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Abstract— Efficient and safe autonomous control of surface
vessels is seminal for the future of maritime transport systems.
In this paper, we use an iterative learning–based nonlinear
model predictive control scheme leveraging past experiences of
the motion of vessels in a current field to reach optimal behavior.
We define an optimal control problem including a detailed vessel
model but only a roughly estimated current model. This current
model is improved from trial to trial. The learned controller is
compared to a linear track controller, a zero–offset nonlinear
model predictive controller without current information, and a
nonlinear model predictive controller including a perfect model
of the current field. The results of this comparison show that by
including experiences from previous trials, the controller can
improve its performance significantly. We believe that numerical
optimal control has the potential to disrupt the future control
design of maritime systems.

I. INTRODUCTION

Maritime transport systems have a significant impact on
the global transport of goods and people. Nowadays, con-
trolling ferries [1], [2] and water taxis [3], [4] make an
important contribution to local public transport in many cities
located close to water areas. Recently, different numerical
optimal control methods have been employed to improve
the efficiency and the safety of autonomous surface ves-
sels (ASV) [5]–[7] especially in confined inland shipping
scenarios [8]–[11]. These scenarios are characterized by the
fact that vessels have to follow narrow sea routes, which
exposes them to strongly varying currents on their way.
These currents are a dominant but difficult–to–model part
of the vessel’s dynamics that leads to model–plant mismatch
[12]–[14]. However, the same routes are repeatedly traveled
by ferries and water taxis. Human captains can use their
experiences from previous runs in control of a vessel and
employ them in planning its future behavior. This motivates
the question of how to use previous experiences in automatic
decisions and control. Recent contributions to iterative learn-
ing control (ILC) [15], [16] and nonlinear model predictive
control (NMPC) [17] present methods to answer this question
and reach optimal behavior. In this paper, we present an
iterative learning-based NMPC approach to optimal tracking
control of an underactuated ASV under the presence of
currents. In contrast to general model learning approaches,
the proposed approach learns only a model correction along

1 Institute of System Dynamics, HTWG Konstanz –
University of Applied Sciences, 78462 Konstanz, Germany
hhomburg@htwg-konstanz.de

2 Department of Microsystems Engineering (IMTEK), University of
Freiburg, 79110 Freiburg, Germany

3 Department of Microsystems Engineering (IMTEK) and Department of
Mathematics, University of Freiburg, 79110 Freiburg, Germany

Fig. 1. Closed–loop trajectories using linear track control (top row), NMPC
with perfect current model (second row), NMPC without current model
(third row), and 5th trial of ILC NMPC (last row) in a benchmark scenario.
The significant current is located in the area between 50 m≤ xl ≤ 100 m.

the optimal trajectory and therefore requires a small amount
of experimental data. The behavior of different controllers
in a benchmark scenario is shown in Figure 1. The paper
is structured as follows: In Section II, the optimal control
problem (OCP) is formulated including a presentation of the
vessel dynamics in current fields. In Section III, the NMPC
control problem and the disturbance estimation scheme are
presented. This control scheme is extended to an iterative
learning approach in Section IV. In Section V, the setup
and results of numerical experiments are presented. Finally,
Section V concludes the paper with a discussion and presents
ideas for future work.

II. OPTIMAL CONTROL PROBLEM FORMULATION

Following standard notation [17], we consider a finite
horizon discrete time OCP including a fixed initial state

minimize
x0,...,xN ,

u0,...,uN−1

N−1

∑
k=0

Lk(xk,uk)+E(xN) (1a)

subject to x0− x̃0 = 0, (1b)
xk+1−Fk(xk,uk) = 0, k = 0, . . . ,N−1, (1c)

hk(xk,uk)≤ 0, k = 0, . . . ,N−1, (1d)

where N ∈ N denotes the number of discrete time steps,
xk ∈ Rnx with k = 0, ...,N denotes the state trajectory, uk ∈
Rnu with k = 0, ...,N − 1 denotes the input trajectory, Lk :
Rnx ×Rnu →R with k = 0, ...,N−1 denotes the stage costs,
E : Rnx → R denotes the terminal cost, x̃0 ∈ Rnx denote
the fixed initial state, the discrete time system dynamics
are denoted by Fk : Rnx ×Rnu → Rnx , the path constraints
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are denoted by hk : Rnx ×Rnu → Rnh with k = 0, ...,N− 1,
and nx,nu,nh ∈ N denote the state dimension, the control
dimension, and the number of scalar inequality constraints.
The discrete time OCP (1) is obtained from the discretization
of a continuous time problem using direct multiple–shooting
with a piecewise constant control parametrization [18]. The
goal is to follow a predefined path with a vessel. The different
parts of the corresponding OCP are presented in detail below.

A. System Dynamics

In confined water scenarios, pitch, roll, and heave motion
are neglected due to calm water conditions [19]. Based on
these assumptions, a nonlinear three–degree–of–freedom (3–
DOF) model of the following form is used

η̇ = J(ψ)νr + η̇c(η), (2a)

ν̇r = M−1 [
τ
−
a (a−,νr)+ τd−MRBν̇c

−CRB(νr +νc)(νr +νc)−N(νr)νr] , (2b)

where η = (xl,yl,ψ)⊤ ∈ R3 denotes the vessel’s pose in a
local east–north–up (ENU) frame with position given by xl
and yl, and ψ denotes the vessel’s yaw angle referenced to
the xl–axis. Vector νr = (ur,vr,rr)

⊤ denotes the body–fixed
velocity relative to the flowing water with the relative veloc-
ity in the surge direction denoted by ur, the relative velocity
in the sway direction denoted by vr, and the angular velocity
of the yaw angle denoted by rr, J(ψ) denotes the rotation
matrix dependent on ψ , η̇c(η) denotes a position–dependent
non–rotational current field, M = MA + MRB denotes the
invertible mass matrix given by the sum of the added mass
matrix denoted by MA and the mass matrix of the rigid body
denoted by MRB, the Coriolis matrix is denoted by CRB,
the nonlinear hydrodynamic damping effects are modeled
in N, τd denotes a generalized force vector of unmodeled
internal and external effects, and νc = J−1(ψ)η̇c(η) models
the current in the body–fixed frame with the corresponding
total time derivative ν̇c.

Actuator configuration and different control modes:
The system input is given by the actuator state col-
lected in a ∈ Rna . The dynamics of the actuators are con-
trolled by lower–level controllers and are neglected due
to their fast dynamics compared to the dynamics of the
vessel. In most cases, the actuator configuration is the
only part of the considered vessel model (2) that dif-
fers qualitatively between different vessels and between
different tasks. The actuator configuration is denoted by
τa : Rna ×R3→ A⊆ R3,a×νr 7→ τa, where the controlled
force and torque vector is given by τa = (Xa,Ya,Na)

⊤ with
the applied force in surge direction denoted by Xa, Ya denotes
the applied force in sway direction, and the applied torque
in yaw direction is denoted by Na. During the operation of
a ship, a distinction is made between different modes [1]:
While in the docking mode all actuators are employed for
precise dynamic positioning, to move between waypoints in
the transit mode only a subset of the actuators is used. In the
transit mode, often only the steering angle is varied while
a constant thrust of the main propellers is used and bow

Fig. 2. Schematic drawing of the research vessel Solgenia including the
relevant coordinate frames and the actuator configuration.

thrusters are deactivated. They are deactivated because they
are generally inefficient at high surge speeds. The reduced
actuator configuration of the transit mode is represented by
τ−a : Rn−a ×R3→ T⊆A,a−×νr 7→ τ−a , where n−a ≤ na is the
number of active actuators in the transit mode and T denotes
the set containing the controlled force and torque vectors
applicable in this configuration. In transit mode τ−a is often
restricted, thus control allocation cannot be applied [19] - the
so–called underactuated case. The discrete time model used
in (1c) is given by the discretization of the continuous time
dynamics (2) with nstep steps of the explicit Runge–Kutta
method of order four (RK4).

Output equation and resulting state space model: Surface
vessels are usually equipped with a Global Positioning
System (GPS) supplying discrete time measurements of the
vessel’s pose and the vessel’s velocity in the ENU frame.
These properties motivate the nonlinear state space model

xk+1 = Fk(xk,uk), (3a)
yk = H(xk), (3b)

where yk ∈Rny denotes the measurement vector with dimen-
sion ny = 6 and H(xk) = (η⊤k , η̇⊤k )⊤ denotes the measure-
ment equation. Note that the currents can not be measured
adequately in most cases. In the literature, more information
can be found about the dynamic model of a vessel [19], [20],
the influence of current [12]–[14], and the different control
modes of a vessel [1], [19]. Figure 2 depicts a visualization
of the research vessel Solgenia used for this study.

B. Tracking Cost Function

We consider a cost function (1a) as the sum of stage costs
along the trajectory and the terminal cost term evaluated at
the final state. To determine these parts of the cost function
we define the goals to be reached in the transit mode:

1) Stay close to the predefined path.
2) Use the least possible control effort.

These goals are contradictory but common for tracking
problems [15] and are combined in the cost function to

Lk(xk,uk) = l(e(xk,uk))∆Tk,
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where e : Rnx ×Rnu → Rne denotes the tracking error, l :
Rne → R is a strictly convex function that penalizes the
tracking error usually, but not necessarily, in quadratic form,
and ∆Tk > 0 is the length of the k–th shooting interval. We
assume that e and l are twice continuously differentiable
functions and that l(z) has a global minimum at z = 0 with
value l(0) = 0. Therefore, the optimal behavior of the vessel
is considered to be a trade–off between the described goals.
The terminal cost function is determined as

E(xN) = e(xN ,0)⊤Pe(xN ,0),⊤ (4)

where P is a positive definite matrix to approximate the
infinite horizon costs.

C. Initial and Path Constraints

The initial state x̃0 used in (1b) determines the state at the
start of the optimal trajectory and is given by the current state
of the vessel. With the path constraints (1d) hard inequality
constraints along the predicted trajectories can be considered.
In the transit scenario, there is only one path constraint:
The actuator states should be limited. Therefore, (1d) can
be formulated as

hk(xk,uk) =

(
u−uk
uk−u

)
≤ 0, (5)

where each scalar inequality constraint is evaluated sepa-
rately, the minimal input is denoted by u and the maximal
input is denoted by u.

III. CONTROLLER DESIGN AND STATE ESTIMATION

In this section the design of an NMPC scheme including
a state and disturbance observer is described based on the
presented discrete time OCP.

A. State and Disturbance Estimation

The current η̇c(η) significantly influences the system
dynamics (2). However, it is a formidable task to model
the current map. This motivates us to split up the position–
dependent current field with

η̇c(η) = η̇c,M(η ,θ)+d(η) (6)

in two parts, where η̇c,M(η ,θ) denotes the modeled current
map with parameter vector θ ∈ Rnθ that is fixed in non–
adaptive control approaches and d : R3 → R3 denotes the
position–dependent error of the modeled current map. Fol-
lowing a standard approach for disturbance estimation [17],
we introduce the augmented model

xk+1 =

(
xk+1
dk+1

)
=

(
FM(xk,uk,dk,θ)

dk

)
+wk, (7a)

yk = H(xk)+ vk, (7b)

for the estimation task, where FM(·) denotes the system
dynamics (3a) including the error current model (6), wk ∈Rnx

denotes the stochastic disturbances and vk ∈Rny denotes the
measurement noise, each at the k–th time instance. With
assumed probability density functions (PDF), the estimation

Fig. 3. Exemplary map of modeled current amplitudes on a river. The
improvable generalization of the employed interpolation model motivates
the usage of ILC. The used data is recorded in a full–scale experiment
driving 600 s on the Rhine river in Konstanz [21]. The vessel’s trajectory is
plotted in red and starts from the right side. The interpolated current model
has a range between 0 m/s (dark blue) and 1.2 m/s (bright yellow).

problem corresponding to (7) can be addressed using nonlin-
ear data fusion algorithms e.g. Moving Horizon Estimation
(MHE) or nonlinear Kalman Filter algorithms in case of
unimodal distributions.

B. Controller Design

To reach offset–free tracking in MPC schemes, two ideas
are widespread [17]: Adding integral action or employing a
disturbance observer to estimate the disturbances and use the
estimate in the prediction. We choose the second idea and
identify the augmented initial state x̃0 and the parameters of
the current model θ as exogenous parameters of the NLP

PMPC(x̃0,θ) := minimize
w

Φ(w) (8a)

subject to G(w, x̃0,θ) = 0, (8b)
H(w)≤ 0, (8c)

that represents the discrete time OCP (1). Important to
note is that the system dynamics are part of (8b) and in
standard offset–free MPC, the disturbances are assumed to
be constant over the predicted trajectory with dk = d̃ for k =
0, ...,N−1, where d̃ denotes the recent disturbance estimate.
The feedback control law of the NMPC scheme is given by
the solution map u∗0 : Rnx → Rnu , x̃0 7→ u∗0 corresponding to
the parametric NLP with fixed θ . For each evaluation of the
solution map, a high–dimensional non–convex NLP has to
be solved. We follow standard practice to consider the initial
state as a parameter. We also do this for the parameters of
the current map to be able to adapt them iteratively in a later
section. Although this control scheme is easy to implement,
it is only capable of reacting to disturbances after they have
influenced the behavior of the ship. Refer to the third plot
of Figure 1. In the next section, this controller is extended
to exploit previous experience in an ILC scheme.

IV. EXTENSION TO ITERATIVE LEARNING CONTROL

Ferries and water taxis usually transit on predefined wa-
terways repeatedly under similar operation conditions. To
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exploit experiences gained in previous trials of a repeated
task, the ILC framework can be employed. For special cases
such as perfect tracking, it has been shown that zero–order
updates of the model used in an NMPC scheme converge to
the optimal solution [15]. In our proposed iterative learning
NMPC scheme, we aim to learn the disturbance model along
the optimal path iteratively. To model the disturbances, a
data–driven approach is chosen based on the dataset

D=


(ŝ0, d̂0)

(ŝ1, d̂1)
...

(ŝD−1, d̂D−1)

 ,

given by D tuples each containing the estimated traveled
distance along the path denoted by ŝl,k and the corresponding
current estimate at this position d̂k with k = 0, ...,D−1. The
tuples are sorted in the database, such that ŝk ≤ ŝk+1 holds
for k = 0, ...,D− 1. Aware that the database could be used
in different regression methods to model the disturbances,
we use a data–driven approach where the database is used
directly θ ≡D. The advantages of this data–driven approach
are that no prior information in the form of a basis function
is required and the model’s accuracy can be improved by
enlarging the number of data tuples. The disadvantage of
outliers also having a major influence on the model is not
relevant in the investigated application, as the data points
are already smoothed by the employed filter algorithm.
Removing old data tuples has the advantage of limited
memory requirements and the ability to adapt to time varying
disturbances. To model the current field a linear interpolation
between the two adjacent points given by

η̇c,M(η ,θ) =
d̂k+1− d̂k

ŝk+1− ŝk
(s− ŝk)+ d̂k

is used, where s denotes the traveled distance along the
path and with ŝk ≤ s < ŝk+1, the traveled distance is lo-
cated between these data points. In the case of only one
neighbor, the current is set to zero. Using the ILC approach,
experiences from the last trials are used to get a better

Algorithm 1 Iterative Learning–Based NMPC

Input: θ0, x̂0: Initial parameter guesses;
w0: Initial guess for PMPC(x̂0,θ0);

1: for i ∈ {0,1,2, ...,ntrial−1} do
2: D← /0;
3: for k ∈ {0,1,2, ...,nprocess−1} do
4: x̂k← GetStateAndDisturbanceEstimate;
5: D← D∪{x̂k, d̂k};
6: w∗← Solver(PMPC(x̂k,θi),wk);
7: u∗k ← SelectFirstControl(w∗);
8: SendToActuators(u∗k);
9: wk+1← Shift(w∗);

10: end for
11: θi+1←UpdateModelParameters(θi,D);
12: end for

prediction for the currents along the trajectory. The iterative
procedure to optimize both, the closed–loop performance and
the local disturbance model around the optimal trajectory is
described in the form of pseudo–code in Algorithm 1. As
discussed, the presented setting considers box constraints
on the inputs. Therefore, it is reasonable to assume the
existence of a solution in step 6. After the disturbance
model is converged, a standard NMPC setting is given, which
can be analyzed using known methods. Usually, in model–
based reinforcement learning approaches global models of
the dynamics including disturbances are learned using (deep)
neural networks [22]. However, using the considered ILC
approach a local but highly accurate data–driven model
around the optimal trajectory is identified specifically for
the given task. This goes hand in hand with the advantages
of being easily interpretable, treatable with efficient solvers,
data efficient, and computationally cheap. In the following
section, an application example is presented.

V. EXPERIMENTS

In this section, the described methods are applied to a
repeated transit scenario of the research vessel Solgenia
in simulation. In the following, the experimental setup is
specified. Subsequently, the results are shown and discussed.

A. Setup

In the investigated scenario, the vessel’s task is to follow a
straight path connecting two waypoints while it is disturbed
by an a priori unknown current field. The vessel is driven
in the underactuated transit mode. Note that this is a typical
scenario for autonomous water taxis or autonomous ferries
[2], [3]. Without loss of generality, we define the local frame
such that the starting waypoint is located at the origin and
the second waypoint is located at (xaim,0) with xaim > 0. The
different parts of the application scenario are specified in the
following. The corresponding parameters are listed in Table I
and the model of the vessel’s dynamics and its parameters,
identified with full–scale experiments, is given in [20].

1) Dynamics and Actuator Configuration: The research
vessel Solgenia shown in Figure 2 has two propellers. One
bow thruster with a fixed orientation is located in the front of
the vessel and a 360◦–pivotable main thruster with steering
angle α is located at the rear of the vessel. Thus, the control
vector contains na = 3 dimensions and is given by a =
(nAT,α,nBT)

⊤. However, in transit mode, the turn rate of the
main thruster denoted by nAT is fixed and with nBT = 0 the
bow thruster is deactivated. Thus with a− = α the steering
angle is the only system input in this configuration.

2) Current Field: Current fields occurring in real–world
scenarios represent solutions of partial differential equations
(PDE) that are hard to model. Therefore, current fields are
often modeled using empirical data instead of modeling and
numerically solving PDEs. As an example, the amplitudes
of a linear interpolation model based on full–scale data are
depicted in Figure 3. To investigate the presented control
algorithms, we use a scenario with a crossing of narrow
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TABLE I
PARAMETERS SPECIFYING THE APPLICATION SCENARIO –

ALL VALUES ARE GIVEN IN SI UNITS

Par Value Par Value Par Value Par Value
Nsim 3000 cx -0.5 q 50 Σinit I8×8
∆Tsim 0.1 xs 50 r 200 Σx I8×8
nx 6 xe 100 N 20 Σy I6×6
nx 9 mx 1 ∆Tk 1 x̂0 08×1
ny 6 cy -0.2 nstep 10 Kp,ψ 5.22
nu 3 ys -10 nAT 10 Kd,ψ 33.76
n−u 1 ye -3 nBT 0 Kp,r 0.16
x̃0 06×1 my 1 D 300 Kd,r 7.67

waterways. To model this scenario, the ground truth non–
rotational current field with smooth steps between different
amplitudes is assumed and given by

η̇c(η)=


cx
π
[arctan(mx(yl− ys))− arctan(mx(yl− ye))]

cy
π
[arctan(my(xl− xs))− arctan(my(xl− xe))]

0

 ,

where cx,cy ∈ R denote the current magnitudes, and
mx,my,xs,xe,ys,ye ∈ R are further parameters for shaping.

3) Cost Function: To follow a desired path with a mini-
mum control effort, the cost function is defined in the form
of least squares as

l(e(xk,uk)) = q y2
l,k + r α

2
k ,

where q,r > 0 denote weighting coefficients. Note that due
to the chosen local frame the magnitude of yl,k is equal to
the vessel’s distance to the reference path at time step k.
Further, the matrix P used in the terminal cost function (4) is
determined as the solution of the algebraic Riccati equation
in discrete time based on the linearized dynamics [17].

4) Sensor Fusion Settings: We assume Gaussian dis-
tributions for the process noise wk ∼ N (0,Σx) and the
measurement noise vk ∼N (0,Σy) with zero–mean and co-
variance matrices Σy,Σx ≻ 0. To estimate the state vector
and the disturbances, an Extended Kalman Filter (EKF)
can be employed. This EKF is initialized with a prior
Gaussian distribution x̂0 ∼N (xinit,Σinit) with mean xinit and
covariance Σinit ≻ 0. While the estimation of the state and the
current using the measurement data is illustrated, ideal state
estimation is assumed in the following to be able to clearly
evaluate the performance of the different control algorithms.

5) ILC Settings: In the investigated experimental setting,
after each trial the previous parameters of the current model
are replaced by the data recorded in the previous trial.
Numerical experiments have shown that this is an appropriate
choice. Other settings of the used model and other procedures
for updating the parameters are also possible.

6) Compared Controllers: To investigate the presented
iterative learning-based NMPC algorithm, we compare it to
other control approaches suitable to the presented underac-
tuated path following task. These are:
• Reference: Disturbance reaction NMPC with a perfect

current model as optimal, but not practicable baseline.
• Method A: A track controller based on linear subordi-

nated control loops [19].

TABLE II
QUALITY CRITERIA OF THE INVESTIGATED APPROACHES

Mean Costs Max. Error Max. Steering Distance
Reference 0.35 0.41 m 20.0◦ 203.4 m
Method A 5.63 2.35 m 53.1◦ 186.5 m
Method B 2.60 1.74 m 43.3◦ 196.4 m
Method C 0.35 0.41 m 20.0◦ 203.4 m

• Method B: Disturbance reaction offset–free NMPC
without a current model [17].

• Method C: Iterative learning–based NMPC without prior
current knowledge (this paper).

To ensure a fair comparison besides the described differ-
ences, the identical setting is used for the optimization-based
approaches and the gains of the linear track controller are se-
lected to minimize the closed–loop costs corresponding to the
scenario. The different control approaches are implemented
via the MATLAB interface of CasADi [23] and the NLPs are
solved numerically with IPOPT [24].
B. Results

The resulting trajectories are shown in Figure 1 with
a schematic drawing of the vessel’s pose including its
orientation every 15 s. The corresponding actuator trajec-
tories are shown in Figure 4. All investigated controllers
lead to acceptable behavior. In Method A, the disturbance
reaction is given by a contracting oscillation. After the
5th trial the Reference and Method C show nearly equal
behavior. These methods react in a predictive way to the
disturbance. Due to a slight steering action, the vessel’s
heading is turned before the current influences the vessel’s
dynamics. Therefore, nearly perfect path tracking with a
tracking error of less than 0.41 m is possible although the
used underactuated setting. In addition, the controller utilizes
the current and the associated forces to accelerate the ship in
the direction of the path. Employing Method B the NMPC
scheme can react to the disturbance after it influences the
vessel’s dynamics. Consequently, the tracking error reaches
a maximum amplitude of 1.74 m and a higher effort for the
disturbance reaction is required compared to the Reference
resp. Method C. However, due to the disturbance estimation
used in Method B, the controlled vessel reaches the path
although no prior disturbance model is given. To compare
the results, the following criteria are defined and evaluated
in Table II:

Fig. 4. Actuator trajectories using the different control approaches.
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1) Mean cost: The mean stage costs over the whole
experiment, given by 1

Nsim
∑

Nsim
k=0 L(xk,uk).

2) Max. error: The tracking error with the maximum
magnitude while processing, given by maxk |yl,k|.

3) Max. steering: The steering angle with maximum mag-
nitude while processing, given by maxk |αk|.

4) Distance: Traveled distance at the end of the simulation
experiment, given by xl,Nsim .

Note that the traveled distance is proportional to the average
velocity. The mean cost achieved by Method C is decreasing
from trial to trial. Starting with 2.6 in the 1st trial and in
the 5th trial 0.35 is reached. The first trial with no model
is equal to Method B and the last trial is similar to the
Reference. Interestingly, Method C outperforms Method B
in all criteria while both methods are based on the same
OCPs only differing in the type of disturbance model. The
experiments show the potential of ILC in combination with
NMPC and disturbance observers. The widespread linear
track controller is not competitive with the optimization–
based approaches.

VI. CONCLUSION AND FUTURE WORK

This paper presents a learning–based NMPC method for
path following control of an underactuated vessel. The key
feature of the presented method is the use of disturbance
estimates within a simple data–driven disturbance model.
The numerical experiments illustrate the possibility of im-
proving the behavior of an ASV by exploiting experiences
from previous trials autonomously. The investigation is done
using various simulation experiments with a dynamic model
of the research vessel Solgenia. The presented method could
contribute to the design of efficient autonomous maritime
transportation systems because a path can be followed with
high accuracy even in environments with strong currents. In
future work, it would be of interest to investigate the conver-
gence properties of the presented method, to perform full–
scale experiments in real current fields, and to investigate the
method’s real–time capability while employing embedded
solvers. Moreover, it would be interesting to extend the
setting to also consider interactions between different vessels
in inland water scenarios.
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