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Abstract— In this work, we develop novel machine learning
modeling and predictive control techniques for nonlinear chem-
ical systems with asynchronous and delayed measurements in
both offline and online data collection. Specifically, Phased Long
Short-Term Memory (PLSTM) network is used to learn the
process dynamics amidst the irregularities in the data, during
the offline training process. The generalization performance
of PLSTM is theoretically studied on the basis of statistical
machine learning theory to better understand the capabilities
of PLSTM models. The PLSTM model is employed to forecast
the evolution of states for a Lyapunov-based Model Predictive
Controller (LMPC) that is designed to account for data loss
and delays in real-time implementation. Finally, an application
to a benchmark chemical process is adopted to show the effec-
tiveness of PLSTM modeling and predictive control methods.

I. INTRODUCTION

Delays and data loss are common problems faced during
information exchange in Networked Control Systems (NCS),
which can compromise the system stability [1]. Extensive
research has been carried out to devise a control technique
that addresses data loss and delays in NCS. Among the
various control strategies such as optimal stochastic control
[2] and robust control (H∞) ([3]), Model Predictive Con-
trol (MPC) stood out for its predictive capabilities, which
actively account for time delays and data loss. Specifically,
a Lyapunov-based MPC (LMPC) was proposed to handle
the independent occurences of delays and data loss, by
modeling them as time-varying measurement delays ([4]) and
asynchronous measurements ([5]), respectively.

The MPC prediction model can originate from either
theoretical knowledge or empirical data. Although first-
principles models can provide valuable insights into process
behavior, they are often time-consuming and expensive to
construct, especially for complex nonlinear systems. With
the increasing availability of industrial data, there has been
a noticeable shift from the sole reliance on first-principles
models to the adoption of data-driven models. Machine learn-
ing models, specifically Recurrent Neural Networks (RNNs),
have demonstrated success in capturing the dynamics of
nonlinear processes [6], [7].

As a result of delays and data loss, process state mea-
surements may appear to be irregular, with missing data at
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certain sampling times. These irregularities pose challenges
for RNNs in learning the system’s dynamics. Thus, variations
have been proposed for standard RNNs, capable of handling
irregular data with minimal preprocessing. These include
time-aware Long Short-Term Memory (LSTM) [8] and Gated
Recurrent Units (GRU) with bistable cells [9]. However,
these models have limited transferability to process modeling
domain, as they have yet to be applied to either missing
data or data with real-valued input variables [10]. Phased
Long Short-Term Memory (PLSTM), a modification of the
standard LSTM unit, is a promising method to process
irregularly sampled data. In [11], PLSTM was shown to
retain high accuracy in a frequency discrimination task to
differentiate two classes of sine waves for three different
sampling conditions: standard, high resolution, and asyn-
chronous. The asynchronous sampling process is random,
which resembles the asynchronous modeling of data loss [5].

In process modeling, it is necessary for the model to cap-
ture the dynamics of the target system accurately. However,
given that the training dataset is finite and insufficient to
cover all possible state trajectories under different operating
conditions, the generalization error is a useful tool to quantify
the model’s ability to predict unseen data. Although many
studies have attempted to evaluate the generalizability of
conventional machine learning models [12], [13], [14], the
generalization performance of PLSTM has not yet been
studied. Motivated by the aforementioned considerations,
we derive an upper bound for the generalization error of
PLSTMs and propose a PLSTM-based MPC with stability
guarantees for the closed-loop system. The proposed mod-
eling and control methods are capable of handling data loss
and delays in state measurements of nonlinear systems, in
both offline training and online MPC implementation.

II. PRELIMINARIES

A. Notations

For a given matrix A ∈ Rm×n, its Frobenius norm is
denoted as ∥A∥F . For a given vector b ∈ Rd, ∥b∥ denotes
its Euclidean norm. The superscript T is used to indicate the
transpose of a vector / matrix. The term R+ denotes non-
negative real numbers. Set subtraction is represented using
“\”, i.e., P\Q := {z ∈ Rn | z ∈ P, z /∈ Q}. Given a
function g : Rn → Rm, for all a, b ∈ Rn, if ∥g(x)−g(y)∥ ≤
M∥x−y∥ where M > 0, then g is M -Lipschitz. If a function
g(·) is continuously differentiable, then g belongs to the class
C1. Let g : [0, g) → [0,∞) be a continuous function, g is said
to be in class K if g is strictly increasing and g(x) = 0, if and
only if x = 0. The expected value of a random variable X
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is represented using the notation E[X]. The notation P(M)
is the probability of the event M occurring.

B. Class of Systems

Continuous-time nonlinear systems of the state-space rep-
resentation below are commonly used to model chemical
processes:

ẋ = F (x, u), x(t0) = x0 (1)

The manipulated input vector is u ∈ Rk. The state vector is
x ∈ Rn. The following constraint is imposed on the control
actions u ∈ U , U := [umin, umax], where the minimum and
maximum values of the allowed inputs are denoted by umin

and umax, respectively. t0 is defined as the initial time, which
is assumed to be t0 = 0. In addition, the Lipschitz property of
F (x, u) assumes that there exists a positive constant Lx such
that ∥F (x, u)− F (x′, u)∥ ≤ Lx∥x− x′∥, for all x, x′,∈ O,
where O is an open set around x = 0, and u ∈ U . It is also
assumed that the origin of Eq. (1) is a steady state and can
be rendered exponentially stable under a feedback control
law u = Φ(x) ∈ U .

III. PHASED LSTM

In this study, we consider a PLSTM model that is able to
approximate the nonlinear system dynamics of Eq. (1), using
m data samples (xi,t, yi,t, ηt) where xi,t ∈ Rdx , yi,t ∈ Rdy ,
ηt ∈ R, and i = 1, ...,m and t = 1, ..., T . The PLSTM input
is represented by the pair < xi,t, ηt > and the output is
given by yi,t. The term ηt is a timestamp that indicates the
time at which the state measurement is collected. To avoid
confusion, boldface will be used for all vectors associated
with the model. The update equations of PLSTM are listed
below [11]:

gi,t = σ(Wxgxi,t +Whghi,t−1) (2a)

ri,t = σ(Wxrxi,t +Whrhi,t−1)) (2b)

oi,t = σ(Wxoxi,t +Whohi,t−1)) (2c)

ki,t = [κi,t, .., κi,t] (2d)

κi,t =


2ϕi,t

ron
if ϕi,t <

1
2ron

2− 2ϕi,t

ron
if 1

2ron < ϕi,t < ron

αϕi,t otherwise
(2e)

c̃i,t = tanh(Wxcxi,t +Whchi,t−1) (2f)

ĉi,t = gi,t ⊙ ci,t−1 + ri,t ⊙ c̃i,t (2g)

ci,t = (1− ki,t)⊙ ci,t−1 + ki,t ⊙ ĉi,t (2h)

ĥi,t = oi,t ⊙ tanh(ĉi,t) (2i)

hi,t = (1− ki,t)⊙ hi,t−1 + ki,t ⊙ ĥi,t (2j)

where hi,t, ci, ∈ Rdh represent the hidden state and
cell state vectors, respectively, with initial values hi,0 =
ci,0 = 0. The Hadamard product is denoted by ⊙ and
Eqs. (2a) - (2c) define the three standard LSTM gate
functions at time t, namely, the forget gi,t, input ri,t, and
output oi,t gates, where gi,t, ri,t,oi,t ∈ Rdh . The gates

Fig. 1. Schematic of PLSTM.

use element-wise nonlinear activation functions (e.g., tanh(·)
and σ(·)). Weight matrices Wxg,Wxr,Wxo,Wxc,∈ Rdh×dx

and Whg,Whr,Who,Whc ∈ Rdh×dh are used to connect
the input layer and the hidden states to the different gates,
respectively. The output yi,t ∈ Rdy is given by yi,t =
σy(V hi,t), with element-wise activation function σy (usually
linear unit for regression), and weight matrix V ∈ Rdy×dh .

A schematic of PLSTM is shown in Fig. 1. From Eq. (2)
and Fig. 1, it can be seen that PLSTM has an additional
oscillatory time gate, ki,t ∈ Rdh , as compared to a standard
LSTM. This additional time gate ki,t determines the update
of the cell and hidden states by opening and closing its
gates rhythmically. It should be noted that ki,t is a constant
vector with constant κi,t that depends on three learnable
parameters: τ , ron, and s. τ denotes the period of oscillation,
ron indicates the ratio of the open phase to the full period,
and s represents the phase shift of the oscillation with respect
to each PLSTM cell. A linearized formulation of κi,t, is
given in Eq. (2e), where ϕi,t =

(ηt−s) mod τ
τ . The term ϕi,t

which represents the phase inside the oscillation cycle, is
dependent on time; thus, information on time, e.g. timestamp
ηt, must be passed into PLSTM for time gate calculation.
From Eq. (2e), it can be seen that the time gate ki,t has
three phases: the opening phase (i.e., κi,t increases from 0
to 1), the closing phase (i.e., κi,t decreases from 1 to 0), and
the closed phase. When the gate is closed, the cell and hidden
states are not updated, and the previous states are maintained.
Similar to the leaky ReLu function, the time gate is designed
with a leak of rate α, that is active during its closed phase.

Since PLSTM only decays during the open phase of the
time gate, the addition of a time gate allows PLSTM to have
a slower rate of memory decay and a longer memory length
compared to standard LSTM [11]. This enables PLSTM to
learn longer and irregular time series better than LSTM.
Details on how the time gate helps to process irregular time
series will be discussed in Section VI.

IV. GENERALIZATION PERFORMANCE OF PLSTM

A. Preliminaries

The assumptions made on the PLSTM model and the
datasets are:

1) The validation, testing, and training datasets are sam-
pled using the same distribution.
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2) The Frobenius norm of V , the weight matrix of the
output layer is bounded i.e., ∥V ∥F ≤ BV .

3) In the output layer, the activation function σy(·) is
1-Lipschitz continuous, and is positive homogenous.
Specifically, for all α ≥ 0, σy(αz) = ασy(z) (linear
activation function is an example of σy(z) for regression
problems).

To simplify the discussion, we will use the augmented
vector x̌t to denote the input layer of PLSTM, x̌t = [xt ηt] ∈
Rdx̌ , where t = 1, ..., T and dx̌ = dx +1. Let h(·) represent
the PLSTM functions in the set of hypotheses H, which
maps input x̌ ∈ Rdx̌ to output y ∈ Rdy . The loss function is
denoted as L(y̌,y), where y̌ is the predicted PLSTM output
and and y is the labeled / true output. In this work, the
loss function adopts the Mean Squared Error (MSE). It was
proved in [13] that the MSE loss function exhibits local Lip-
schitz continuity, provided that the true and predicted outputs
y, y̌ ∈ Rdy are bounded. This assumption of bounded output
is valid, as only a finite class of neural network models that
satisfies Assumptions 1 - 3 are considered in this work.

Next, we present a formal definition of the generalization
error. Let h denote a function that maps each input value a
to an output value b, with an unknown distribution Z. The
generalization error of h is defined as:

LZ(h) ≜ E[L(h(a), b] =
∫
A×B

L(h(a), b)β(a, b) da db (3)

where A and B, respectively, denote the input and output
vector spaces. The joint probability distribution for a and b
is denoted by β(a, b).

As the underlying probability distribution Z is unknown in
most cases, the empirical error, which is calculated using data
sampled from the same probability distribution Z, acts as an
estimate of the generalization error. The empirical error of
a given dataset S with size m, i.e., S = {si, i = 1, ...,m},
is defined as:

Ês[L(h(a), b)] =
1

m

m∑
i=1

L(h(ai), bi) (4)

With the assumption that the empirical error is sufficiently
small and bounded, the objective of the next segment is to
determine an upper bound for the generalization error. This
claim on the empirical error is achievable, since the PLSTM
model aims to optimize the empirical error of Eq. (4) during
the training phase.

B. Rademacher Complexity Bound

The Rademacher complexity measures the capacity of a
function class to fit random noise and provides a tool to
analyze the generalization performance.

Definition 1: Let J represent a hypothesis class compris-
ing functions of real-valued outputs. We denote S as a set
of size m, S = {s1, ..., sm}. The definition of the empirical
Rademacher complexity is given as follows for J associated
with the dataset S:

RS(J ) = Eϵ

[
sup
j∈J

1

m

m∑
i=1

ϵi j(si)

]
(5)

where ϵ = (ϵ1, ..., ϵm)T with ϵi being independent and iden-
tically distributed (i.i.d.) random variables of Rademacher
distribution, i.e., P(ϵi = 1) = P(ϵi = −1) = 0.5.

Next, we define Ft as the collection of loss functions
associated with H, which maps PLSTM input x̌ ∈ Rdx̌ to
output y ∈ Rdy for h ∈ H.

Ft = {ft : (x̌,y) → L(y, h(x̌)), } (6)

where vectors x̌ and y represent the PLSTM input and true
output, respectively. The following lemma proves that the
generalization error associated with the hypothesis class Ft

can be bounded by RS(Ft).
Lemma 1 (c.f. Theorem 3.3. in [15]): Given an i.i.d.

dataset S of size m, i.e., S = {s1, ..., sm} where
si = (x̌i,t,yi,t)

T
t=1. For any δ > 0, with a probability of at

least 1−δ over samples S, we have the following inequality
for all ft ∈ Ft:

E[ft(x̌,y)] ≤ 3

√
log( 2δ )

2m
+ 2RS(Ft) +

1

m

m∑
i=1

ft(x̌i,yi)

(7)
The next lemma will explore the upper bound for ∥hi∥

in PLSTM, which is essential for deriving the generalization
error bound.

Lemma 2: Let V be a set of functions with vector-valued
outputs that map PLSTM input x̌ ∈ Rdx̌ to h ∈ Rdh (i.e.,
hidden states). For the PLSTM model of Eq. (2), we have
the following:

∥hi,t∥ ≤
(√

dh

)3( (
√
dh)

t − 1√
dh − 1

)
= M (8)

Proof: First, we give a short proof of the property of
the Hadamard product of two vectors, ∥u ⊙ v∥ ≤ ∥v∥∥u∥.
Let v = [v1, ..., vn], u = [u1, ..., un], where vi, ui ∈ R, i =
1, 2, ..., n. Then, it follows that

∥u⊙ v∥2 = u2
1v

2
1 + u2

2v
2
2 + ...+ u2

nv
2
n

≤ (u2
1 + u2

2 + ...+ u2
n)(v

2
1 + v22 + ...+ v2n)

= ∥u∥2∥v∥2
(9)

Since the Euclidean norm of a vector is non-negative, we
have ∥u ⊙ v∥ ≤ ∥u∥∥v∥. Next, from Eq. (2j), we can
decompose the hidden state in the following way:

∥hi,t∥ ≤ ∥ki,t∥∥ĥi,t∥+ ∥(1− ki,t)∥∥hi,t−1∥
≤
√

dh(∥ĥi,t∥+ ∥hi,t−1∥)
≤
√

dh(∥oi,t∥∥ tanh(ĉi,t)∥+ ∥hi,t−1∥)

≤
(√

dh

)3
+
√
dh∥hi,t−1∥

≤
(√

dh

)3( (
√
dh)

t − 1√
dh − 1

)
= M

(10)

The first line is based on the expansion of hi,t using
the hidden state definition in Eq. (2j) and the property of
the Hadamard product, where ∥u ⊙ v∥ ≤ ∥u∥∥v∥. The
second line is obtained via the fact that κi,t ≤ 1; hence,

∥ki,t∥ =
√∑dh

j=1 |κi,t|2 ≤
√
dh, where j represents the j-th
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neuron in the PLSTM layer. Similarly, ∥(1− ki,t)∥ ≤
√
dh.

The third line is obtained by expanding on the term ĥi,t

using Eq. (2i). The fourth line is derived based on the fact
that ∥ tanh(·)∥, ∥σ(·)∥ ≤ 1 (see Eq. (2c) for the definition
of oi,t). With the assumption that the initial hidden state
hi,0 = 0, the last line is obtained by applying the fifth line
recursively to get a geometric series.

The next lemma shows that the Rademacher complexity
of the PLSTM function class has an upper bound.

Lemma 3: Given an i.i.d. dataset S of size m. Consider a
hypothesis class of functions Hk,t, k = 1, ..., dy , with real-
valued output that corresponds to the k-th element of the
PLSTM output at the t-th time instance. If the assumptions
we made earlier for PLSTMs are satisfied, we have

RS(Hk,t) ≤ MBV (11)

where M =
(

(
√
dh)

t−1√
dh−1

) (√
dh
)3

.
Proof: In the weight matrix V , the k-th row is denoted

by vk. Using the idea of “peeling” off the output layer, the
scaled Rademacher complexity can be bounded as follows:

mRS(Hk,t)

= E

[
sup

h∈Hk,t,∥V ∥F≤BV

m∑
i=1

ϵiσy(vkhi,t)

]

≤ 1

λ
logE

[
sup

h∈Hk,t

exp

(
BV λ

∥∥∥∥∥
m∑
i=1

ϵihi,t

∥∥∥∥∥
)]

≤ 1

λ
logE

[
exp

(
BV λM

m∑
i=1

|ϵi|

)]
≤ 1

λ
logE [exp (BV λMm)]

(12)

where M =
(√

dh
)3 ( (

√
dh)

t−1√
dh−1

)
, exp(·) corresponds to the

monotonically increasing function g(·) in Lemma 1 of [14],
and λ > 0 is an arbitrary parameter. The first inequality is a
result of Lemma 4 in [13] and Lemma 1 in [14]. The second
inequality is a consequence of the triangle inequality and the
upper bound of the hidden state hi,t in Lemma 2. The final
line is based on the fact that |ϵi| = 1, since P(ϵi = −1) =
P(ϵi = 1) = 1

2 .
Let q = BV Mm. Note that q is a constant and E[a] = a,

where a ∈ R is a constant. Thus, we have

mRS(Hk,t) ≤
1

λ
logE[exp(λq)]

≤ 1

λ
log[exp(λq)]

= BV Mm

(13)

Simplifying the above equation, we will get

RS(Hk,t) ≤ MBV (14)

With this, we have established Lemma 3.
Using Lemmas 1 – 3, the following theorem will establish

the generalization error bound for the PLSTM model.
Theorem 1: Given an i.i.d. dataset S of size m. Let Ft be

the collection of loss functions calculated using the vector-
valued function set Ht that maps the PLSTM inputs to the

outputs at the t-th time step. If Assumptions 1 – 3 are
satisfied, for any δ > 0, with a probability of at least 1− δ
over S, the following inequality holds:

E[ft(x̌,y)] ≤ 3

√
log( 2δ )

2m
+O(LrdyMBV )+

1

m

m∑
i=1

ft(x̌i,yi)

(15)
where M =

(√
dh
)3 ( (

√
dh)

t−1√
dh−1

)
.

Proof: Using Lemma 3, we can bound the Radamacher
complexity of the loss function as follows:

RS(Ft) = E

[
sup
h∈H

1

m

m∑
i=1

ϵiL(yi, h(x̌i))

]

≤
√
2Lr

dy∑
k=1

E

[
sup
h∈Hk

1

m

m∑
i=1

ϵih(x̌i)

]

≤
√
2Lr

dy∑
k=1

RS(Hk)

≤
√
2LrdyMBV

(16)

The first inequality is the result of a contraction inequality
presented in Corollary 4 of [12], where the vector-valued
function class H consisting of h ∈ Rdy can be further
bounded by its scalar-valued functions. Substituting the up-
per bound of the loss function’s Rademacher complexity into
Eq. (16) into Eq. (7) will give us the upper bound to the
generalization error, shown in Eq. (15).

V. PLSTM-BASED MPC WITH CLOSED-LOOP
STABILITY ANALYSIS

This section discusses the design and closed-loop stability
properties of a Lyapunov-based MPC (LMPC) using PLSTM
as the prediction model. The generalization error bound
derived in the previous section will be used to quantify the
model-plant mismatch in the design of MPC.

A. Lyapunov-Based Control Using PLSTM Model

The PLSTM model can be described as follows:

˙̂x = Fnn(x̂, u) (17)

where ˆ is used to differentiate the variables / functions
associated with the PLSTM model. The PLSTM state and
the manipulated input vectors are denoted by x̂ ∈ Rn and
u ∈ Rk, respectively, and u is constrained by u ∈ U .

It is assumed that there is a controller for stabilization
u = Φnn(x) ∈ U by which the PLSTM model of Eq. (17)
is rendered exponentially stable in an open set Ô around
the origin. The assumption suggests the existence of a C1

Lyapunov function V̂ (x) which meets the constraints below:

θ1∥x∥2 ≤ V̂ (x) ≤ θ2∥x∥2 (18)

∂V̂ (x)

∂x
Fnn(x,Φnn(x)) ≤ −θ3∥x∥2 (19)∥∥∥∥∥∂V̂ (x)

∂x

∥∥∥∥∥ ≤ θ4∥x∥ (20)
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where θ1, θ2, θ3, θ4 are positive constants. For simplicity, the
Lyapunov function V̂ (x) associated with the PLSTM model
will be expressed as V (x) in the subsequent discussion.

The boundedness of u and the Lipschitz property of
Fnn(x, u) also indicates the existence of positive constants
Mnn, Lnn, such that for all x′, x ∈ Ô and u ∈ U , we have
the inequalities below:

∥Fnn(x, u)∥ ≤ Mnn (21)∥∥∥∥∂V (x′)

∂x
Fnn(x

′, u)− ∂V (x)

∂x
Fnn(x, u)

∥∥∥∥ ≤ Lnn∥x− x′∥
(22)

The ρ̂-level set of the V̂ characterizes the closed-loop sta-
bility region Ωρ̂ of the PLSTM model of Eq. (17), where
Ωρ̂ := {x ∈ Ô | V (x) ≤ ρ̂}, and ρ̂ is a positive real number.

The modeling error ∥Fnn(x, u)− F (x, u)∥ quantifies the
plant-model mismatch between the PLSTM model of Eq.
(17) and the system of Eq. (1). If the modeling error is
sufficiently small, the following proposition will prove that
the closed-loop stability of Eq. (1) is ensured under the
feedback control law u = Φnn(x) ∈ U , with significant
probability.

Proposition 1 (c.f. Proposition 1 of [13]): Consider a
PLSTM model trained using an i.i.d. dataset S, satisfying
Assumptions 1-3. Assuming that the feedback controller
u = Φnn(x) ∈ U guarantees that the origin of the PLSTM
model of Eq. (17) is exponentially stable, for all x ∈ Ωρ̂

and u ∈ U . If there exists a positive real number ζ that
satisfies ζ < θ3/θ4, such that the modeling error is bounded
by ∥Fnn(x, u)−F (x, u)∥ ≤ ζ∥x∥. Then, for all x ∈ Ωρ̂, the
PLSTM-based controller u = Φnn(x) ∈ U guarantees the
exponential stability of x = 0 of Eq. (1), with a probability
of no less than 1− δ.

Proof: The full proof can be found in Proposition 1 of
[13]. It should be noted that the generalization error bound
in [13] was derived for a standard RNN model. Replacing
the PLSTM generalization error bound in Eq. (15) with its
RNN counterpart in [13], will give the following:

∥Fnn(x,Φnn(x))− F (x,Φnn(x))∥ ≤ BP (23)

where BP is a function of the
generalization error bound, BP =

P
(
3

√
log( 2

δ )

2m +O(LrdyMBV ) +
1
m

∑m
i=1 ft(x̌i,yi)

)
.

Note that BP is dependent on the number of samples m
and the confidence interval δ. To bound BP , we can select a
considerable amount of samples such that m ≥ mN (δ, ∥x∥),
where the minimum requirement for the sample size is
denoted by mN (δ, ∥x∥), to satisfy the condition BP ≤ ζ∥x∥,
ζ < θ3/θ4. The remaining proof follows that in [13].

B. Missing Real-time Data

One consequence of having data loss or delayed measure-
ments is the possible absence of current state readings, which
is necessary for MPC calculation. Fortunately, the current
state can be estimated using the machine learning model
recursively. For instance, in the case of data loss, data is not

available at the current sampling time tk, but data from the
past sampling time tk−j is available, where tk − tk−j = j∆
and ∆ represents one sampling period. Real-time data at
tk can be estimated recursively using the model, based on
data from the previous sampling time tk−j . Similarly, for
delayed data, if the current reading at tk is unavailable but
the data from tk−d is received at tk, i.e., there is a delay
of d∆, the same method can be employed to estimate the
current state at tk. Due to the similarity between the handling
of the independent occurrences of data loss and delayed
measurements, in the subsequent discussions, we will focus
on the worst-case scenario, where both data loss and delayed
measurements occur at the same time. An upper bound H is
defined on the overall ‘missingness’ of the data, j+ d ≤ H ,
where j and d represent the number of sampling points where
the system is operating without real-time data due to data loss
and delays in data collection, respectively. This is to limit the
system from operating in an open-loop for a prolonged time,
which could lead to instability.

Assuming that the measurements are time-labeled, the fol-
lowing Lyapunov-based MPC (LMPC) design is formulated
using the PLSTM model to handle missing data.

J = min
uk∈S(∆)

∫ tk+N

tk

L(x̃(t), uk(t)) dt (24a)

s.t. ˙̃x(t) = Fnn(x̃(t), uk(t)) (24b)
uk(t) = u∗

k−1(t), ∀t ∈ [tk−h, tk) (24c)
x̃(tk−h) = x(tk−h) (24d)
˙̂x(t) = Fnn(x̂,Φnn(x(tk))), t ∈ [tk, tk+N ) (24e)
x̃(tk) = x̂(tk) (24f)
V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [tk, tk+N ) (24g)
uk(t) ∈ U, ∀t ∈ [tk, tk+N ) (24h)

with u∗
k(t) = arg min

uk∈S(∆)
J (24i)

where N represents the number of predictions, such that
N ≥ H + 1 and H is the maximum number of sampling
steps where the system operates in open-loop. S(∆) denotes
the set of decision variables which are piece-wise constant
functions corresponding to sample-and-hold implementation.
u∗
k−1(t) is the optimal solution obtained from LMPC at the

last time step tk−1. x̃(t) is the predicted state trajectory of the
nonlinear system of Eq. (1). x̂(t) is the predicted trajectory
of the estimated state x̃(tk) under the controller Φnn(x(tk)).

The LMPC formulation consists of two main segments:
estimation and prediction. First, we estimate the current state
x̃(tk) from past measurement x(tk−h). Next, we predict the
state trajectory x̃(t) using the estimated current state x̃(tk).
Note that if the measurement at tk is available real-time, we
can skip the estimation process.

In detail, if the current reading at time tk is not available
but a past measurement at tk−h is available, the PLSTM
model will recursively estimate the current state x̃(tk) using
the past control inputs applied to the system from tk−h

to tk, with the initial condition being x̃(tk−h) = x(tk−h)
(see Eqs. (24b), (24c) and (24d)). The estimated current
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state x̃(tk) is subsequently employed to solve the LMPC
problem in Eq. (24a). In other words, the PLSTM model
of Eq. (24b) will be called again, but this time to predict
the state trajectory x̃(t) over the prediction horizon N , from
the estimated current state x̃(tk). Then, LMPC will try to
minimize the objective function in Eq. (24a), by searching
for an optimal u∗

k(t), subjected to control input constraints
as shown in Eq. (24h). The contractive constraint of Eq.
(24g) ensures that the closed-loop state moves towards the
origin, where x̂(t) is the predicted state trajectory subjected
to controller Φnn(x(tk)), with x̃(tk) as its initial condition,
see Eqs. (24e) and (24f). In the case where the available
measurement at tk is a delayed measurement from tk−h, we
can still apply the above-mentioned method.

In the following segment, we will prove that the LMPC
of Eq. (24) is able to ensure the stability of the nonlinear
system of Eq. (1) in the presence of data loss and delayed
measurements, under sample-and-hold implementation.

Theorem 2: Consider the closed-loop system of the non-
linear system of Eq. (1) under the PLSTM-MPC of Eq.
(24) with u = Φnn(x) ∈ U that meets Eqs. (18)-(20). Let
∆, ϵs, ϵh > 0, and ρ̂ > ρh > ρnn > ρs satisfy the following:

−θ3
θ2

ρs + LnnMnn∆ ≤ −ϵs (25)

ρnn := max{V (x̂(ti+1) | u ∈ U, x̂(ti) ∈ Ωρs
} (26)

and

−∆ϵs + fv(fw(H∆)) + fv(fw(H + 1)∆) < −ϵh (27)

where fw(·) is a class K function and fv(·) is quadratic
function with ξ > 0, given by:

fw(τ) :=
BP

Lx
(eLxτ − 1) fv(λ) :=

θ4
√
ρ̂√

θ1
λ+ ξλ2

If H+1 ≤ N , x0 ∈ Ωρ̂ and the initial measurement x0 is not
subjected to delay or asynchronicity, then x(t) is bounded in
Ωρh

, with a probability of at least 1− δ, where:

ρh ≥ ρnn + fv(fw(H∆)) + fv(fw((H + 1)∆)) (28)
Proof: In this proof, we will show that V (x) is a

decreasing function of time. First, we assume that the current
measurement is not available at tk but past measurement at
tk−h is available. We also assume that a new reading is not
available until tk+g where g ≤ N . The LMPC optimization
problem is solved from tk to tk+g using PLSTM model for
estimation.

Let x̂ be the predicted trajectory of the PLSTM model of
Eq. (17) in closed-loop with controller u = Φnn(x(tk)) ∈
U , under sample-and-hold implementation, with initial state
x̃(tk) (see Eqs. (24e) and (24f)). The derivation of Eqs. (25)
and (26) can be found in the proof of Proposition 4 in [16].
It is important to emphasize that if the condition in Eq. (25)
is met, then for all x̂(tk) ∈ Ωρ̂ \ Ωρs

and t ∈ [tk, tk+1), we
have:

V̇ (x̂(t)) ≤ −ϵs (29)

By integrating Eq. (29) over t ∈ [tk, tk+g), we have
V (x̂(tk+g)) ≤ V (x̂(tk)) − g∆ϵs. If Eq. (26) is satisfied,

the closed-loop state x̂ of the PLSTM model of Eq. (17)
is always bounded in Ωρnn . Using this fact, we have the
following:

V (x̂(tk+g)) ≤ max{V (x̂(tk)− g∆ϵs, ρnn} (30)

Using the contractive constraint V (x̃(t)) ≤ V (x̂(t)) in Eq.
(24g) and the initial condition of x̂ in Eq. (24f), we have

V (x̃(tk+g)) ≤ V (x̂(tk+g))

≤ max{ρnn, V (x̃(tk)− g∆ϵs}
(31)

Assuming that x(t), x̃(t) ∈ Ωρ̂ for all t ∈ [tk−h, tk+g), we
can derive the following using Proposition 2 in [13]:

V (x̃(tk)) ≤ fv(∥x̃(tk)− x(tk)∥) + V (x(tk)) (32)

V (x(tk+g)) ≤ fv(∥x̃(tk+g)−x(tk+g)∥)+V (x̃(tk+g)) (33)

Using Proposition 2 in [13] again, we can bound the terms
below.

∥x̃(tk)− x(tk)∥ ≤ fw(h∆) (34)

∥x̃(tk+g)− x(tk+g)∥ ≤ fw((h+ g)∆) (35)

Combining Eqs. (31)-(35), we can bound V (x(tk+g)) in the
following manner:

V (x(tk+g)) ≤ fv(fw((h+ g)∆)) + fv(fw(h∆))

+ max{ρnn, V (x(tk)− g∆ϵs}
(36)

It is noted that the missing data interval, h + g − 1, from
tk−h to tk+g can be any natural number (including 0, which
indicates no missing data) smaller than its upper bound H .
To demonstrate that V (x) is decreasing over time, the worst-
case scenario is considered, where the missing interval is H ,
i.e., g = H + 1 − h. To simplify the discussion, we let
g = 1. This implies that the data were missing for the H
intervals before tk and a new measurement will be available
at the next sampling time tk+1. Therefore, we have h =
H and the system is operating in an open loop for H +
1 sampling periods. If the following constraint holds, then
V (x) is guaranteed to decrease with time.

−∆ϵs + fv(fw(H∆)) + fv(fw((H + 1)∆)) < 0 (37)

If Eq. (27) is satisfied, a negative real number −ϵh can be
found to bound V (x(t)).

V (x(tk+1)) ≤ max{ρh, V (x(tk)− ϵh} (38)

Note that fw is a function containing BP . As mentioned
in Proposition 1, by selecting the sample size m, such that
BP ≤ ζ∥x∥, the probability of V (x(tk+1)) ≤ V (x(tk) is
greater than 1 − δ. This shows that u = Φnn(x) ∈ U will
drive the state of the actual system of Eq. (1) to Ωρh

, with
a probability of no less than 1 − δ, when the state x(tk) ∈
Ωρ̂ \Ωρh

. If the state x(tk) is in Ωρh
, it will remain bounded

in Ωρh
. Given the upper bound on the missing interval h+

g − 1 ≤ H , we select the prediction horizon N ≥ H + 1
such that the assumption g ≤ N is valid. Since V (x) is
guaranteed to decrease with time, the previous assumption
that x̃(t), x(t),∈ Ωρ̂ for all t ∈ [tk−h, tk+g) is valid.
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VI. CASE STUDY OF A CHEMICAL REACTOR

This section demonstrates the implementation of PLSTM-
based MPC to a Continuous Stirred Tank Reactor (CSTR).
The process that occurs within the CSTR is an irreversible
exothermic reaction of second order. It is assumed that the
reactor is perfectly mixed and non-isothermal. A heating
jacket is used to maintain the reactor temperature T , with a
heat input rate of Q. The CSTR dynamics can be generally
captured by its mass and energy balances:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT CA

2 (39)

dT

dt
=

F

V
(T0 − T ) +

Q

ρLCpV
+

−∆H

ρLCp
k0e

−E
RT CA

2 (40)

where the concentration of species A and reactor temperature
are CA and T . The terms Q and CA0 denote the rate
of heat supply and feed concentration of A, respectively.
Detailed descriptions of the remaining notation and the
process parameters can be found in [7].

The input variables in this process are CA0 and Q, and
the process variables to be controlled (i.e., state variables) are
CA and T . The manipulated input u and the state variables
x are represented in terms of deviation variables, denoted
by uT = [C ′

A0, Q
′] and xT = [C ′

A, T
′], where the origin

represents the steady-state of the process. The objective of
PLSTM-MPC is to stabilize and manage the CSTR in its
unstable steady state, CAs = 1.95 kmol/m3 and Ts = 402
K by adjusting CA0 and Q using the PLSTM-based MPC.
In addition, this control system is subjected to data loss
and delayed measurements of the state variables, CA and
T . To mimic real-world systems, we impose the following
constraints on the control actions: |Q′| ≤ 5 × 105 kJ/h and
|C ′

A0| ≤ 3.5kmol/m
3.

The designed Lyapunov function is in the form of V (x) =
xTPx, where P = [1.06 × 103 22.0; 22.0 0.52], and Ωρ̂

denotes the operating region with ρ̂ = 372, i.e., V (x) ≤ 372,
for the CSTR. For all initial states x0 ∈ Ωρ̂ and control
inputs u ∈ U , forward Euler method was applied with hc =
2× 10−4 h as the integration time interval.

1) Model description: It is assumed that the state mea-
surements, which are collected by sensors in real life, are
affected by asynchronicity and delay. As such, we created a
new dataset from the open-loop dataset, containing samples
of assumed missing rates between 66.7% to 98.7%.

The PLSTM model design is provided in Fig. 2. The
PLSTM layer contains 24 neurons and the LSTM layer
contains 8 neurons. The input of the PLSTM model is in
the form of two input vectors < x, η > where η is the
timestamp vector and x = [xp, up, u], where xp is the past
state measurements (with missing data) from the previous
two sampling periods (i.e. from tk−2 to tk), up is the cor-
responding past control actions and u is the current control
action at tk. The model output y is the state measurements
for the next two sampling periods, i.e., x(tk+1) and x(tk+2).
It is important to note that missing data are only relevant to
the input data and not to the output data; we assumed that

Fig. 2. A schematic of PLSTM architecture for CSTR.
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Fig. 3. Time gate evolution of the first 5 neurons from training epoch 1
(blue line) to 500 (red line).

the state measurements at the next two sampling periods are
always available for modeling purposes.

The evolution of the time gate over the training process
was monitored and presented in Fig. 3. From Fig. 3, it is
observed that the opening phase of the time gate of some
neurons has increased during the training process, to allow
more frequent updates. It is observed that the configuration
of PLSTM is unique in the sense that only a portion of
neurons are active at any time. This is similar to having a
dropout layer with varying dropout rates at every time step.
This structure could have contributed to PLSTM’s ability
in processing irregularly sampled data; it is able to reduce
overfitting by filtering out unnecessary information to extract
the intrinsic relationships between the input and output.

To assess the performance of the PLSTM model in fore-
casting the future states, a testing dataset containing fully
observed input data was used. This is to assess the effec-
tiveness of the PLSTM model in capturing the underlying
dynamics of CSTR, when trained with historical missing
data. The MSE of PLSTM against the fully observed dataset
is 2.44×10−2. Additionally, an LSTM model using the same
missing dataset was also developed, with the testing error
9.96×10−1. Additionally, we develop a conventional LSTM
model using the fully observed dataset (i.e., no missing data).
It serves as a reference for model performance evaluation,
since this is the best machine learning model that one can
develop with state measured at every sampling step. The
testing error of the reference LSTM model (i.e., best LSTM
model) is 3.61× 10−6. All the models were developed with
the same hyperparameters (i.e., number of layers, neurons,
optimizers, initialization).

2) Simulation of closed-loop system under MPC: Fi-
nally, we perform closed-loop simulations under MPC us-
ing PLSTM and LSTM models. For PLSTM-based MPC
and LSTM-based MPC, we consider real-time missing data
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Fig. 4. State profiles under LMPC using PLSTM (blue trajectory), LSTM
(red trajectory) and Best LSTM (yellow trajectory) for the initial condition
(-1.5 kmol/m3, 73 K).
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Fig. 5. State trajectories for the closed-loop simulation under LMPC with
different initial conditions (marked with green squares) using PLSTM (blue
trajectory), LSTM (red trajectory) and Best LSTM (yellow trajectory).

in feedback control. The maximum allowable number of
sampling periods with missing real-time measurements, H ,
is chosen to be 1. The Best LSTM-based MPC, on the
other hand, was not subjected to real-time missing data (i.e.,
it received full state measurements at all sampling times).
This acts as the benchmark for assessing the performance
of PLSTM-based MPC, as it represents the performance
of MPC under ideal conditions, using the most accurate
machine learning model as its predictive model. Since N ≥
H + 1, the prediction horizon N is selected to be 2.

Figs. 4 and 5 show the state profiles and state-space
trajectories under PLSTM- and LSTM-based MPCs. It can
be seen that the LSTM-based MPC has the worst MPC
performance and does not guarantee closed-loop stability. On
the other hand, the PLSTM-based MPC showed comparable
performance with the Best LSTM-based MPC. By preserving
the states in the operating region Ωρ and ultimately driving
the states to the steady state, both MPC schemes have
achieved closed-loop stability. Therefore, it is concluded
from the case study that PLSTM can efficiently capture
process dynamics using datasets with delayed/asynchronous
measurements, and stability of closed-loop system is main-
tained under the PLSTM-MPC scheme.

VII. CONCLUSION

This work developed a PLSTM model for modeling
nonlinear chemical processes with data loss in state mea-
surements. A theoretical analysis was first performed for
the generalization performance of PLSTM. Subsequently,
an MPC scheme was designed using the PLSTM model
and accounting for the missing real-time data in feedback
control. Closed-loop stability was further demonstrated using
the error bound of PLSTMs. Lastly, to demonstrate the
effectiveness of PLSTM-based MPC for real-time control
of chemical processes with irregular state measurements,
PLSTM was applied to a CSTR example.
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