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Abstract— In this paper, we consider both the fixed-gain con-
trol and adaptive learning architectures to suppress the effects
of uncertainties. We note that fixed-gain control provides more
predictable closed-loop system behavior, but it comes at the cost
of knowing uncertainty bounds. On the other hand, adaptive
learning removes the requirement of this knowledge at the ex-
pense of less predictable closed-loop system behavior compared
to fixed-gain control. To this end, this paper presents a novel
symbiotic control framework that integrates the advantages of
both fixed-gain control and adaptive learning architectures.
In particular, the proposed framework utilizes both control
architectures to suppress the negative effects of uncertainties
with more predictable closed-loop system behavior and without
the knowledge of uncertainty bounds. Both parametric and
nonparametric uncertainties are considered, where we use
neural networks to approximate the unknown uncertainty basis
for the latter case. Several illustrative numerical examples are
provided to demonstrate the efficacy of the proposed approach.

I. INTRODUCTION

When the complexity of dynamical systems grows, the
differences between mathematical models and actual physical
systems widen due to idealized assumptions, simplifications,
degraded modes of operation, and changes in equations
of motion. These differences, known as uncertainties, can
significantly degrade the closed-loop system performance
and may even lead to instability. For the purpose of sup-
pressing the negative effects of uncertainties, there are two
fundamental approaches in the literature, namely, fixed-gain
control and adaptive learning architectures. For example,
robust control [1,2] and sliding mode control [3,4] are
well-known fixed-gain control approaches, whereas adaptive
control [5,6,7] and reinforcement learning [8,9] are well-
known adaptive learning approaches.

In contrast to adaptive learning, fixed-gain control provides
more predictable closed-loop system behavior since the gains
of the resulting control algorithm are not a function of time
or state. However, the fixed-gain control needs the knowledge
of uncertainty bounds to ensure the stability of the closed-
loop system (see [2, Chapter 2] and [10, Assumption 3.1]
for examples). For dynamical systems of complex nature,
obtaining such bounds can be challenging. In contrast, adap-
tive learning does not require such knowledge. Yet, because
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of their nonlinear parameter adjustment mechanism and the
need for neural networks for approximating uncertainties
of nonparametric nature, it often results in less predictable
closed-loop system behavior compared to fixed-gain control
especially during their transient period [11,12,13,14,15,16].

This paper contributes a novel control framework incor-
porating the advantages of fixed-gain control and adaptive
learning architectures. Inspired by biology, we call this
framework symbiotic control as symbiosis refers to the rela-
tionship or interaction between two dissimilar organisms [17]
(i.e., two dissimilar organisms refer to the fixed-gain control
and adaptive learning architectures). In particular, symbiotic
control synergistically combines these architectures to sup-
press the negative effects of uncertainties in a more pre-
dictable manner as compared to adaptive learning alone and
it does not require the bounds of such uncertainties. We also
consider both parametric uncertainties and nonparametric
uncertainties. For the latter, we resort to neural networks to
approximate the unknown uncertainty basis function.

In the field of adaptive learning, it is known that an inad-
equate number of neurons can lead to a large approximation
error in the neural network over a compact region. Since
this often causes poor closed-loop system behavior, the stud-
ies [18,19] have recently investigated deep neural network
methods to minimize this approximation error. Moreover,
it is well-known that high leakage term parameters in the
parameter adjustment mechanisms can degrade the closed-
loop system performance by fighting against the learning
process. Counterintuitively, the proposed symbiotic control
framework can achieve a desired level of closed-loop sys-
tem behavior even with an insufficient number of neurons,
without a deep neural network method, or in the face of high
leakage term parameters.

With regard to smoother response and better tracking
performance, the combined/composite adaptive control ap-
proach and its variants use a model prediction error (see
[20,21,22] and references therein). The prediction error is
the difference between the output of a truth model, which
can be computed at every instant, and its prediction. The
truth model is obtained by low-pass filtering of the system
dynamics and leaving the uncertain part alone. While the
above studies add a term involving prediction error into the
parameter adjustment mechanism, the proposed symbiotic
framework incorporates the output of a truth model into both
the fixed-gain control and adaptive learning architectures.

Finally, authors of [13,14,15] present symbiotic control
frameworks that are relevant to the findings in this paper.
However, we note that there are two key distinctions. First,
these results do not focus on nonparametric uncertainties as
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opposed to the results documented in this paper. Second,
while nonparametric uncertainties are not considered, the
findings in [15] align more closely with the results of this
paper. However, the authors of [15] make an assumption that
requires some knowledge of uncertainty bounds for guaran-
teeing closed-loop system stability (i.e., [15, (34)]), where
we here remove this assumption for not only parametric
uncertainty but also nonparametric uncertainty cases.

In the remainder of this paper, we first outline the problem
formulation and provide the relevant preliminaries on fixed-
gain control and adaptive learning architectures in Section
II. We then introduce the symbiotic control framework in
Section III (respectively, Section IV) for dynamical systems
with parametric uncertainty (respectively, nonparametric un-
certainty). We finally present illustrative numerical examples
in Section V to demonstrate the efficacy of the contributions
of this paper and summarize our conclusions in Section VI.

The notation used in this paper is fairly standard. Specif-
ically, R, Rn, and Rn×m respectively are the sets of real
numbers, real vectors, and real matrices; R+, R+, Rn×n

+ ,
and Rn×n

+ respectively are the sets of positive real numbers,
nonnegative real numbers, symmetric positive-definite matri-
ces, and symmetric nonnegative-definite matrices; and “≜”
is the equality by definition. Moreover, (·)−1 is used for the
inverse, (·)T is used for the transpose, and diag(a) is used
for the diagonal matrix with the real vector a ∈ Rn on its
diagonal.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following uncertain dynamical system

ẋ(t) = Ax(t) +BΛ
(
u(t) + δ(x(t))

)
, x(0) = x0. (1)

Here, x(t) ∈ D ⊆ Rn denotes the measurable state and
u(t) ∈ Rm denotes the control signal. In (1), A ∈ Rn×n

denotes the known system matrix and B ∈ Rn×m denotes
the known full column rank control matrix. Note that the pair
(A,B) is stabilizable. Moreover, Λ = diag(λ) ∈ Rm×m

+ ,
λ = [λ1, . . . , λm]T, denotes an unknown control effective-
ness matrix and δ(x(t)) : D → Rm denotes a parametric
(D = Rn in this case) or nonparametric (D ⊂ Rn in this case
with D being a compact set) uncertainty whose components
are real-valued locally Lipschitz functions of the state.

We define the nominal control signal, denoted by un(t) ∈
Rm, as follows

un(t) = −K1x(t) +K2r(t). (2)

Here, K1 ∈ Rm×n denotes a feedback gain matrix such that
A − BK1 is Hurwitz, K2 ∈ Rm×p denotes a feedforward
gain matrix, and r(t) ∈ Rp denotes a reference signal, which
is uniformly continuous and bounded on [0,∞). The goal of
(2) is to define the nominal (i.e., ideal) closed-loop system
behavior

ẋn(t) = Anxn(t) +Bnr(t), xn(0) = xn0, (3)

when there are no uncertainties (i.e., δ(x(t)) ≡ 0 and Λ = I)
and u(t) ≡ un(t), where An ≜ A−BK1 and Bn ≜ BK2.

Next, we can denote the fixed-gain control signal and
adaptive learning signal as uf(t) ∈ Rm and ua(t) ∈ Rm,
respectively. The control signal satisfies

u(t) = un(t) + uf(t) + ua(t). (4)

We present the definitions of uf(t) and ua(t) in the following
sections. Note that we can obtain

ẋ(t) = Anx(t) +Bnr(t) +BΛ
(
uf(t) + ua(t)

+π(x(t), un(t))
)
, (5)

with (1), (2), and (4). In (5),

π(x(t), un(t)) ≜ δ(x(t)) + (I − Λ−1)un(t) (6)

denotes the total uncertainty.
We study how to synergistically blend fixed-gain control

signal uf(t) and adaptive learning signal ua(t) (i.e., sym-
biotic control) in order to suppress the total uncertainty
π(x(t), un(t)) in a more predictable manner as compared to
adaptive learning alone and without requiring any knowledge
on the bound of this uncertainty. Note that we address the
case when δ(x(t)) in π(x(t), un(t)) is parametric (respec-
tively, nonparametric) in Section III (respectively, Section
IV). Before presenting our main results, we now introduce
important preliminaries in the following subsections.

A. Preliminaries on Fixed-Gain Control

In this subsection, we consider that adaptive learning
signal satisfies ua(t) ≡ 0. Moreover, let the fixed-gain
control signal satisfy

uf(t)=−αBi(x(t)−x0)+αBi

∫ t

0

(
Anx(s)+Bnr(s)

)
ds. (7)

Here, α ∈ R+ denotes the fixed-gain control parameter and
Bi ≜ (BTB)−1BT. We note that BTB is always invertible
due to B having full column rank. Now, we are ready to
present an important result.

Proposition 1. If α in (7) is sufficiently large, then the
solution to (5) approximately behaves as the solution to the
nominal (i.e., ideal) closed-loop system given by (3).

Due to the page limitations, the proofs of Proposition 1 as
well as other results presented in this paper are omitted and
they will be presented elsewhere.

Remark 1. Let the fixed-gain control parameter α be
sufficiently large. Then, one can conclude from Proposition 1
that the solution to the uncertain dynamical system given in
(5) approaches the solution to the nominal (i.e., ideal) closed-
loop system given in (3). We note that this result is highly
valuable since it applies to both parametric and nonpara-
metric uncertainty cases, even in the absence of an adaptive
learning signal. We also note that it is hard to determine how
large α we need to select in practice. Moreover, analyzing
closed-loop system stability on how α needs to be properly
chosen without an adaptive learning signal requires a specific
uncertainty structure and an upper bound on this uncertainty,
where such analysis can be conservative as well (see [10] for
an exemplary study involving small gain theorem). In order
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to get rid of these constraints, we utilize a form of the fixed-
gain control signal given by (7) in the following sections with
an adaptive learning signal (i.e., symbiotic control). Notably,
we utilize this fixed-gain control signal for achieving a more
predictable closed-loop system behavior as α increases.

B. Preliminaries on Adaptive Learning
In this subsection, we now consider that the fixed-gain

control signal satisfies uf(t) ≡ 0. Moreover, let δ(x(t)) be a
parametric uncertainty, which satisfies

δ(x(t)) = WT
δ σδ(x(t)), x(t) ∈ Rn. (8)

Here, Wδ ∈ Rs×m denotes an unknown weight and
σδ(x(t)) : Rn → Rs denotes a known basis function. Then,
one can present the total uncertainty (6) in the following
form

π(x(t), un(t)) ≜ WTσ(x(t), un(t)). (9)

Here, W ≜ [WT
δ , (I−Λ−1)]T ∈ R(s+m)×m is unknown and

σ(x(t), un(t)) ≜ [σT
δ (x(t)), u

T
n (t)]

T : Rn ×Rm → Rs+m is
known by definition. Moreover, define the adaptive learning
signal as

ua(t) = −ŴT(t)σ(x(t), un(t)). (10)

Here, Ŵ (t) ∈ R(s+m)×m denotes the estimate of W obtained
through the parameter adjustment mechanism given by

˙̂
W (t) = βσ(x(t), un(t))

(
x(t)−xn(t)

)T
PB, Ŵ (0) = Ŵ0.

(11)

Here, β ∈ R+ denotes the adaptive learning parameter, xn(t)
satisfying (3), and P ∈ Rn×n

+ denotes the unique solution to
the Lyapunov equation

0 = AT
nP + PAn +R (12)

for a given R ∈ Rn×n
+ . We now state the next proposition.

Proposition 21. Consider the dynamical system given by
(5) with the parametric uncertainty given by (9), where
uf(t) ≡ 0. Consider also the adaptive learning signal given
by (10), (11), and (3). The trajectories of the closed-loop
system are then bounded and limt→∞

(
x(t)− xn(t)

)
= 0.

We now consider that δ(x(t)) is a nonparametric uncer-
tainty, which satisfies

δ(x(t)) = WT
δ σδ(x(t)) + ϵ(x(t)), x(t) ∈ D. (13)

Here, Wδ ∈ Rs×m denotes an unknown weight, σδ(x(t)) :
D → Rs denotes a selected basis function containing a unity
bias and sf ≜ s−1 radial basis functions, and ϵ(x(t)) denotes
a bounded approximation error2. In this scenario, one can
present the total uncertainty (6) in the following form

π(x(t), un(t)) ≜ WTσ(x(t), un(t)) + ϵ(x(t)). (14)

Here, W and σ(x(t), un(t)) have the same forms given after
(9). Moreover, consider the adaptive learning signal given by

1See [6, Section 4.3] for the proof of this proposition.
2Radial basis function neural networks are universal approximators (see

[5, Section 12.3]).

(10) with Ŵ (t) being an estimate of W , which is obtained
through the parameter adjustment mechanism given by

˙̂
W (t) = β1σ(x(t), un(t))

(
x(t)−xn(t)

)T
PB − β2Ŵ (t),

Ŵ (0) = Ŵ0. (15)

Here, β1 ∈ R+ denotes the adaptive learning parameter, β2 ∈
R+ denotes the leakage parameter, xn(t) satisfying (3), and
P ∈ Rn×n

+ denotes the unique solution to the Lyapunov
equation (12). We are now ready for the next proposition.

Proposition 33. Consider the dynamical system given by
(5) with the nonparametric uncertainty given by (14), where
uf(t) ≡ 0. Consider also the adaptive learning signal given
by (10), (15), and (3). The trajectories of the closed-loop
system are then bounded.

Note that we use a form of direct adaptive control method
given in Propositions 2 and 3 in the next sections for
constructing the adaptive learning signal ua(t). One can also
utilize other adaptive learning methods to use together with
fixed-gain control. However, it is worth noting that direct
adaptive control, like other adaptive learning methods, can
exhibit less predictable, poor closed-loop system behavior
due to their nonlinear parameter adjustment mechanism and
in the presence of high neural network approximation errors
(i.e., ϵ(x(t)) in (13)) and high leakage parameter (i.e., β2

in (15)). We address this issue by synergistically integrating
the fixed-gain control signal with the adaptive learning signal
(i.e., symbiotic control) in the next sections.

Now, we present two observations about Proposition 3.
First, it holds when x(t) stays in D. To enforce x(t) to stay
in D without necessarily making D arbitrarily large, one can
use set-theoretic direct adaptive control method [23]. Second,
Proposition 3 holds when one uses a projection operator in
(15) instead of the leakage term (i.e., −β2Ŵ (t)). We prefer
not to use a projection operator in order not to make any
assumptions on the bounds of W .

III. SYMBIOTIC CONTROL OF DYNAMICAL SYSTEMS
WITH PARAMETRIC UNCERTAINTY

In this section, we consider the uncertain dynamical sys-
tem (5), which is subject to (6). Moreover, we investigate
the parametric uncertainty case such that (8) holds over
x(t) ∈ Rn. Note that one can consider the total uncertainty
as given in (9).

A. Control Architecture

We first present a form of the fixed-gain (like) control
signal satisfying

uf(t) = −αBi(x(t)−x0)+αBi

∫ t

0

(
Anx(s)+Bnr(s)

)
ds

+

∫ t

0

ug(s)ds. (16)

Here, α ∈ R+ denotes the fixed-gain control parameter and
Bi ≜ (BTB)−1BT. Moreover, ug(t) ∈ Rm satisfies

3From [6, Section 4.5], the proof of this proposition follows.
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ug(t) = −β1β
−1
2 Λ̂(t)BTPe(t). (17)

Here, e(t) ≜ x(t) − xn(t) ∈ Rn denotes the error signal
and P ∈ Rn×n

+ denotes the unique solution to the Lyapunov
equation (12) for a given R ∈ Rn×n

+ (β1 ∈ R+ and β2 ∈
R+ are defined below). Moreover, Λ̂(t) ∈ Rm×m denotes
an estimate of Λ obtained through the parameter adjustment
mechanism

˙̂
Λ(t) = γBTPe(t)uT

f (t), Λ̂(0) = Λ̂0. (18)

Here, γ ∈ R+ denotes the adaptive learning parameter.
We next consider the adaptive learning signal (10), where
Ŵ (t) ∈ R(s+m)×m denotes an estimate of W obtained
through the parameter adjustment mechanism4

˙̂
W (t) = β1σ(x(t), un(t))e

T(t)PB

−β2ασ(x(t), un(t))u
T
f (t), Ŵ (0) = Ŵ0. (19)

Here, β1 ∈ R+ and β2 ∈ R+ denote the adaptive learning
parameters.

Remark 2. The proposed symbiotic control architecture
for dynamical systems with parametric uncertainty is given
above. Observe that the proposed fixed-gain control signal
(16) is a version of the original fixed-gain control signal
(7) with an added integral of (17) containing the adaptive
parameter Λ̂(t). Likewise, (19) is a version of (11) with an
added term containing the fixed-gain control signal uf(t). In
other words, the fixed-gain control and adaptive learning ar-
chitectures interact with each other to mitigate the effects of
uncertainties in a more predictable manner without requiring
any knowledge on the bounds of such uncertainties.

B. System-Theoretical Analysis

We begin with a key lemma.

Lemma 1. The fixed-gain control signal (16) satisfies

u̇f(t) = −αΛ
(
uf(t)+ua(t)+π(x(t), un(t))

)
+ug(t),

uf(0) = 0. (20)

While the fixed-gain control signal (16) is implementable,
its equivalent representation (20) is not. The main reason is
that the matrix Λ and the term π(x(t), un(t)) are unknown.
We note that this equivalent representation is only needed
for the system-theoretical analysis given in this subsection.
Now, we can demonstrate an important theorem.

Theorem 1. If α in (16) is sufficiently large, then the
solution to (5) approximately behaves as the solution to the
nominal (i.e., ideal) closed-loop system given by (3).

One can deduce from Theorem 1 that the closed-loop
system behavior becomes more predictable if we increase
α. Note that one can also apply the similar discussion given
in Remark 1 to this theorem. Now, we use (9) and (10) in

4The results documented in [21] also consider a parameter adjustment
mechanism with a second term added to its right-hand side that is predicated
on a filtering technique. Yet, that result does not have a fixed-gain control
law as opposed to the findings reported in this paper.

(20) to obtain

u̇f(t) = −αΛ
(
uf(t)− W̃T(t)σ(x(t), un(t))

)
+ug(t). (21)

Here, W̃ (t) ≜ Ŵ (t)−W ∈ R(s+m)×m. Moreover, one can
obtain the time derivative of the error signal as

ė(t) = Ane(t) +BΛ
(
uf(t) + ua(t) + π(x(t), un(t))

)
,

e(0) = 0, (22)

by using (5) and (3). Next, we obtain

ė(t) = Ane(t) +BΛ
(
uf(t)− W̃T(t)σ(x(t), un(t))

)
, (23)

by using (9) and (10) in (22). Now, we can present our first
main result. To this end, let Λ̃(t) ≜ Λ̂(t)− Λ ∈ Rm×m.

Theorem 2. Consider the dynamical system given by (5)
with the parametric uncertainty given by (9). In addition,
consider the form of the fixed-gain control signal given
by (16) with (17) and (18). Consider also the form of
the adaptive learning signal given by (10), (19), and (3).
The trajectories

(
e(t), uf(t), W̃ (t), Λ̃(t)

)
of the closed-loop

system are then bounded and

lim
t→∞

(
e(t), uf(t)

)
=

(
0, 0

)
. (24)

IV. SYMBIOTIC CONTROL OF DYNAMICAL SYSTEMS
WITH NONPARAMETRIC UNCERTAINTY

In this section, we consider the uncertain dynamical sys-
tem (5), which is subject to (6). Here, we investigate the
nonparametric uncertainty case such that (13) holds over
x(t) ∈ D, where the total uncertainty can be given in (14).

A. Control Architecture

We here consider the fixed-gain control signal (16), where
α ∈ R+ denotes the fixed-gain control parameter and Bi ≜
(BTB)−1BT. In (16), ug(t) ∈ Rm satisfies (17), where
e(t) ≜ x(t)− xn(t) ∈ Rn denotes the error signal, and P ∈
Rn×n

+ denotes the unique solution to the Lyapunov equation
(12) for a given R ∈ Rn×n

+ (β1 ∈ R+ and β2 ∈ R+ are
defined below). In (17), Λ̂(t) ∈ Rm×m denotes an estimate
of Λ obtained by the parameter adjustment mechanism

˙̂
Λ(t) = γ1B

TPe(t)uT
f (t)− γ2Λ̂(t), Λ̂(0) = Λ̂0. (25)

Here, γ1 ∈ R+ denotes the adaptive learning parameter and
γ2 ∈ R+ denotes the leakage parameter. We next consider
the adaptive learning signal (10), where Ŵ (t) ∈ R(s+m)×m

denotes an estimate of W obtained through the parameter
adjustment mechanism

˙̂
W (t) = β1σ(x(t), un(t))e

T(t)PB − β3Ŵ (t)

−β2ασ(x(t), un(t))u
T
f (t), Ŵ (0) = Ŵ0. (26)

Here, β1 ∈ R+ and β2 ∈ R+ denote the adaptive learning
parameters, and β3 ∈ R+ denotes the leakage parameter. We
note that one can apply a similar version of Remark 2 for
the proposed symbiotic control architecture given above for
dynamical systems with nonparametric uncertainty.
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B. System-Theoretical Analysis

First, note that Lemma 1 and Theorem 1 are also applica-
ble for the nonparametric uncertainty case. Then, we obtain

u̇f(t) = −αΛ
(
uf(t)− W̃T(t)σ(x(t), un(t)) + ϵ(x(t))

)
+ug(t), uf(0) = 0, (27)

by using (14) and (10) in (20). One can now obtain the time
derivative of the error signal given in (22) once again by
using (5) and (3). Similarly, we have

ė(t) = Ane(t) +BΛ
(
uf(t)− W̃T(t)σ(x(t), un(t))

+ϵ(x(t))
)
, e(0) = 0, (28)

by using (14) and (10) in (22). Now, we can present our
second main result. To this end, recall that W̃ (t) ≜ Ŵ (t)−
W and Λ̃(t) ≜ Λ̂(t)− Λ.

Theorem 3. Consider the dynamical system given by
(5) with the nonparametric uncertainty given by (14). In
addition, consider the form of the fixed-gain control signal
given by (16) with (17) and (25). Consider also the form
of the adaptive learning signal given by (10), (26), and (3).
Then, the trajectories

(
e(t), uf(t), W̃ (t), Λ̃(t)

)
of the closed-

loop system are then bounded.

V. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we show the efficacy of the contributions
given in Sections III and IV, where A =

[
0 1
0 0

]
and B =

[
0
1

]
are considered for (1); K1 = [0.16 0.57], K2 = 0.16, and
a filtered square-wave reference signal are considered for
(2); and R = I is considered for (12). Moreover, the initial
conditions are set zero.

A. Parametric Uncertainty Example

In parametric uncertainty example, we set the unknown
term Λ = 0.9, which represents a 10% reduction in control
effectiveness and the uncertainty δ(x(t)) = 0.2x1(t) +
0.2x2(t)+0.8x1(t)x2(t)+0.1x3

1(t)+0.1x2
2(t) for (1), where

this uncertainty is regarded as parametric (i.e., σδ(x(t)) in
(8) is known). Figure 1 illustrates the results, where the
thick (yellow) line shows the nominal (i.e., ideal) closed-
loop system behavior and the thin (green, red, and black)
lines show the actual closed-loop system behavior for three
different cases.

Specifically, the green line shows the closed-loop system
behavior with standard adaptive learning signal and without
fixed-gain control signal (i.e., Proposition 2 with β = 1). It
is clear that state and control responses exhibit oscillations.
The red line shows the closed-loop system behavior with
symbiotic control signal (i.e., Theorem 2 with α = 1, β1 = 1,
β2 = 1, and γ = 1). In this case, state and control responses
have less oscillations compared to the former case. The
black line shows the closed-loop system behavior again with
symbiotic control signal, but with the increased fixed-gain
control parameter α = 3 motivated by Theorem 1 (i.e.,
Theorem 2 with α = 3, β1 = 1, β2 = 1, and γ = 1).
This adjustment intends to achieve a smoother closed-loop
system behavior that stays close to its nominal performance.

Fig. 1. Closed-loop system behavior under parametric uncertainty.

B. Nonparametric Uncertainty Example

In this example, we set the unknown term Λ = 0.8, which
represents a 20% reduction in control effectiveness and the
uncertainty δ(x(t)) = 0.4x1(t)+0.4x2(t)+1.6x1(t)x2(t)+
0.2x3

1(t) + 0.2x2
2(t) for (1), where this uncertainty is

regarded as nonparametric (i.e., σδ(x(t)) in (13) is
constructed with a unity bias and 4 radial basis functions
over D = [−4, 4] × [−4, 4] according to σδ(x(t)) = [1,
e−0.5(x1(t)−1)2 , e−0.5(x1(t)+1)2 , e−0.5(x2(t)−1)2 , e−0.5(x2(t)+1)2 ]T).
Figure 2 shows the results, where the thick (yellow) line
shows the nominal (i.e., ideal) closed-loop system behavior
and the thin (green, red, blue, and black) lines show the
actual closed-loop system behavior for four different cases.

Specifically, the green line shows the closed-loop system
behavior with standard adaptive learning signal and without
fixed-gain control signal (i.e., Proposition 3 with β1 = 1
and β2 = 1). Note that state and control responses show
oscillations. The red line shows the closed-loop system
behavior also with standard adaptive learning signal and
without fixed-gain control signal (i.e., Proposition 3 with
β1 = 1 and β2 = 2). Comparing to the previous example,
we have increased the leakage term parameter β2 to achieve
a smoother closed-loop system behavior. However, this leads
the resulting behavior to deviate more from the nominal
closed-loop system behavior due to the neural network ap-
proximation error and high leakage term parameter. The blue
line shows the closed-loop system behavior with symbiotic
control signal (i.e., Theorem 3 with α = 3, β1 = 1, β2 = 1,
β3 = 2, γ1 = 1, and γ2 = 2). In this case, state responses
stay close to their ideal ones. Hence, one can conclude
that the proposed symbiotic framework has the ability to
attain the desired closed-loop system performance, despite
the presence of neural network approximation errors and
high leakage term parameters. The black line shows the
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Fig. 2. Closed-loop system behavior under nonparametric uncertainty.

closed-loop system behavior with fixed-gain control signal
and without any adaptive learning signal (i.e., Proposition 1
with α = 9). Note that we increase α to obtain a similar
response to the previous case5.

VI. CONCLUSION

In this paper, we present the symbiotic control framework,
which integrates the advantages of both fixed-gain control
and adaptive learning architectures. In particular, we show
how to achieve a more predictable closed-loop system be-
havior with the fixed-gain control signal (see Theorem 1).
Moreover, we consider the adaptive learning signal, which
avoids a certain uncertainty structure and an upper bound
on this uncertainty. We investigate both parametric (see
Theorem 2) and nonparametric (see Theorem 3) uncertainty
cases. Alongside the system-theoretical results given in this
paper, we also present illustrative numerical examples to
show that the proposed symbiotic control framework is
capable to obtain the desired closed-loop performance even
with an insufficient number of neurons and without a deep
neural network method, or in the presence of high leakage
term parameters. Future research can focus on implementing
the symbiotic control framework in a real-world system.
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