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Abstract— We analyze the problem of reconstructing an
unknown quantum state of a multipartite system from repeated
measurements of local observables. In particular, via a system-
theoretic observability analysis, we show that, even when the
initial state is not uniquely determined for a static system, this
can be reconstructed if we leverage the system’s dynamics. The
choice of dynamical generators and the effect of finite samples
is discussed, along with an illustrative example.

I. INTRODUCTION

Reliably estimating quantum states and dynamics from
data is a key task in the development of quantum information
technologies [1], [2]. The task becomes daunting if the
system complexity increases, as the size grows exponentially
with the number of components. It is then natural to look
at estimation protocols that use a limited number of data.
In general, a quantum state on a multipartite system is not
uniquely determined by its marginals (i.e. reduced states),
albeit this is indeed possible for specific classes of states
[3]. The problem of what is uniquely determined by local
data has been widely studied from different perspectives
[4]–[10], but so far the effect of the dynamics on these
reconstruction problems has not been fully assessed, with
some ideas presented in [11].

In this work, we show how, by exploiting the system
dynamics, one can retrieve the global information missing
from local data, by effectively spreading the reach of local
observables. This is done by resorting to the tools of observ-
ability analysis for linear systems specialized to the quantum
domain [12]–[14], and the construction of an appropriate
output map: in fact, we establish equivalence between the
ability to reconstruct every system’s state and an observabil-
ity condition on the model. Furthermore, we show that if
we have a parametric family of dynamical generators, the
observability property is generic as long as the dependency
on the parameters is analytic. The methods are illustrated in
a paradigmatic 4-qubit system undergoing different types of
dynamics. In [15], [16] similar tools have been adopted to
perform quantum tomography and to establish an upper limit
on the total number of measurements needed to reconstruct
the state.

II. NOTATION AND PROBLEM DEFINITION

In this paper, we consider a multipartite quantum system
composed of N finite-dimensional subsystems. The associ-
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ated Hilbert space has the following tensor product structure:

H =

N⊗
q=1

Hq, dim(Hq) = dq, dim(H) =

N∏
q=1

dq = D ≤ ∞.

The space of (bounded) linear operators acting on H will
be denoted by B(H) and the set of density operators by
D(H) = {ρ|ρ = ρ† ≥ 0, tr(ρ) = 1}. We further denote by
ρ ∈ D(H) the state of the system.

Multipartite systems such as the one we consider are often
subject to locality constraints which restrict the structure
of the possible evolution maps as well as the possible
measurements that can be performed on the system at hand.
The notion of locality can be formalized as follows [10],
[17], [18]:

Definition 1 (Neighborhood): A neighborhood Nk is a
collection of sub-system indexes denoted as Nk ⊆ {1 . . . N}.
A neighborhood structure N = {Nk}Mk=1 is a finite collec-
tion of neighborhoods. We say that a neighborhood structure
N is covering if every subsystem j belongs to at least one
neighborhood, i.e. ∪kNk = {1, . . . , N} and that it is non-
trivial if {1 . . . N} /∈ N .
A neighborhood structure is connected if for any two
subsystems i and j there exists an ordered sequence of
indexes (a path) that starts with i and ends with j with
subsequent indices that belong to the same neighborhood.
The complement N k of a neighborhood Nk is a set of
sub-system indexes such that Nk ∪ N k = {1 . . . N} and
Nk ∩ N k = ∅. In the following, we restrict our attention
only to covering, nontrivial and connected neighborhood
structures. An example is depicted in Figure 1.

N1 N2 N3

1 2 3 4

Fig. 1. Example of a multipartite quantum system: a spin chain with
4 spins. The dashed lines highlight the considered neighborhood structure
N = {N1,N2,N3}.

A neighborhood Nk defines a bipartition of the Hilbert
space into

H = HNk
⊗HNk

where HNk
=

⊗
q∈Nk

Hq and HNk
=

⊗
q∈Nk

Hq . Opera-
tors that act trivially on the Hilbert space associated with the
complement of a neighborhood Nk ∈ N are said to be N -
local, i.e. X ⊗ INk

with X ∈ B(HNk
) and INk

∈ B(HNk
).
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Given a quantum system and a neighborhood structure N
we assume to be able to perform only measurements of N -
local observables on the system. These measurements allow
us to compute the partial traces of the state ρ ∈ D(H)
on each neighborhood Nk ∈ N . The set of all reduced
density matrices associated with a neighborhood structure is
defined as {ρNk

= trNk
(ρ)}Nk∈N where the super operators

trNk
(ρ) indicate partial traces over HNk

.
The definitions of the marginal problem varies a little in

the literature. We here follow the one given in [11].
Problem 1 (Quantum marginal problem (QMP)): Given

a list of marginals {ρNk
}Nk∈N characterize the set of states

MN (ρ) ⊂ D(H) of the overall system that share this list
of reduced density matrices, i.e.

ρNk
= trNk

(σ), ∀σ ∈ MN (ρ).
While the reduced density matrices are uniquely deter-

mined given the state of the system, the converse is not true
in general, hence the QMP for a certain list of marginals may
admit multiple solutions. For this reason, the states that can
be uniquely determined by their marginals are of particular
interest [10].

Definition 2 (UDA States): A quantum state ρ ∈ D(H) is
uniquely determined among all states (UDA), with respect
to a neighborhood structure N = {Nk}Mk=1, if there exists
no other state σ ∈ D(H) with the same set of reduce density
matrices, i.e. MN (ρ) \ ρ = ∅.
For simplicity, it is possible to represent the same infor-
mation contained in the list of reduced density matrices
{ρNk

} via a linear map C(·) that projects the state ρ on the
subspace spanned by all the local operators associated to a
neighborhood structure. In particular, consider an orthonor-
mal Hermitian operator basis BNk

:= {ENk,j ⊗ INk
} for

the subspace B(HNk
) ⊗ INk

, i.e. the set of local operators
associated with the neighborhood Nk. Then we can define
C[ρ(t)] =

∑
i Citr(Ciρ(t)) where {Ci} = ∪kBNk

. Notice
that this definition of the set {Ci} implies that operators that
act on the intersections between different neighborhoods are
considered only once in the set, thus removing redundant
information.

Furthermore, if the neighborhood structure N is non-
trivial then ker[C] ̸= ∅: in fact, let Eq be elements of B(Hq)
such that tr(Eq) = 0 and define E := E1 ⊗ · · · ⊗ EN then
C[E] =

∑
i Citr(CiE) = 0 since for any Ci = XNk

⊗ INk

it holds tr(CiE) = tr(XNk

⊗
q∈Nk

Eq)
∏

q∈Nk
tr(Eq) = 0,

i.e. E is orthogonal to all the operators Ci.
In practical applications, one is interested in uniquely

reconstructing from locally constrained measurements the
largest number of states of the system. This can be done
for some classes of states (pure, maximally entangled) by
properly choosing a covering neighborhood structure. How-
ever, any nontrivial neighborhood structure admits states that
are not UDA.

Lemma 1: For any system with a non-trivial neighborhood
structure, full-rank states are not UDA.

Proof: Since the neighborhood structure is nontrivial,
ker[C] ̸= ∅. Given any X ∈ ker C such that tr(X) = 0 and

ϵ small enough so that, for any full-rank ρ, ρ̄ = ρ+ ϵX is a
state, i.e. ρ̄ ∈ D(H). This implies C[ρ̄] = C[ρ]+ϵC[X] = C[ρ]
and therefore ρ̄ ∈ MN (ρ). Then MN (ρ) \ ρ ̸= ∅.

III. THE ROLE OF THE DYNAMICS

When the system of interest is in evolution the dynamics
represents an additional degree of freedom that can be
exploited in the solution of the QMP. As illustrated in the
following section, adopting a dynamical viewpoint helps to
significantly improve the set of states that can be uniquely
determined given the marginals. In particular it becomes
feasible to uniquely reconstruct all the states even for mul-
tipartite systems with non-trivial neighborhood structures.

In this work, we consider finite-dimensional Markovian,
discrete-time quantum dynamics obtained by the discretiza-
tion of continuous-time generators. Discrete-time quantum
dynamics are described by a linear, completely positive (CP),
and trace-preserving (TP) map T (·) which guarantees that
any element in D(H) is mapped to another element in
D(H). Every CP map admits a representation in terms of
an operator-sum (Kraus representation [19]), i.e. T (·) =∑

k Mk · M†
k , where {Mk} ⊂ B(H), moreover the map is

TP if and only if satisfies
∑

k M
†
kMk = I .

A continuous semi-group of CPTP maps {Tt}t≥0, T0 = I
with the Markov composition property Tt◦Ts = Tt+s ∀t, s ≥
0 is called a Quantum Dynamical Semi-group (QDS) [20].
Let L be the corresponding semi-group generator, i.e. Tt =
eLt. L can be expressed in Lindblad [21], [22] canonical
form as

L(·) = −i[H, ·] +
∑
k

(
Lk · L†

k − 1

2

{
L†
kLk, ·

})
, (1)

where H = H† is the time-invariant Hamiltonian of the
system and the operators Lk, called noise operators, are the
non-Hamiltonian components of the generators whose effect
is to make the dynamics non-unitary and irreversible.

In the rest of the paper, we assume to have perfect
knowledge of the dynamic, i.e. of the Hamiltonian H and
noise operators Lk.

As anticipated before, the generator L must account for
the topological constraints imposed by the Neighborhood
structure N . To this aim, we introduce the definition of N -
local generator.

Definition 3: [23] A QDS generator L is N -local (local
with respect to a given neighborhood structure N ) if it may
be expressed as:

L =
∑
j

Lj , Lj = LNj ⊗ IN j
(2)

where LNj is a Lindblad generator acting on B(HNj ) and
IN j

is the identity superoperator on B(HNj
).

The above defintion is equivalent to requiring that the oper-
ators {Lk} and H of L can be written as

Lk = LkNj
⊗ INj

, H =
∑
j

Hj , Hj = HNj
⊗ IN j

, (3)
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a Hamiltonian H of this form is called a N -Local Hamilto-
nian. Throughout the rest of the paper, we will assume that
the neighborhood structure for the generator L and the linear
function C is the same.

In addition to the free dynamics, we are interested in
performing instantaneous measures on the system at different
times t ∈ {k∆t}, k ∈ N≥0, where ∆t is the sampling time,
to this aim it is convenient to consider a discretized version
of the continuous time system defined above. The overall
discrete-time dynamical systems reads:

Σ :=

{
ρ[k + 1] = E(ρ[k])
τ [k] = C(ρ[k])

, (4)

where ρ[k] := ρ(k∆t), C is the output map which carries the
information on the set of marginal of the state at time t, as
defined before. E = T∆t = eL∆t is a CPTP map obtained by
the discretization of the N -local continuous dynamics. Such
a model can be seen as an instance of a quantum hidden
Markov model [13]. An interesting question that arises when
introducing dynamics into the quantum marginal problem is
whether it is possible to reconstruct the initial state of the
overall system, denoted as ρ(0). This leads to a dynamical
version of Definition 2:

Definition 4 (UDDA states): A state ρ ∈ D(H) is
uniquely dynamically determined among all states (UDDA)
if there does not exist any other state σ ∈ D(H) such that
C[Ek[ρ]] = C[Ek[σ]] ∀k ∈ N.
Our primary focus will be on establishing when the dynam-
ics ensures that every state is UDDA from the marginals
collected at multiple times. To understand the solution to the
aforementioned problem, we will leverage a well known tool,
namely observability analysis.

By Defintion 4 two intial states ρ1, ρ2 ∈ D(H) are
dynamically indistinguishable (and thus non UDDA) if the
corresponding outputs of the system are equal at all times.
This is equivalent to the condition ρ1−ρ2 ∈ ker C[Ek] ∀k ∈
N by the linearity of the considered maps, which leads to
the following definition.

Definition 5 (Non-observable subspace): The
non-observable subspace for the system Σ is the subspace

N := {X ∈ B(H) | C[Ek[X]] = 0,∀k ∈ N}. (5)

By recalling that C[ρ] =
∑

i Citr[Ciρ], we can compute the
orthogonal complement to N in B(H), with respect to the
standard Hilbert-Schmidt inner product:

N ⊥ = span{Ek†[Ci],∀k ∈ N, ∀i}. (6)

We call N ⊥ the observable subspace.
Since the full operator space is of dimension D2, there

exists an integer value k∗ ≤ D2−1 such that the observable
subspace is completely characterized by considering the
propagators only up to time k∗ [24], [25], leading to

N ⊥ = span{Ek†[Ci], k = 0, 1, . . . , k∗, ∀i}. (7)

Definition 6: The system is said to be observable if the
observable subspace dimension is D2, i.e N ⊥ = B(H).

On the other hand, a lower-bound on the number of needed
steps k∗ to check observability is also easily derived. If the
system is observable and m = |{Ci}|, the minimum number
of steps k∗ is such that k∗ ≥ ⌈D2/m⌉. In fact due to observ-
ability, through (7) it must be possible to find D2 independent
generators of N . However, if only k ≤ ⌈D2/m⌉ − 1 steps
are considered, the maximum number of linearly independent
observables would be m(⌈D2/m⌉ − 1) < D2.

We next show that checking observability, which can be
done systematically, is equivalent to check when every state
is UDDA.

Proposition 1: Every initial state ρ(0) ∈ D(H) is UDDA
if and only if the system (4) is observable.

Proof: We assume in this first part of the proof that
the system is observable and we prove that this implies all
the states are UDDA. To a D × D matrix B it is possible
to associate a D2 dimensional vector b = vec(B) by a
linear transformation that stacks the columns of B one below
the other so that the (i, j) entry of the matrix B is the
(j − 1)D + i entry of the vector b. B can then be simply
recovered from b by properly arranging the entries of b in
a matrix. Some important properties of the aforementioned
linear transformation are the following [26]:

1) Let B,C be D×D dimensional matrices vec(ABC) =
(CT ⊗A)vec(B), where ⊗ is the kronecker product;

2) tr(A†B) = vec(A)†vec(B).

To the density operator ρ[k] we thus associate a vector r[k] =
vec(ρ[k]) ∈ CD2

and to the output σ[k] we associate the
vector y[k] = vec(τ [k]) ∈ CD2

. By noting that

vec(E [ρ[k]]) = (
∑
k

(M†
k)

T ⊗Mk)r[k] = Êr[k], (8a)

vec(C[ρ[k]]) =
∑
i

vec(Ci)vec(Ci)
†r[k] = Ĉr[k]. (8b)

to the superoperator E we associate the matrix Ê, to C we
associate Ĉ. Therefore applying a superoperator to ρ[k] is
equivalent to pre-multiplying r[k] by the associated matrix
[27]. Equation (4) can be alternatively written as a linear
system with state r[k]:

Σv :=

{
r[k + 1] = Êr[k]

y[k] = Ĉr[k]
, (9)

where we set ∆t = 1. The outputs of the system at time
instants t = {0, . . . , D2 − 1} are given by[

y[0] . . . y[D2 − 1]
]T

= Ôr[0], (10)

where
Ô =

[
Ĉ ĈÊ . . . ĈÊD2−1

]T
(11)

is called observability matrix. The system Σv is observable
if and only Σ is observable and it is a classical result that
the system Σv is observable if and only if Ô has rank D2

(Kalman rank condition) [24]. If we pre-multiply both sides
of equation (10) by ÔT the initial state of the system can be
uniquely determined as

r[0] = [ÔT Ô]−1OT
[
y[0] . . . y[D2 − 1]

]T
, (12)
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where Ŵ = [ÔT Ô] is called observability gramian and it is
a D2 × D2 matrix which is invertible since full rank as it
has the same rank of Ô. This proves the first implication.

Assume now the system is not observable. Similarly to
the proof of Lemma 1 given a full-rank state ρ it is always
possible to find X ∈ N such that X ̸= 0, tr[X] = 0 and
ϵ > 0 so that ρ̄ = ρ+ ϵX is a state. This implies C(Ek(ρ̄)) =
C[Ek(ρ)] + ϵC[Ek(X)]] = C[Ek(ρ)] ∀k, hence ρ and ρ̄ are
dynamically indistinguishable and ρ can not be UDDA.
As a final remark, we report a more direct method to check
observability, avoiding having to vectorize the system or
obtain E from the Lindblad generator L. Thanks to the
following lemma the observability of the system can be
checked directly using the Lindblad generator [28].

Lemma 2: If every couple of distinct eigenvalues λi, λj

of L for which ℜ[λi] = ℜ[λj ] are such that ℑ[λi − λj ] ̸=
2πs/∆t ∀s ∈ N then:

span{L†j(Ci), ∀i,∀j ∈ {0, . . . , D2 − 1}} = B(H)

implies Σ observable.
The lemma suggest also that it is better to avoid certain
values of the sampling time in the measurement procedure.
For these values the system is not observable even if the
underlying continuous time dynamics is such.

IV. PARAMETRIC DYNAMICS

In practical application, one is often able to engineer
different dynamics for the system of interest by acting on
a finite set of parameters of the QDS generator given in
equation (1). In order to dynamically uniquely determine
all the states we need to choose the free parameters so
that the system is observable. Accordingly, this section aims
at giving a method for the selection of the parameters. In
this section, we consider the system Σ, whose generator
L depends analytically on a finite number of parameters
α ∈ RK . We label such generator as Lα and the Hamiltonian
and set of noise operators for the generator as Hα and
{Lk,α}. The system selected by α will be denoted as Σα,
Σv,α will be its vectorized version and the non observable
subspace for the system will be labeled as Nα. We now
introduce a lemma which will be exploited to prove the main
result of this section.

Consider an m × n matrix Aα = [fjk(α)], with
fjk : RK 7→ C, such that its real and imaginary
parts ℜ(fjk),ℑ(fjk) are (real)-analytic, and let r =
maxα∈CK rank(Aα). We have the following lemma [29]:

Lemma 3: The set A = {α ∈ RK |rank(Aα) < r} is such
that µ(A) = 0, where µ is the Lebesgue measure in RK .
A selection criterion for the free parameters of the system is
then given by the following proposition:

Proposition 2: Let Hα, Lk,α ∀k be matrices such that
each of their entries has both real and imaginary parts
which are analytic functions on the parameter α ∈ RK . If
∃ α̂ such that the system Σα̂ is observable, then the set
A = {α ∈ RK | Nα ̸= ∅} is such that µ(A) = 0.

Proof: As in the proof of the previous Proposition 1, we
can always vectorize the system Σα̂ to obtain Σv,α̂. Since

the system is observable, the observability matrix Ôα̂ has
full rank which is equal to D2. The imaginary and real parts
of Ôα are analytic functions on the variable α since they
are obtained by the sum, multiplication, exponentiation of
the entries of Hα and Lk,α, these are all operations which
preserve analyticity. The set {α ∈ RK | rank(Ôα) < D2}
correspond exactly to the set A and the fact that µ(A) = 0
follows from Lemma 3.
This proposition suggest that we can arbitrarily set the
parameter values. If the system is not observable and there
exist a choice of parameters that makes it observable, by
changing the values at random, we shall find a set of
parameters which guarantees observability with probability
one. Once we have found the parameters, equation (12) allow
us to reconstruct the initial state of the system provided we
know exactly the outputs. As already mentioned ρ[k] can
then be simply recovered from r[k] by properly arranging its
entries in a matrix. This reconstruction method is however
not reliable if we want to reconstruct the states form noisy
data, collected from a real physical experiment.

V. RECONSTRUCTING THE STATE FROM MEASUREMENTS

If we want to estimate τ [k] =
∑

i Citr(Ciρ[k]) which
is the output of the map C at time k∆t , we first need to
estimate the quantities ⟨Ci[k]⟩ = tr(Ciρ[k]) ∀i, i.e. the ex-
pected value of the observable Ci with state ρ[k]. In order to
compute the estimate τ̂i of ⟨Ci[k]⟩ we need to let the system
evolve until time t = k∆t, perform the measurement of Ci,
collect the outcome (one of the eigenvalues of Ci), and reset
the experiment. This procedure needs to be repeated multiple
times (say P times) to get sufficiently accurate estimates. Let
ci,j [k] be the outcome of the experiment at time k∆t, then
τ̂i[k] is taken as the empirical mean of the outcomes for the
experiment that is τ̂i[k] = ( 1

P

∑P
j=1 ci,j [k])Ci. The complete

estimate of τ [k] will be then given by τ̂ [k] =
∑

i τ̂i[k].
Clearly τ̂i[k] → ⟨Ci[k]⟩Ci with probability 1 as P → ∞.
The procedure to get the outputs from a physical system is
summarized in Algorithm 1. Assuming observability, there
would be a unique state compatible with the outputs, if these
were known exactly. If we take y[k] = vec(τ̂ [k]) the initial
state would exactly be given by equation (12). However to
get the initial state of the system from experimental data,
the reconstruction method illustrated above is in general
not always reliable. In fact, 1) accurate estimates τ̂i[k] of
⟨Ci[k]⟩Ci are only given by averaging over a large quantity
of trials, which is often unfeasible since the number of
observable Ci we need to measure grows rapidly with the
number and the dimension of subsystems; 2) data can be
subject to experimental noise, leading to significant errors;
3) using experimental data directly in equation (12), there
are no guarantees that the reconstructed state is a physical
state i.e. ρ̂(0) ∈ D(H); (4) The precision of the solution ρ̂(0)
is not only affected by noisy data but also by errors that can
be generated when solving (12).

When we do not have exact knowledge of the outputs,
alternative reconstruction methods are available. In particular
it is possible to set up an optimization problem to search the
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initial state ρ̂(0) which satisfies all the constraints imposed
by the set of physical states and whose outputs matches
the set of estimated {τ̂(t)}. State reconstruction problems
from noisy data are often formulated as maximum-entropy
problems or maximum-likelihood problems [2], [30]. In this
work we consider the maximum-entropy approach (the other
case can be treated in an analogous fashion), therefore we
take as cost function in the optimization problem the entropy
for the state ρ ∈ D(H) defined as S(ρ) = −tr(ρ log(ρ)). By
maximizing it we obtain the most mixed state among the
ones which satisfies the imposed constraints. The considered
optimization problem reads:

ρ̂(0) = argmax S(ρ)

s.t. ρ ∈ D(H)

C(Ek(ρ)) = τ̂ [k] ∀k ∈ {0 . . . k∗}
(13)

If a prior information σ on the initial state is available,
it is possible to include it in the optimization problem
by considering as cost function the (Umegaki’s) quantum
relative entropy S(ρ||σ) between ρ ∈ D(H) and σ ∈ D(H),
defined as S(ρ||σ) = −tr(ρ log ρ− σ log σ).

The optimization problem can be solved with the approach
presented in [2], where the feasibility of the problem is
also addressed: if no solution can be found from the data,
the imposed constraints are relaxed and the solution to the
optimization problem with the new constraints is found. With
this method the reconstructed initial state is ensured to be a
physical state even in the presence of noisy data.

Algorithm 1 Acquisition of the outputs
Require: The physical system of interest
Output: The list of estimated outputs {τ̂ [k]}

1: Prepare the experiment
2: while k ≤ k∗ do
3: while i ≤ |{Ci}| do
4: while j ≤ P do
5: Reset the experiment
6: Let the system evolve until time t = k∆t
7: Measure Ci and collect the outcome ci,j [k]
8: end while
9: τ̂i(t) = ( 1

P

∑P
j=1 ci,j [k])Ci

10: end while
11: τ̂ [k] =

∑
i τ̂i[k]

12: end while

VI. EXAMPLE: A 4 QUBIT SYSTEM

In this section we highlight the effectiveness of the dy-
namical viewpoint for the solution of the marginal problem
through some examples. We consider a multipartite quantum
system composed of 4 qubits disposed on a line with nearest-
neighbor interactions, H =

⊗4
q=1 Hq, Hq = C2, H ≃ C16.

The system is depicted in figure 1. The notation σα
j will

denote the Pauli operator σα, α ∈ {0, x, y, z} acting on the
j-th qubit, that is, σα

j ≡ I ⊗ · · ·σα ⊗ · · · I and similarly
for ladder operators. Several evolutions for the system of

interest have been considered, and the observability analysis
for each dynamics have been performed numerically. The
software was used to find the matrices associated to the
evolution and output maps according to equations (8a) and
(8b), then the observability matrix (11) was computed and
the Kalman rank condition was used to asses if the system
is observable and hence if all the states are UDDA. First, we
introduce a purely unitary evolution, where the Hamiltonian
of the system describing interactions between adjacent spins
is

H =

4∑
i=1

αiσ
x
i + βiσ

y
i + γiσ

z
i +

3∑
i=1

δiσ
x
i σ

x
i+1 + ϵiσ

z
i σ

z
i+1

(14)
and the coefficients αi, βi, γi, δi, ϵi ∈ R can be chosen.
Case 1: When all the coefficient are set to 1 the system is
not observable, in particular the non observable subspace has
dimension 5 and it is spanned by the generators:

N = span{I ⊗ σx ⊗ I ⊗ σx, I ⊗ σx ⊗ I ⊗ σy,

I ⊗ σx ⊗ I ⊗ σz, I ⊗ σx ⊗ σx ⊗ σx,

I ⊗ σx ⊗ σx ⊗ σy. }
(15)

If we follow the results of proposition 3, by taking all the
parameters at random we would be able to assess if this
non-observability is generic or not. In fact, it is sufficient
to take γ4 as a sample drawn from a Gaussian distribution
with mean 0 and variance 1, and we leave all the other
parameters unchanged: for almost all the samples the system
becomes observable. Let Ôk = [Ĉ ĈÊ . . . ĈÊk]T , since
rank[Ok∗

] = rank[Ok] ∀k ≥ k∗, k∗ is the the minimum
k such that rank[Ok] = rank[Ok+1]. 30 realizations have
been taken and the mean number of steps k∗ necessary to
have observability resulted to be 15.

Case 2: We consider now a second possible dynamics for
the system which encompasses dissipative terms. We choose
a local Lindblad generator with noise operators:

Li = ηiσ
+
i i ∈ {1 . . . 4}. (16)

The Hamiltonian part of the dynamics is the same as before
with all the coefficients set to 1. It is sufficient to consider
ηi = 1 ∀i and the system is observable, the number of steps
necessary to have observability is k∗ = 14.

In both these examples, k∗ is much lower than the
maximum number of steps required by the observability
analysis that is D2 − 1 = 255. Through a preliminary
observability analysis, it is hence possible to reduce the
number of measurement necessary to collect data from a
physical system and speed up the procedure outlined in
algorithm 1.

Case 3: As a last example we relax all the assumptions on
having a covering neighborhood structure for the output map
and we explore what happens if we perform observations
only on a single neighborhood, for instance N2. We consider
the same dynamics of the previous example where we
draw independently all the coefficients of the model from a
Gaussian distribution with mean zero and variance 1. The
system is still observable, the number of steps necessary
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to have complete observability increases with respect to the
previous examples (k∗ = 29) however it is still much lower
with respect to the maximum number of steps. Moreover if
we experimentally collect data from a single neighborhood
the number of observable that needs to be measured at each
time decreases. By optimizing the selection and the trade-
off between number of observables and time required to
collect data it is hence possible to significatively speed up
the data collection procedure. This highlights the potential of
the dynamical viewpoint to the quantum marginal problem
with respect to the standard approach.

VII. CONCLUSIONS

In this work we establish a connection between dynamical
observability and the problem of reconstructing the state
of a multipartite system from its marginals, highlighting
how exploiting the dynamics allows one to complement the
missing information by effectively spreading the available
measurements reach to the whole operator space. A formula
to reconstruct the state from perfect data can be derived
from standard system-theoretic considerations; in the case
of imperfect data, due for example to finite sample size,
solving the reconstruction problem is equivalent to solving
a variational tomography problem. The genericity of the
observability character within a class of parametric models
is established, ensuring that randomized parameter choices
allow one to assess observability with probability one. The
results are tested on a prototypical example, showing how
one can trade the number of needed measurements with
the number of samples needed for each trajectory. Further
development of the study entails more general dynamics and
measurement sets, imperfect knowledge of the dynamics,
as well as methods to optimize the choice of parameters
in a family of dynamical generators in order to obtain
observability in the fastest possible way.
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