with
ones in all elements; λmax(·): maximum eigenvalue; λmin(·):
minimum eigenvalue.

B. Markov decision problem

We consider the infinite-horizon discounted Markov de-
cision problem (MDP) [3], where the agent sequentially
takes actions to maximize cumulative discounted rewards.
In a Markov decision process with the state-space S :=
1, 2, . . . , |S| and action-space A := 1, 2, . . . , |A|, the de-
cision maker selects an action a ∈ A with the cur-
rent state s. The state then transitions to a state s′ with
probability P (s′|s, a), and the transition incurs a reward
r(s, a, s′), where r is a reward function. For convenience,
we consider a deterministic reward function and simply
write r(sk, ak, sk+1) =: rk, k ≥ 0. A deterministic policy,
π : S → A, maps a state s ∈ S to an action π(s) ∈ A.
The objective of the Markov decision problem (MDP) is
to find an optimal (deterministic) policy, π∗, such that the
cumulative discounted rewards over infinite time horizons
are maximized, i.e.,

π∗ := arg maxπ∈Θ E

[ ∞∑
k=0

γkrk

∣∣∣∣∣π
]
,

where γ ∈ [0, 1) is the discount factor, Θ is the set of
all admissible deterministic policies, (s0, a0, s1, a1, . . .) is a
state-action trajectory generated by the Markov chain under
policy π, and E[·|π] represents an expectation conditioned
on the policy π. The Q-function under policy π is defined
as

Qπ(s, a) = E

[ ∞∑
k=0

γkrk

∣∣∣∣∣ s0 = s, a0 = a, π

]
for all s ∈ S, a ∈ A, and the optimal Q-function is defined
as Q∗(s, a) = Qπ

∗
(s, a) for all s ∈ S, a ∈ A. Once Q∗ is

known, then an optimal policy can be retrieved by π∗(s) =
arg maxa∈AQ

∗(s, a). Throughout, we make the following
standard assumption.

Assumption 1: The reward function is unit bounded as
follows:

max
(s,a,s′)∈S×A×S

|r(s, a, s′)| ≤ 1.

The unit bound imposed on r is just for simplicity of
analysis. Under Assumption 1, Q-function is bounded as
follows.

Lemma 1: We have ‖Q∗‖∞ ≤ 1
1−γ .

Proof: The proof is straightforward from the definition

of Q-function as follows: |Q(s, a)| ≤
∞∑
k=0

γk = 1
1−γ .

C. Switching system

Let us consider the switched linear system (SLS) [4]–[11],

xk+1 = Aσk
xk, x0 = z ∈ Rn, k ∈ {0, 1, . . .}, (4)

Where xk ∈ Rn is the state, σ ∈ M := 1, 2, . . . ,M is
called the mode, σk ∈ M is called the switching signal,
and Aσ, σ ∈M are called the subsystem matrices. The
switching signal can be either arbitrary or controlled by the
user under a certain switching policy. Specifically, a state-
feedback switching policy is denoted by σk = σ(xk). The
analysis and control synthesis of SLSs have been actively
studied during the last decades [4]–[11]. A more general
class of systems is the switched affine system (SAS)

xk+1 = Aσk
xk + bσk

, x0 = z ∈ Rn, k ∈ {0, 1, . . .},

where bσk
∈ Rn is the additional input vector, which also

switches according to σk. Due to the additional input bσk
, its

stabilization becomes much more challenging. Lastly, when
all elements of the subsystem matrices, {Aσ, σ ∈ M}, are
nonnegative, then SLS is called positive SLS [12]–[15].

D. Definitions

Throughout the paper, we will use the following compact
notations:

P :=

 P1

...
P|A|

 , R :=

 R(·, 1)
...

R(·, |A|)

 , Q :=

 Q(·, 1)
...

Q(·, |A|)

 ,
where Pa = P (·|·, a) ∈ R|S|×|S|, Q(·, a) ∈ R|S|, a ∈ A,
and R ∈ R|S||A| is an enumerate of R(s, a) := E[rk|sk =
s, ak = a] with an appropriate order compatible with other
definitions. Note that P ∈ R|S||A|×|S|, and Q ∈ R|S||A|.
In this notation, Q-function is encoded as a single vector
Q ∈ R|S||A|, which enumerates Q(s, a) for all s ∈ S and
a ∈ A with an appropriate order. In particular, the single
value Q(s, a) can be written as Q(s, a) = (ea ⊗ es)

TQ,
where es ∈ R|S| and ea ∈ R|A| are s-th basis vector (all
components are 0 except for the s-th component which is 1)
and a-th basis vector, respectively. Therefore, in the above
definitions, all entries are ordered compatible with this vector
Q.
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Algorithm 1 Q-VI

1: Initialize Q0 ∈ R|S||A| randomly.
2: for iteration k = 0, 1, . . . do
3: Update

Qk+1(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Qk(s′, a′)︸ ︷︷ ︸
=:FQk

4: end for

For any stochastic policy, π : S → ∆|S|, where ∆|A| is
the set of all probability distributions over A, we define the
corresponding action transition matrix as

Ππ :=


π(1)T ⊗ eT1
π(2)T ⊗ eT2

...
π(|S|)T ⊗ eT|S|

 ∈ R|S|×|S||A|, (5)

where es ∈ R|S|. Then, it is well-known that PΠπ ∈
R|S||A|×|S||A| is the transition probability matrix of the state-
action pair under policy π. If we consider a deterministic
policy, π : S → A, the stochastic policy can be replaced
with the corresponding one-hot encoding vector ~π(s) :=
eπ(s) ∈ ∆|A|, where ea ∈ R|A|, and the corresponding action
transition matrix is identical to (5) with π replaced with ~π.
For any given Q ∈ R|S||A|, denote the greedy policy with
respect to Q as πQ(s) := arg maxa∈AQ(s, a) ∈ A. We will
use the following shorthand frequently: ΠQ := ΠπQ .

E. Q-value iteration (Q-VI)

In this paper, we consider the so-called Q-value iteration
(Q-VI) [1] given in Algorithm 1, where F is called Bellman
operator. It is well-known that the iterates of Q-VI converge
exponentially to Q∗ in terms of the infinity norm ‖·‖∞ [1,
Lemma 2.5].

Lemma 2: We have the bounds for Q-VI iterates
‖Qk+1 −Q∗‖∞ ≤ γ ‖Qk −Q∗‖∞.
The proof is given in [1, Lemma 2.5], which is based on
the contraction property of Bellman operator. Note that [1,
Lemma 2.5] deals with the value iteration for value function
instead of Q-function addressed in our work. However, it is
equivalent to Q-VI. Next, a direct consequence of Lemma 2
is the convergence of Q-VI

‖Qk −Q∗‖∞ ≤ γ
k ‖Q0 −Q∗‖∞ (6)

In what follows, an equivalent switching system model
that captures the behavior of Q-VI is introduced, and based
on it, we provide a different proof of Lemma 2.

III. SWITCHING SYSTEM MODEL

In this section, we study a discrete-time switching system
model of Q-VI and establish its finite-time convergence
based on the stability analysis of the switching system.

Using the notation introduced in Section II-D, the update
in Algorithm 1 can be rewritten as

Qk+1 = R+ γPΠQk
Qk, (7)

Recall the definitions πQ(s) and ΠQ. Invoking the optimal
Bellman equation (γPΠQ∗ − I)Q∗ + R = 0, (7) can be
further rewritten by

(Qk+1 −Q∗) = γPΠQk
(Qk −Q∗) + γP (ΠQk

−ΠQ∗)Q
∗,

(8)

which is a SAS (switched affine system). In particular, for
any Q ∈ R|S||A|, define

AQ := γPΠQ, bQ := γP (ΠQ −ΠQ∗)Q
∗

Hence, Q-VI can be concisely represented as the SAS

Qk+1 −Q∗ = AQk
(Qk −Q∗) + bQk

, (9)

where AQk
and bQk

switch among matrices from {γPΠπ :
π ∈ Θ} and vectors from {γP (Ππ − Ππ∗)Q∗ : π ∈ Θ}
according to the changes of Qk. Therefore, the convergence
of Q-VI is now reduced to analyzing the stability of the
above SAS. Th main obstacle in proving the stability arises
from the presence of the affine term. Without it, we can
easily establish the exponential stability of the corresponding
deterministic switching system, under arbitrary switching
policy. Specifically, we have the following result.

Proposition 1: For arbitrary Hk ∈ R|S||A|, k ≥ 0, the
linear switching system Qk+1−Q∗ = AHk

(Qk−Q∗), Q0−
Q∗ ∈ R|S||A|, is exponentially stable such that ‖Qk+1 −
Q∗‖∞ ≤ γ‖Qk − Q∗‖∞, k ≥ 0 and ‖Qk − Q∗‖∞ ≤
γk‖Q0 −Q∗‖∞, k ≥ 0.

The above result follows immediately from the key fact
that ‖AQ‖∞ ≤ γ, which we formally state in the lemma
below.

Lemma 3: For any Q ∈ R|S||A|, ‖AQ‖∞ ≤ γ, where the
matrix norm ‖A‖∞ := max1≤i≤m

∑n
j=1 |Aij | and Aij is

the element of A in i-th row and j-th column.
Proof: Note

∑
j |[AQ]ij | =

∑
j |[γPΠQ]ij | = γ, which

completes the proof.
However, because of the additional affine term in the

original switching system (9), it is not obvious how to
directly derive its finite-time convergence. To circumvent the
difficulty with the affine term, we will resort to two simpler
upper and lower bounds, which are given below.

Proposition 2 (Upper and lower bounds): For all k ≥ 0,
we have

AQ∗(Qk −Q∗) ≤ Qk+1 −Q∗ ≤ AQk
(Qk −Q∗).

Proof: For the lower bound, we have

(Qk+1 −Q∗)
=AQ∗(Qk −Q∗) + (AQk

−AQ∗)(Qk −Q∗) + bQk

=AQ∗(Qk −Q∗) + γP (ΠQk
−ΠQ∗)Qk

≥AQ∗(Qk −Q∗)

where the third line is due to P (ΠQk
−ΠQ∗)Qk ≥ P (ΠQ∗−

ΠQ∗)Qk = 0. For the upper bound, one gets

(Qk+1 −Q∗) =AQk
(Qk −Q∗) + bQk
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≤AQk
(Qk −Q∗),

where we used the fact that bQk
= (γPΠQk

Q∗ −
γPΠQ∗Q

∗) ≤ (γPΠQ∗Q
∗ − γPΠQ∗Q

∗) = 0 in the first
inequality. This completes the proof.

The lower bound is in the form of an LTI system.
Specifically, the lower bound corresponds to a special LTI
system form known as a positive linear system [21], where
all the elements of the system matrix AQ∗ are nonnegative.
In our analysis, this property will be utilized to derive new
behaviors of Q-VI. Similarly, the system matrix AQk

in
the upper bound switches according to the changes in Qk.
Therefore, it can be proven that the upper bound is in the
form of positive SLSs [12]–[15], where all the elements of
the system matrix for each mode are nonnegative.

A. Finite-time error bound of Q-VI

In this subsection, we provide a proof for the contraction
property outlined in Lemma 2. Although this result repre-
sents one of the most basic and fundamental outcomes in
classical dynamic programming, we offer an alternative proof
in this paper. This proof, grounded in the switching system
model discussed in earlier sections, is provided below.

Since AQ∗(Qk − Q∗) ≤ Qk+1 − Q∗ ≤ AQk
(Qk − Q∗)

from Proposition 2, it follows that (ea ⊗ es)
TAQ∗(Qk −

Q∗) ≤ (ea ⊗ es)T (Qk −Q∗) ≤ (ea ⊗ es)TAQk
(Qk −Q∗).

If (ea⊗ es)T (Qk−Q∗) ≤ 0, then |(ea⊗ es)T (Qk−Q∗)| ≤
|(ea⊗ es)TAQ∗(Qk −Q∗)|, where es ∈ R|S| and ea ∈ R|A|
are the s-th and a-th standard basis vectors, respectively. If
(ea ⊗ es)T (Qk − Q∗) > 0, then |(ea ⊗ es)T (Qk − Q∗)| ≤
|(ea ⊗ es)TAQk

(Qk −Q∗)|. Therefore, one gets

‖Qk+1 −Q∗‖∞
≤max{‖AQk

(Qk −Q∗)‖∞ , ‖AQ∗(Qk −Q∗)‖∞}
≤max{γ ‖Qk −Q∗‖∞ , γ ‖Qk −Q∗‖∞}
=γ ‖Qk −Q∗‖∞ ,

which completes the proof.

IV. CONVERGENCE OF Q-VI ON THE ORTHANT

In the previous section, we revisited the convergence of
Q-VI from the perspective of switching system viewpoints.
In this section, we study additional geometric behaviors of
Q-VI, again using the switching system perspective. Let us
suppose that Q∗ ≥ Q0 holds. Please note that such an initial
value can be found by setting

Q0 = − 1

1− γ
1

because
− 1

1− γ
1 ≤ Q∗ ≤ 1

1− γ
1

holds according to Lemma 1. Then, using the bound pro-
vided in Proposition 2, it can be proved that Q∗ ≥ Qk,∀k ≥
0. This is equivalent to saying 0 ≥ Qk−Q∗,∀k ≥ 0. In other
words, if the initial iterate Q0 falls within the shifted orthant,
Q∗ ≥ Q0, then future iterates will also stay within the same
set, i.e., Q∗ ≥ Qk,∀k ≥ 0.

Proposition 3: Suppose that Q0 − Q∗ ≤ 0 holds. Then,
Qk −Q∗ ≤ 0,∀k ≥ 0.

Proof: For an induction argument, suppose Qk−Q∗ ≤
0 for any k ≥ 0. Then, by Proposition 2, it follows that
Qk+1 − Q∗ ≤ AQk

(Qk − Q∗) ≤ 0 because AQk
is a

nonnegative matrix. Therefore, Qk+1 − Q∗ ≤ 0, and the
proof is completed by induction.

From the results above, it can be observed that the behav-
ior of Qk −Q∗ is fully dictated by the lower bound, which
is a linear function of Qk −Q∗. Therefore, the fundamental
theory of linear systems can be applied to analyze the
behavior of Q-VI. To facilitate this, the subsequent result
reviews the Lyapunov theory for discrete-time linear systems.

Proposition 4: For any ε > 0 such that γ + ε ∈ (0, 1),
there exists the corresponding positive definite M � 0 such
that

ATQ∗MAQ∗ = (γ + ε)2(M − I),

and

λmin(M) ≥ 1, λmax(M) ≤ |S||A|

1−
(

γ
γ+ε

)2 .

The proof of Proposition 4 is provided in the Appendix.
Note that Proposition 4 can be applied to general LTI
systems. However, because the lower bound takes the form
of positive linear systems, it can be demonstrated that the
Lyapunov matrix M also possesses the additional special
property outlined below.

Proposition 5: M is a nonnegative matrix.
Proof: The proof is easily done from the construction

in (12).
From the perspectives provided above, we can derive a

bound on Qk − Q∗ in terms of the weighted Euclidean
norm ‖·‖M . This is an alternative to the infinity norm ‖·‖∞,
which cannot be derived from classical contraction mapping
arguments.

Theorem 1: For any k ≥ 0,

‖Qk+1 −Q∗‖M ≤ (γ+ε) ‖Qk −Q∗‖M−(γ+ε) ‖Qk −Q∗‖2
holds

Proof: We have

(Qk+1 −Q∗)TM(Qk+1 −Q∗)
≤(Qk −Q∗)TATQ∗MAQk

(Q∗ −Q∗)
=(γ + ε)2(Qk −Q∗)TM(Qk −Q∗)
− (γ + ε)2(Qk −Q∗)T (Qk −Q∗)

where the first inequality follows from the fact that M is a
nonnegative matrix and AQ∗(Qk − Q∗) ≤ Qk+1 − Q∗ ≤ 0
from Proposition 2, and the equality is due to the Lyapunov
theorem in Proposition 4. Taking the squared root on both
sides yields the desired conclusion.

The result in Theorem 1 provides

‖Qk+1 −Q∗‖M ≤ (γ+ε) ‖Qk −Q∗‖M−(γ+ε) ‖Qk −Q∗‖2
for an arbitrarily small ε > 0, which implies

‖Qk+1 −Q∗‖M ≤ (γ + ε) ‖Qk −Q∗‖M
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and
‖Qk −Q∗‖M ≤ (γ + ε)k ‖Q0 −Q∗‖M

This relationship reveals different geometric convergence
behaviors: the sublevel sets associated with the infinity
norm ‖·‖∞ are squares, whereas those corresponding to the
weighted Euclidean norm ‖·‖M are ellipsoids.

Furthermore, our new approach enables us to derive a
bound on a linear function of Qk − Q∗. Specifically, for
positive LTI systems, one common Lyapunov function is
a linear Lyapunov function of the form V (x) = vTx for
a positive vector v ∈ R|S|×|A|, v ≥ 0. We proceed by
providing an explicit form of such a vector v.

Proposition 6: For any ε > 0 such that γ+ε ∈ (0, 1) and
for any positive vector w ∈ R|S|×|A|, define

v :=

( ∞∑
i=0

(
1

γ + ε

)i
AiQ∗

)T
w ∈ R|S|×|A|

Then, it holds true that

v > 0, ‖w‖∞ ≤ ‖v‖∞ ≤
‖w‖1
1− γ

and

vTAQ∗ = (γ + ε)(vT − wT ). (10)
The proof is given in Appendix. Proposition 6 proves that
V (x) = vTx plays the role of a linear Lyapunov function for
the positive LTI system. From Proposition 6, one can prove
another convergence result of Q-VI.

Theorem 2: For the positive vector v given in Proposi-
tion 6, we have

(γ + ε)vT (Qk −Q∗)
≤vT (Qk+1 −Q∗) + (γ + ε)wT (Qk −Q∗)
≤(γ + ε)wT (Qk −Q∗),

for all k ≥ 0.
Proof: Multiplying both sides of (10) in Proposition 6

by Qk −Q∗ from the right leads to

(γ + ε)vT (Qk −Q∗)− (γ + ε)wT (Qk −Q∗)
=vTAQ∗(Qk −Q∗)
≤vT (Qk+1 −Q∗)
≤0

where the first equality comes from (10), the first inequality
is due to AQ∗(Qk−Q∗) ≤ Qk+1−Q∗ in Proposition 2, v ≥
0, and the second inequality follows from Qk+1 − Q∗ ≤ 0
in Proposition 3. This completes the proof.

Proposition 6 tells us that

(γ + ε)vT (Qk −Q∗) ≤ vT (Qk+1 −Q∗) ≤ 0, ∀k ≥ 0,

which implies

(γ + ε)kvT (Q0 −Q∗) ≤ vT (Qk −Q∗) ≤ 0, ∀k ≥ 0.
(11)

Suppose that Qk−Q∗ = [v]k+[v]⊥k , where [v]k represents
the component of Qk − Q∗ in the direction of v, and [v]⊥k

represents the components of Qk−Q∗ orthogonal to v. Then,
according to (11), the component of Qk−Q∗ in the direction
of v diminishes exponentially. From the construction of v in
Proposition 6, it can be seen that there could be infinitely
many such vectors v, depending on the positive vector w.
Therefore, Qk −Q∗ becomes trapped in the intersections of
the nonpositive orthant and infinitely many half planes. An
illustration of a single half plane is provided in Figure 1.

Fig. 1. Evolution of Qk −Q∗ and geometric properties from Theorem 2.

V. CONCLUSION

In this paper, we have presented additional insights on
value iteration, approached through the lens of switching
system models in the control community. This offers a
connection between value iteration and switching system
theory and reveals additional geometric behaviors of value
iteration. Specifically, we introduced a switching system
model of value iteration and, based on it, provided a novel
proof for the contraction property of the value iteration.
Moreover, our insights led to the proof of new geometric
behaviors of value iteration when the initial iterate resides
in a particular set (the shifted orthant). We believe that
the perspectives proposed here could serve as useful tools
applicable in various settings. As such, further development
of these methods may present a valuable future direction.
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VI. APPENDIX

A. Proof of Proposition 4

Proof: For simplicity, denote A = AQ∗ . Consider
matrix M such that

M =
∞∑
k=0

(
1

γ + ε

)2k

(Ak)TAk. (12)

Noting that

(γ + ε)−2ATMA+ I

=
1

(γ + ε)2
AT

( ∞∑
k=0

(
1

γ + ε

)2k

(Ak)TAk

)
A+ I

=M,

we have (γ+ε)−2ATMA+I = M , resulting in the desired
conclusion. Next, it remains to prove the existence of M by
proving its boundedness. Taking the norm on M leads to

‖P‖2 =
∥∥I + (γ + ε)−2ATA+ (γ + ε)−4(A2)TA2 + · · ·

∥∥
2

≤‖I‖2 + (γ + ε)−2
∥∥ATA∥∥

2

+ (γ + ε)−4
∥∥(A2)TA2

∥∥
2

+ · · ·

= ‖I‖2 + (γ + ε)−2 ‖A‖22 + (γ + ε)−4
∥∥A2

∥∥2

2
+ · · ·

=1 + |S||A|(γ + ε)−2 ‖A‖2∞
+ |S||A|(γ + ε)−4

∥∥A2
∥∥2

∞ + · · ·

=1− |S||A|+ |S||A|

1−
(

γ
γ+ε

)2 .

Finally, we prove the bounds on the maximum and min-
imum eigenvalues. From the definition (12), M � I , and
hence λmin(M) ≥ 1. On the other hand, one gets

λmax(M)

=λmax(I + (γ + ε)−2ATA

+ (γ + ε)−4(A2)TA2 + · · · )
≤λmax(I) + (γ + ε)−2λmax(ATA)

+ (γ + ε)−4λmax((A2)TA2) + · · ·
=λmax(I) + (γ + ε)−2‖A‖22 + (γ + ε)−4‖A2‖22 + · · ·
≤1 + |S||A|(γ + ε)−2‖A‖2∞

+ |S||A|(γ + ε)−4‖A2‖2∞ + · · ·

≤ |S||A|

1−
(

γ
γ+ε

)2 ,

where |S| and |A| denote the cardinality of the sets S and
A, respectively. The proof is completed.

B. Proof of Proposition 6
Proof: We have

vTAQ∗ =w
T

(
∞∑
i=0

(
1

γ + ε

)i

Ai
Q∗

)
AQ∗

=(γ + ε)wT

(
∞∑
i=1

(
1

γ + ε

)i

Ai
Q∗

)

=(γ + ε)

{
wT

(
∞∑
i=0

(
1

γ + ε

)i

Ai
Q∗

)
− wT

}
=(γ + ε)(vT − wT )

Moreover,

‖v‖∞ =

∥∥∥∥∥wT

(
∞∑
i=0

Ai
Q∗

)∥∥∥∥∥
∞

≤
∥∥∥wT

∥∥∥
∞

∥∥∥∥∥
∞∑
i=0

Ai
Q∗

∥∥∥∥∥
∞

≤‖w‖1
∞∑
i=0

∥∥∥Ai
Q∗

∥∥∥
∞

≤‖w‖1
∞∑
i=0

γi

=
‖w‖1
1− γ

and
‖v‖∞ ≥ ‖w‖∞
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