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Abstract— This work is dedicated to the real-time prediction
of dynamical system trajectories using sensor data. Our ap-
proach introduces a learning-based surrogate prediction model
tailored for forecasting the state of partial differential equations
(PDEs) within a limited area. Different from existing learning
based methods of solving PDEs, the prediction is made based
on observation data, without the necessity of knowing the
initial condition and precise lateral boundary conditions for the
limited-area model, both in online and offline computations. The
design of our surrogate prediction model hinges on two pivotal
concepts: predictability and effective region. Predictability en-
ables us to quantitatively assess whether the observation data
is sufficient for accurate prediction. Concurrently, the effective
region concept decreases the computational burden associ-
ated with determining predictability and generating training
data. Compared to the conventional two-stage approach—first
employing data assimilation followed by prediction through
differential equation integration—commonly utilized in con-
trol systems and numerical weather prediction, our surrogate
prediction model offers real-time forecasting in a single step,
namely, evaluating a neural network.

I. INTRODUCTION

Real-time prediction of dynamical system trajectories
based on sensor data stands as a crucial element in a diverse
array of scientific and engineering applications. These appli-
cations span domains such as model predictive control [1],
real-time or faster-than-real-time simulation for large-scale
power systems to predict dynamics under disturbances [2],
and numerical weather prediction [3]–[5]. Over the years, a
conventional approach is to combine a nonlinear filter, such
as a Kalman filter or a Luenberger observer, with a numerical
model of the dynamical system. The nonlinear filter furnishes
a state estimate grounded in the system’s output, notably
sensor data. Subsequently, this estimated state serves as
the initial condition within the numerical model, facilitating
the prediction of system trajectories within a specified time
window. While these methods have found widespread and
successful applications in various engineering and scientific
domains, they have drawbacks. The challenges have grown
significantly, especially in the face of the continuously es-
calating scale and complexity of systems under study, in-
cluding but not limited to networked systems and distributed
parameter systems. In estimating a system’s states, existing
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algorithms for nonlinear filters require running the numerical
model of the dynamical system multiple times in each
estimation cycle. Additionally, the prediction is computed
by integrating the model over the forward time window.
For high-dimensional systems, these computational tasks
become bottlenecks that can render conventional approaches
infeasible.

In this paper, we introduce a learning-based surrogate pre-
diction model for state estimation in a limited-area in space
for dynamical systems governed by PDEs. The surrogate
model employs deep learning techniques, where a neural
network is trained using sensor data as inputs and facilitating
the prediction of the system’s states as outputs. Compared
to the conventional two-stage approach—first employing
data assimilation followed by prediction through differential
equation integration—commonly utilized in control systems
and numerical weather prediction, our surrogate prediction
model offers real-time forecasting in a single step, namely,
evaluating a neural network. This approach significantly
reduces online computational burden as evaluating the sur-
rogate prediction model does not require propagating the
dynamic model in real-time. Unlike numerical PDE algo-
rithms that require boundary conditions, evaluating neural
networks does not have this limit. This property makes the
learning-based method attractive for applications in which
prediction is focused on variables in a limited area of
interest around which the lateral boundary condition [6] is
unknown. Different from existing learning based methods of
solving PDEs [7], the surrogate prediction model is based
on observation data, without the necessity of knowing the
initial condition.

The design of the surrogate prediction model is built upon
a robust theoretical framework that leverages two fundamen-
tal concepts: predictability and effective region. Predictability
analysis enables us to quantitatively determine the amount of
observation data necessary for accurate prediction. The ef-
fective region substantially reduces the computational burden
associated with computing predictability and generating data
for neural network training and validation.

II. PREDICTABILITY

The concept of predictability is defined for discrete-time
dynamical systems. It will be applied to discretized PDEs in
the sections that follow. Consider a discrete-time dynamical
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system

u(k + 1) = f(u(k)), u ∈ Rn, k ∈ N0, (1a)
y(k) = h(u(k)) + ν(k), y ∈ Rm, (1b)
z(k) = w(u(k)), z ∈ R, (1c)

where f : Rn → Rn, h : Rn → Rm and w : Rn → R
are Lipschitz continuous functions, u is the state variable of
the system, y is the output, or observation, whose value is
known or can be measured, ν is the observation uncertainty,
z is the variable to be estimated. In this section, we develop
a theoretical framework to answer the following question:
given an interval [0,K], the system’s output {y(k)}Kk=0 and
an integer ∆K > 0, is it possible to accurately approximate
the value of z(K +∆K)?

Inspired by the definition of observability in [8], [9], we
first consider the following linear system. Nonlinear systems
are addressed in III.

u(k + 1) = Au(k), u ∈ Rn, k ∈ N0, (2a)
y(k) = Hu(k) + ν(k), y ∈ Rm, (2b)
z(k) = Wu(k), z ∈ R, (2c)

where A, H , and W are matrices and vectors of appropriate
dimensions. The predictability of z(K +∆K) is measured
by the value of ρ defined as follows. Consider a nominal
trajectory, u(0), · · · ,u(K + ∆K), around which we study
the predictability. Define

ρ2 = max
û(0),··· ,û(K+∆K)

{(W û(K +∆K)− z(K +∆K))2},

(3a)
subject to
û(k + 1) = Aû(k), k = 0, 1, · · · ,K +∆K − 1, (3b)
K∑

k=0

∥Hû(k)−Hu(k)∥22 ≤ ϵ2. (3c)

In this definition, ϵ > 0 is a constant that represents
an upper bound of observation uncertainty. A trajectory,
û(0), · · · , û(K + ∆K), satisfying (3c) is said to be indis-
tinguishable because its output ŷ is too close to that of the
nominal trajectory. Its prediction, W û(K +∆K), is called
an indistinguishable prediction. In this definition, the value
of ρ represents the maximum potential error in predicting
z(K +∆K) among all indistinguishable predictions.

A trajectory of the dynamical system can be uniquely
determined by its initial state û0,

û(k) = Akû0, Hû(k) = HAkû0. (4)

Substituting (4) into (3) yields a quadratically constrained
quadratic programming (QCQP),

ρ2 = max
∆u0

∆u⊺
0(W (K +∆K))⊺W (K +∆K)∆u0, (5a)

subject to

∆u⊺
0G∆u0 = ϵ2, (5b)

where W (k) = WAk and G is the observability Gramian,

G =

K∑
k=0

(A⊺)kH⊺HAk. (6)

The computation of predictability boils down to solving the
QCQP (5). If the observability Gramian has full rank, the
solution of (5) has an explicit expression.

Theorem 1: Let σ1, σ2, · · · , σn be the eigenvalues of G,
the observability Gramian defined in (6). Let T ∈ Rn×n

be a matrix in which the ith column is a unit eigenvector
associated with σi, 1 ≤ i ≤ n. Suppose that G has full rank.
Then

ρ2 = ϵ2
n∑

i=1

w̄2
i

σi
, (7)

where w̄i is the ith component of the vector

W̄ = W (K +∆K)T. (8)
Proof. This result generalizes a theorem in [9] in which
∆K = 0. To solve (5), define the Lagrangian

L(∆u0, λ) = ∆u⊺
0(W (K +∆K))⊺W (K +∆K)∆u0

−λ(∆u⊺
0G∆u0 − ϵ2),

where λ ∈ R is the Lagrange multiplier. At the solution of
(5), denoted by ∆u∗

0, there exists λ∗ such that

∂L

∂∆u0
(∆u∗

0, λ
∗) = 0.

Therefore, we have

(W (K +∆K))⊺W (K +∆K)∆u∗
0 = λ∗G∆u∗

0, (9a)

(∆u∗
0)

⊺G∆u∗
0 = ϵ2. (9b)

Multiplying (∆u∗
0)

⊺ to (9a), we have ρ2 =
λ∗(∆u∗

0)
⊺G∆u∗

0= λ∗ϵ2. Therefore,

λ∗ = ρ2/ϵ2. (10)

Because T is the matrix of unit eigenvectors and G is
symmetric, we have

T ⊺GT = diag
([

σ1 σ2 · · · σn

])
.

Multiplying T ⊺ to (9a), applying W̄ in (8) and the fact that
T ⊺ is the inverse matrix of T , yield

W̄ ⊺W̄T ⊺∆u∗
0 = λ∗diag

([
σ1 σ2 · · · σn

])
T ⊺∆u∗

0.

Because W̄T ⊺∆u∗
0 is a scalar, we have

λ∗T ⊺∆u∗
0 = (W̄T ⊺∆u∗

0)

[
w̄1

σ1
· · · w̄n

σn

]⊺
.

Multiplying this equation by W̄ , we have

λ∗W̄T ⊺∆u∗
0 = (W̄T ⊺∆u∗

0)W̄

[
w̄1

σ1
· · · w̄n

σn

]⊺
.

(11)
If W̄T ⊺∆u∗

0 ̸= 0, then (7) is proved by cancelling the
nonzero scalar W̄T ⊺∆u∗

0 in (11) and applying (10). If
W̄T ⊺∆u∗

0 = 0, then

0 = (W̄T ⊺∆u∗
0)

2 = (W (K +∆K)∆u∗
0)

2 = ρ2. (12)

1206



Because ρ = 0, (5) implies W (K +∆K) = 0 and W̄ = 0.
Therefore, (7) holds true.
Remark: For limited-area prediction to be addressed in the
next section, the sensors are located around the region of
interest. As a result, the collected data may not necessarily
contain adequate information to estimate the full dynamical
system. In this case, G either does not have full rank or it has
a high condition number. To overcome the problem caused by
the singularity of G, we have to take additional information
into consideration. Following the same idea presented in [9],
let δ > 0 be a known error upper bound of the initial state in
the estimation, i.e. ||∆u0||2 < δ. It is explained in [9] that
the observability Gramian can be modified, denoted by Gδ ,
which has full rank and

ρ2 =

n∑
i=1

w̄2
i min{ ϵ

2

σi
, δ2}. (13)

III. NONLINEAR SYSTEMS AND EFFECTIVE REGION

The surrogate prediction model to be introduced in the
next section is a neural network trained using simulation
data. Before we can generate data for training and validation,
we must overcome two obstacles. Firstly, the dynamical
systems that we are interested in are nonlinear. However,
the results in Section II are all based on linear systems.
Secondly, generating data using the simulation of PDEs
can be computationally formidable because the discretized
system has a high dimension. In the following, we introduce
an empirical observability Gramian that is applicable to
nonlinear systems and the concept of effective region that
leads to a reduced order model for the purpose of generating
data.

For nonlinear systems, we still use (13) to compute ρ as
a measure of observability. We assume that the observability
of the linearized system along the nominal trajectory approx-
imates the observability of the nonlinear system. Therefore,
the computed ρ represents only the local observability. To
approximate G for the nonlinear system, we use the empirical
observability Gramian, which has been studied in a variety of
applications [9]–[11]. Essentially, the empirical observability
Gramian is the observability Gramian of the linearized sys-
tem along the nominal trajectory. Consider a nonlinear sys-
tem (1). Adopting the formulation in [9], let {u(k)}Kk=0 be a
nominal solution around which we analyze its observability.
Let h > 0 be a small number, let {ûi(k)}Kk=0 be the solution
of (1) with initial state ûi(0) = u(0) + hei, where ei is the
ith unit vector in Rn. We define the empirical observability
Gramian, G, as follows

Diy(k) = (h(ûi(k))− h(u(k)))/h, i ∈ I,
Dy(k) =

[
Di1y(k) Di2y(k) · · · DinI

y(k)
]
,

G =

K∑
k=0

(Dy(k))
⊺
Dy(k),

(14)

where I is a subset of {1, 2, · · · , n} and nI is the number
of elements in I. The empirical observability Gramian is a
nI × nI matrix. If nI = n, then G has full size, n × n.

The matrix W (K + ∆K) in (8) is computed using finite
difference,

Diw = (w(ui(K +∆K))− w(u(K +∆K)))/h,

W (K +∆K) =
[
Di1w · · · DinI

w
]
, ij ∈ I.

(15)

Based on the empirical observability Gramian defined in
(14), we evaluate the predictability of z by computing ρ using
(13).

For high dimensional problems, we choose an index subset
I so that nI < n to reduce the computational load. This
is based on the concept of the effective region, which is
illustrated using the following example. Consider the Burgers
equation in R2,

∂U

∂t
+ U

∂U

∂x1
+ V

∂U

∂x2
= κ

(
∂2U

∂x2
1

+
∂2U

∂x2
2

)
,

∂V

∂t
+ U

∂V

∂x1
+ V

∂V

∂x2
= κ

(
∂2V

∂x2
1

+
∂2V

∂x2
2

)
,

(16)

where (x1, x2) ∈ [0, 2π]× [0, 2π], t ∈ [0, T ]. To numerically
solve the PDE, we discretize the equation over a grid.
Notation-wise, the grid point in space with coordinates
(i∆x1, j∆x2) is denoted by (i, j). The value of U(x1, x2, t)
at a grid point (i, j) at time t = k∆t is denoted by ui,j(k).
Similarly, we define vi,j(k). The discretized approximation
of (16) is a system that can be represented in the form of (1).
The state variable is a vector in Rn, where n = 2(nx1×nx2),
and nx1 and nx2 are the numbers of grid points in the x1

and x2 directions, respectively. We set κ = 0.14 and T = 5.
The initial condition is

U(x1, x2, 0) = V (x1, x2, 0) = g(x1, x2),

g(x1, x2) =

{
α(x3

1(4− x1)
3x3

2(4− x2)
3), 0 ≤ x1, x2 ≤ 4

0 otherwise
(17)

where α rescales the function so that the maximum value of g
is 1. The equation is discretized on a uniform grid that has 50
points in both x1 and x2 directions. Assume that the values
of U and V are measured at 12 locations. The grid and sensor
locations are shown in Figure 1. As an example, we compute
the predictability of U at the grid point (25, 25), which is the
red point in Figure 1. To compute the predictability, let I in

1 2 3 4 5

1

2

3

4

5

 Point of interest

 Effective region

Fig. 1: The sensor locations (large dots) and the point of
interest (red point) at which the state is predicted.

(14) consist of all integer pairs, (i, j), that represent the grid
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points located inside a square region around the center point
(25, 25). The radius of the region is defined as the number
of grid points from (25, 25) to the boundary, including the
points on the boundary. For example, the radius of the region
bounded by the dotted line in Figure 1 is R = 6. The value
of ρ is computed based on (13)-(15) in regions with radius
1 ≤ R ≤ 24 (Figure 2). Numerical scheme exploited is
a first order upwind in time and space for the first order
partial derivatives on the left-hand side of the equation, with
an implicit central difference for the second order spatial
derivatives on the right-hand side [12]. The time step size is
∆t = 0.05. The sensor error bound is set to be ϵ = 0.065.
The upper bound of ∆u0 is δ = 1.0. The time window is
K = 15.

0 5 10 15 20 25
0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

Fig. 2: Predictability: the value of ρ in regions with R =
1, · · · , 24.

The value of ρ is stabilized after R ≥ 15. We define an
effective region as follows: If the value of ρ computed in
a region is stabilized, i.e., the value of ρ computed in any
larger region has negligible change, then this region is called
an effective region. The determination of an effective region
depends on the threshold set for the variation of ρ. In this
example, any region with R ≥ 15 is an effective region
because the value of ρ does not increase when R is larger
than 15. One may relax the threshold. For instance, set R =
10 as an effective region if the value of ρ is considered stable
with a variation less than 1.5× 10−3.

If the effective region is much smaller than the domain
of the PDE, the dimension of the empirical observability
Gramian is significantly reduced. This is critical for high
dimensional problems, such as the atmospheric models in
numerical weather prediction, for which the eigenvalues of
G in its full dimension are impossible to compute. Conse-
quently, the computation of predictability can be confined to
an effective region rather than the entire domain of the PDE.
Additionally, by utilizing an effective region, data generation
for training a surrogate prediction model can be confined to a
smaller area, thus eliminating the need to integrate the PDE
across its entire domain. This will be exemplified in the next
section.

IV. THE SURROGATE PREDICTION MODEL OF
DYNAMICAL SYSTEMS

A surrogate prediction model proposed in this paper is a
neural network whose input is the sensor information in a
given time interval. The output of the neural network is the
value of a variable to be predicted. It has a similar structure
to the deep filters introduced in [9], [13], [14]. For example,
the 12 sensors shown in Figure 1 for system (16) measure
ui,j(k) and vi,j(k), where (i, j) represents the location of
sensors, ui,j and vi,j represent the value of U(x, y, t) and
V (x, y, t) at the grid point (i, j), and 0 ≤ k ≤ K. For
simplicity of discussion, we assume that sensors are located
at grid points. The sensor information in each data point
is a vector of dimension 24(K + 1). In this example, we
predict the value of u25,25(K + ∆K). It is straightforward
to generalize the idea to predicting multiple variables at a
set of grid points.

A. Training and validating the surrogate prediction model

We generate data through simulations for the training of
the surrogate prediction model. Rather than solving the PDE
in the entire domain, simulations are carried out within an ef-
fective region. Consequently, the computational requirements
can be significantly reduced by eliminating the need to solve
the PDE in a substantially larger spatial domain.

Another advantage of concentrating on an effective region,
which will be addressed in the rest of this paper, is the
PDE’s insensitivity to boundary condition around an effective
region. This property enables us to generate data by utilizing
a fabricated boundary condition around the effective region,
i.e., the boundary condition is pre-set, but its value may
not always reflect the truth. It eliminates the requirement of
providing precise lateral boundary conditions, as commonly
needed in limited-area models utilized in applications such as
numerical weather prediction. For instance, in the following
examples, we set the boundary condition around the effective
region invariant with time, i.e.,

U(x1, x2, t) = U(x1, x2, 0),

V (x1, x2, t) = V (x1, x2, 0),
(18)

for (x1, x2) on the boundary. We will demonstrate that the
surrogate prediction model, trained using data with fabri-
cated boundary conditions, can accurately predict the state
variable, even when the validating trajectory does not adhere
to the fabricated boundary condition. This is possible due
to an intriguing characteristic of the effective region: the
trajectory of the state variable at the center of the region
is insensitive to boundary conditions. An explanation is
that, by definition, ρ can be determined by computing the
empirical observability Gramian solely within the effective
region, without the necessity of exploring state variations
across the entire spacial domain. In other words, alterations
in the boundary conditions around the effective region do not
significantly impact the worst indistinguishable prediction;
the effect of boundary conditions has limited impact on
prediction accuracy.
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We first computed 10, 000 solutions of the discretized
Burgers equation in t ∈ [0, T ], T = 5, with the following
random initial values around the nominal solution (17),

U(x1, x2, 0) = g(x1, x2) +

NF∑
l,s=1

aUls sin(
lx1

2
) sin(

sx2

2
),

V (x1, x2, 0) = g(x1, x2) +

NF∑
l,s=1

aVls sin(
lx1

2
) sin(

sx2

2
),

(19)

where g(x1, x2) is defined in (17), aUls and aVls have a normal
distribution with a mean of zero and standard deviation of
0.1, and we set NF = 3. The data set for training is generated
from these solutions at uniformly distributed random time
t0 = k0∆t, ∆t = 0.05, and k0 varies randomly for each data
point. The time window length of sensor data is K = 15,
and the prediction horizon is ∆K = 6. The total number of
data points is about 30, 000. When generating the training
data, we solved the PDE in the effective region with R = 15.
Additionally, for comparison purposes, we generated data by
solving the PDE in regions with R = 6 and R = 10. For
validation, the dataset was generated using initial conditions
defined over the original spatial domain of the PDE with a
50 × 50 grid. The goal is to assess the performance of the
surrogate prediction model on trajectories representing the
overall dynamical system across the entire spatial domain.

The surrogate prediction model is a neural network that
has 8 hidden layers with a width of 16 neurons. Each neuron
is a hyperbolic tangent. In the supervised learning, the neural
network is trained using the standard mean square error as the
loss function. The neural network is trained in TensorFlow
utilizing L-BFGS optimization. Although the training data
is generated from small regions, we validate the surrogate
prediction model using data computed across the entire
domain to ensure the accuracy of predictions for the original
problem defined within a larger domain. The prediction
errors of the three surrogate prediction models trained using
data from regions with R = 6, 10, 15, represented by SPM6,
SPM10 and SPM15, are summarized in the following table.

SPM SPM6 SPM10 SPM15
RMSE 0.0252 0.0158 0.0091

Maximum error 0.1276 0.0575 0.0504

TABLE I: Prediction errors.

The errors are measured by root-mean-square error
(RMSE) and the maximum absolute error over validation
data. According to Figure 2, ρ is stabilized when R = 15.
We expect that data generated from this region results in the
most accurate surrogate prediction model. When R = 6, ρ is
far from stabilized. The data generated in such a small region
does not represent the family of all solutions of the PDE. At
R = 10, while ρ is not finally stabilized, it is close. The
difference between the value of ρ at R = 10 and R = 15 is
less than 1.5 × 10−3, which is considered small relative to
the sensor noise standard deviation (σ = 0.065). The results
shown in Table I reflect the above analysis. The accuracy of

the surrogate prediction model trained in the region R = 6
exhibits the worst performance, with the maximum error
more than double the error trained in the regions with R = 10
and R = 15. The RMSE for R = 6 is about 60% higher than
that of R = 10 and 170% higher than that of R = 15.

B. Insensitivity to the boundary condition around an effec-
tive region

In IV-A, the validation data set is generated using initial
conditions defined over the original spatial domain of the
PDE with 50 × 50 grid points. A zero boundary condition
is applied. This is significantly different from the training
data that is generated in regions R = 6, 10, 15 with the
fabricated boundary condition (18). Two examples of typical
initial conditions are shown in Figure 3. The differences are
obvious. The results in Table I demonstrate that the surrogate
prediction model trained in an effective region (R = 10, 15)
is insensitive to the inaccuracy of the boundary condition.
The predictions are relatively accurate without a known
boundary condition, as commonly needed in conventional
numerical models.

(a) (b)

Fig. 3: An example of initial condition, validation data in (a)
and training data in (b).

0 50 100 150 200
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
 Case 1

 Case 2

 Case 3

Fig. 4: Three trajectories of u25,25 with different nonzero
boundary conditions. On the boundaries, U and V equal:
0.4 tanh(t) sin(z) (Case 1), 0.8 sin(tπ/5) sin(z) (Case 2),
and 0.25 tanh(t) (Case 3), where z = x or y along bound-
aries parallel to x- or y- axes, respectively

For further verification of the insensitivity to boundary
conditions around effective regions, we generated more val-
idating data based on nonzero boundary conditions in the
domain of the PDE. Three trajectories of u25,25 are shown
in Figure 4. They are dramatically different from the training
data used in IV-A. The accuracy of the surrogate prediction
models in IV-A is summarized in Table II. Relative to the
sensor noise standard deviation, σ = 0.065, the surrogate
prediction models trained in the effective regions with R =
10, 15 are acceptable or good. Case 2 is most challenging due
to the oscillating behavior. While the RMSEs are relatively
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small, the maximum errors of both SPM10 and SPM15 show
that the predictions contain outliers as large as the standard
deviation of the sensor noise.

Error Case 1 Case 2 Case 3
RMSE (SPM10) 0.0189 0.0245 0.0093

Maximum error (SPM10) 0.1005 0.0805 0.0385
RMSE (SPM15) 0.0110 0.0125 0.0061

Maximum error (SPM15) 0.0476 0.0610 0.0219

TABLE II: Prediction errors.

C. Shifting the point of interest in space

For PDEs in which coefficients are independent of the
spatial variables, such as the Burgers equation (16), a
surrogate prediction model trained in one effective region
can be applicable to another area as long as the relative
positions of the point of interest and the sensor locations
remain unchanged. For example, let us consider the surrogate
prediction models demonstrated in IV-A, which are trained
in effective regions centered around the grid point (25, 25).
Now, we employ the same surrogate prediction model to
estimate the state at a different location, (20, 25), assuming
that the relative locations of sensors are unchanged, i.e. the
sensors are also shifted to the left by 5 grid points along
the x-axis. The validation data is generated in the same way
as in IV-A except that the target function to be predicted is
u20,25. The results are summarized in Table III.

SPM SPM10 SPM15
RMSE 0.0238 0.0125

Maximum error 0.1000 0.0570

TABLE III: Prediction errors
The performance of the surrogate prediction model trained

in the region with R = 15 is comparable to that presented in
Table I. Shifting the point of interest in prediction does not
significantly affect prediction accuracy. However, shifting the
point of interest appears to cause a notable increase in error
for the surrogate prediction model trained in the region with
R = 10, where the value of ρ is close to the point of stability
but has not quite stabilized yet.

V. CONCLUSIONS

The proposed surrogate prediction model for dynamical
systems does not require multiple integrations of a numer-
ical model during online computations. Instead, the online
computation merely involves evaluating a feedforward neural
network, which is significantly less computationally expen-
sive than integrating high-dimensional numerical models.
The offline computation involves neural network training
and data generation. Due to the property of insensitivity to
boundary conditions, the data is generated using a fabricated
boundary condition around an effective region. It does not re-
quire an accurate lateral boundary condition, as conventional
algorithms commonly need to solve PDEs. Furthermore,
a reduced-order model can be employed to generate the
dataset, focusing only on the effective region and avoiding
to integrate the PDE across the entire domain.

Prediction of dynamical systems based on integrating a
differential equation requires an initial condition. If the initial
condition is not directly available, a data assimilation algo-
rithm, such as the Luenberger observer, Kalman filter, or 4D-
Var, has to be applied to estimate the initial condition using
sensor information. This two-stage approach, i.e., data as-
similation first, then prediction by integrating the differential
equation is commonly used in control systems and numeri-
cal weather prediction. For high-dimensional problems, this
approach is complicated and computationally demanding.
The surrogate prediction model proposed in this paper is
fundamentally different in the sense that the prediction is
carried out in one single step, evaluating a neural network.
As a result, updating predictions based on incoming sensor
data is computationally less expensive than using algorithms
that require integrating the system model.

While the examples of the Burgers equation demonstrate
encouraging outcomes, for future research, additional exam-
ples and applications as well as statistical data analysis are
necessary to strengthen the evidence and ensure the practical
applicability of the proposed methods.
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