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Abstract— We show that Newton methods for generalized
equations are input-to-state stable with respect to perturbations
such as due to inexact computations. We then use this result to
obtain convergence and robustness of a multistep Newton-type
method for multivariate generalized equations. We demonstrate
the usefulness of the results with other applications to nonlinear
optimization. In particular, we provide a new proof for (robust)
local convergence of the augmented Lagrangian method.

I. INTRODUCTION

Generalized equations are set-valued inequalities

f(z, v) + F (z) ∋ 0 (1)

where f is a function, F is a set-valued mapping, and v
is a perturbation term representing, e.g., inexactness of the
solution or incomplete information. In nonlinear optimiza-
tion, generalized equations appear frequently as the Karush–
Kuhn–Tucker (KKT) system of necessary conditions [1] with
f being the gradient of the Lagrangian, F the normal cone to
the constraint set, and z aggregating primal and dual decision
variables. Optimization algorithms can often be interpreted
as solving (1) for its root z̄, the optimal solution. A common
technique is Newton’s method for generalized equations,
which yields the iteration

f(zk, v) +∇f(zk, v)(zk+1 − zk) + F (zk+1) ∋ 0 (2)

and which, when applied to the KKT system, is better known
as sequential quadratic programming [2]. If the gradient of
f in (2) does not exist or is unknown, Newton’s method
can be extended to the broader class of quasi-Newton and
Josephy–Newton methods which include projected gradient
descent and sequential convex (linear) programming. Robust
local convergence properties of Newton methods to constant
perturbations have been studied under metric regularity as-
sumptions [3–6].

In recent years, properties of optimization algorithms have
been studied when interconnected with dynamic systems and
used to generate control actions [7–11]. A common frame-
work here is the one of input-to-state stability (ISS) which
combines concepts of robust stability and asymptotic gains
with dissipation theory [12]. Previously, ISS was proven
for classical iterative methods for linear equations [13, 14],
gradient descent [15], and proximal gradient descent [16].
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In addition, the result in [5] on stability of the sequence
generated by (2) can be considered as an ISS-like result.
On the other hand, previous works on perturbed Newton
methods for generalized equations such as [4, 5] treated the
input as a static deviation of the limit point. Establishing
ISS of Newton methods for generalized equations enables
the treatment of dynamic and time-varying perturbations,
which are common in, e.g., the analysis of interconnected
optimization algorithms and optimization-based feedback.

In this paper, we investigate input-to-state stability of
the classical Josephy–Newton method and a new multistep
Newton-type method subject to nonconstant perturbations.
To that extent, we build upon inverse function theorems
for set-valued mappings from variational analysis [17] under
strong regularity and strong subregularity. Since our results
depend on properties of the underlying generalized equa-
tions, in particular, the KKT conditions or approximations
thereof, they are applicable to a large class of iterative
optimization algorithms including sequential programming
and augmented Lagrangian methods.

The contributions of our paper are threefold: Firstly, we
formally prove local ISS of Newton methods for gener-
alized equations in the presence of generic perturbations
including due to inexact computations or erroneous gradients.
Secondly, we propose a multistep Newton-type method for
multivariate generalized equations, which allows for lower-
dimensional partial updates, and prove its robust local con-
vergence using the ISS property. We then demonstrate that
the result of [5] follows immediately from ISS. Thirdly, we
apply our framework and ISS results to approximate sequen-
tial programming and the augmented Lagrangian method.

II. PRELIMINARIES

If not noted otherwise, all spaces are considered either
finite-dimensional or complete (Banach) vector spaces with
norm ∥·∥. A set-valued mapping F between vector spaces X
and Y , denoted F : X ⇒ Y , takes values F (x) ⊂ Y for any
x ∈ X . We define the domain and graph of F as domF =
{x ∈ X |F (x) ̸= ∅} and graphF = {(x, y) | y ∈ F (x)},
respectively. For a closed convex set C ⊂ X , the normal cone
mapping is NC(x̄) = {y ∈ X∗ | ∀x ∈ C, ⟨y, x − x̄⟩ ≤ 0} if
x̄ ∈ C and NC(x̄) = ∅ else, where X∗ is the dual space
of X . The gradient of a function f : X → Y at x̄ ∈ X , if
existing, is a linear operator ∇f(x̄) : X → Y ; and we will
assume that any gradient, if existing, is Lipschitz continuous
around x̄.
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TABLE I
JOSEPHY–NEWTON METHODS TO SOLVE (5).

Algorithm Choice of H(zk) Interpretation
Sequential
Quadratic
Programming

(
∇2(h(xk) + ⟨g(xk), yk⟩) ∇g(xk)

∗

∇g(xk) 0

)
(x, y)k+1 is the primal-dual solution to a quadratic program
with linear constraints.

Sequential
Linear
Programming

(
0 ∇g(xk)

∗

∇g(xk) 0

)
(x, y)k+1 is the primal-dual solution to a linear program.

Projected Gra-
dient Descent α−1I with α > 0

xk+1 is the projection of
(
xk − α∇h(xk) − αg(xk)

∗yk
)

onto C; and yk+1 = yk − αg(xk).

A. Continuity & Regularity

A set-valued mapping F : X ⇒ Y is said to be Lipschitz
continuous on D ⊂ X with constant κ ≥ 0 if D is nonempty,
F (x) is closed, and

F (x′) ⊂ {y′ ∈ Y | ∃y ∈ F (x), ∥y − y′∥ ≤ κ∥x− x′∥} (3)

for all x, x′ ∈ D. The condition (3) reduces to the classical
Lipschitz continuity of functions if F is single-valued on
D. Let U ⊂ X and V ⊂ Y be neighbourhoods of
(x̄, ȳ) ∈ graphF ; the mapping F has the isolated calmness
property at x̄ for ȳ with constant κ if F (x̄) ∩ V = {ȳ} and
x 7→ F (x) ∩ V satisfies (3) for x = x̄ and all x′ ∈ U .
Moreover, a function f : X → Y which is Lipschitz
continuous in a neighbourhood of x̄ with constant κ is a
(Lipschitz) continuous single-valued localization of F at x̄
with constant κ for ȳ if F (x) ∩ V = {f(x)} for all x ∈ U .

We now define notions of regularity by continuity of the
inverse F−1 : y 7→ {x ∈ X | y ∈ F (x)}.

Definition 1: Take (x̄, ȳ) ∈ graphF ; the mapping F is
strongly regular at x̄ for ȳ with constant κ if and only if
F−1 has a Lipschitz continuous single-valued localization at
ȳ for x̄ with constant κ.

Definition 2: Take (x̄, ȳ) ∈ graphF ; the mapping F is
strongly subregular at x̄ for ȳ with constant κ if and only
if F−1 has the isolated calmness property at ȳ for x̄ with
constant κ.

We say that F is strongly regular (subregular) with con-
stant κ ≥ 0 if κ is the constant of the Lipschitz continuous
localization (isolated calmness property) of F−1.

Proposition 1: Let F : X ⇒ Y be strongly regular
(subregular) at x̄ for ȳ with constant κ ≥ 0 and (x̄, ȳ) ∈
graphF ; if g : X → Y is Lipschitz continuous with constant
µ ∈ [0, κ−1), then (g + F ) is strongly regular (subregular)
at x̄ for g(x̄) + ȳ with constant κ/(1− κµ).

Proof: See [17, Theorems 8.6 and 12.2].
We next give an interpretation of strong regularity in the

context of nonlinear optimization.

B. Nonlinear Optimization

Consider a nonlinear program,

min
x∈C

h(x) subject to g(x) = 0 (4)

with primal variable x ∈ X , cost function h : X → R,
constraint g : X → Y , and closed convex set C ⊂ X . If
x̄ is an optimal solution of (4), ∇h(x̄) and ∇g(x̄) exist,

and a suitable constraint qualification such as the linear
independence constraint qualification (LICQ) holds, then the
KKT system(

∇h(x̄) +∇g(x̄)∗ȳ
g(x̄)

)
+NC×X∗

(
(x̄, ȳ)

)
∋ 0 (5)

is satisfied for some dual variable ȳ ∈ X∗ [see, e.g., 18,
Theorem 5.7]. Eq. (5) is a generalized equation in the form
of (1) with z = (x, y) ∈ Z = X×Y , where the left-hand side
is a set-valued maping due to the normal cone mapping. In
finite dimensions, this mapping is strongly regular at (x̄, ȳ)
for 0 if and only if LICQ holds (a fortiori, ȳ is unique) and x̄
is a strongly-stable stationary solution1 of (4). Optimization
algorithms which rely on solving (5), such as Newton-type
methods, typical require strong regularity to guarantee that
the result is in fact a locally optimal solution of (4).

In Section IV, we will consider a perturbed version of (4)
where h(·, v) and g(·, v) are Lipschitz continuous functions
of v ∈ V . If the left-hand side of the parametrized KKT
system (5) is strongly regular at v̄ ∈ V , then its solution
mapping S : V ⇒ X×Y has a Lipschitz continuous single-
valued localization; this is the result of Robinson’s implicit
function theorem [17, Theorem 8.5], which we extend to the
case of multivariate mappings in the appendix.

C. Newton Methods

To solve the generalized equation (1) with f : Z → Z ′

and F : Z ⇒ Z ′, we define the iteration

zk+1 ∈ zk −
(
H(zk) + F

)−1
f(zk) (6)

where, broadly speaking, H(zk) : Z → Z ′ helps to
approximate f around zk. Table I reviews some common
choices of H(zk) for the KKT system (5) with z = (x, y)
and the resulting optimization algorithms. Eq. (6) can be
interpreted as a generalized equation parametrized in the
previous solution zk. In general, the sequences generated
by (2) or (6) are not unique, nor is a solution guaranteed
to exist. Under regularity assumptions, however, a sequence
exists and converges to a root of (1).

Theorem 1 ([17, Theorem 15.2]): Let z̄ be a solution to
(1) such that ∇f(z̄) exists. If f + F is strongly subregular
at z̄ for 0, then for any z0 sufficiently close to z̄ there
exists a sequence {zk}∞k=0 generated by (2) which converges

1See, e.g., [19, Definition 2.7] for a definition of a strongly-stable
stationary solution.
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quadratically to z̄. Moreover, if f + F is strongly regular,
then this sequence is unique. ◁

In fact, any sequence that stays sufficiently close to z̄ con-
verges quadratically. The following result provides sufficient
conditions for convergence if H(zk) is not a derivative of f ;
we define fH(z, ζ) = f(ζ) +H(ζ)(z − ζ) and assume that
fH(·, ζ) is Lipschitz continuous uniformly2 in ζ at (z̄, z̄).

Proposition 2: Let z̄ be a solution to (1) such that fH(x, ·)
is Lipschitz continuous with constant γ uniformly in x at
(z̄, z̄); if fH(·, z̄) + F is strongly subregular at z̄ for 0 with
constant κ and κγ < 1, then for any z0 sufficiently close to
z̄ there exists a sequence generated by (6) which converges
linearly to z̄. Moreover, if fH(·, z̄) + F is strongly regular,
the sequence is unique.

Proof: This is a consequence of [17, Theorems 12.4
and 8.5] with h = fH(·, z̄).

If f is continuously differentiable at z̄ and H(z) = ∇f(z),
then fH(·, z̄) is the linearization of f around z̄ and fH(x, ·)
is Lipschitz continuous uniformly in x with constant 0.

D. Input-to-state Stability

We now consider the robustness of the sequences gener-
ated by (2) or (6) under perturbations. To that extent, we
consider a perturbed dynamic system

zk+1 = Φ(zk, vk) (7)

for all k ∈ N, where v = (v0, v1, . . .) ⊂ V is a sequence
of perturbations with ∥v∥∞ := supk∈N ∥vk∥ < ∞. The
following definition makes use of the comparison function
classes KL and K∞ of monotonic functions; see [20] for
details.

Definition 3: The system (7) is locally input-to-state sta-
ble around z̄ if and only if there exist ϵ, δ > 0 and functions
β ∈ KL and γ ∈ K∞ such that any sequence {zk}∞k=0

generated under perturbation ∥v∥∞ < δ satisfies

∥zk − z̄∥ ≤ β(∥z0 − z̄∥, k) + γ(∥v∥∞)

for all k ∈ N, provided that ∥z0 − z̄∥ < ϵ.
The definition implies that the solution of (7) converges

to a ball Bγ,v(z̄) around z̄ with radius given by the gain
γ(∥v∥∞). The system (7) is locally input-to-state stable
around z̄ if (and only if) there exists a continuous, positive
definite function V : Z → R≥0, constants ϵ > 0 and δ > 0,
and functions α, γ ∈ K∞ such that α < id and [21]

V (Φ(z, v)) ≤ αV (z) + γ∥v∥ (8)

for all (z, v) ∈ Z × V with ∥z − z̄∥ < ϵ and ∥v∥ < δ.

III. MAIN RESULTS

We prove local input-to-state stability of perturbed Newton
methods in the form of (6), also referred to as Josephy–
Newton method, and propose a new multistep Newton-type
method for multivariate generalized equations. A discussion
of related results concludes this section.

2We say that a function f(x, y) is Lipschitz continuous with respect to
x uniformly in y at (x̄, ȳ) if f(·, y) is Lipschitz continuous at x̄ with some
constant κ < ∞ for all y in a neighbourhood of ȳ.

A. Josephy–Newton Method

Our first result concerns the Josephy–Newton method
under time-varying perturbation,

f(zk, vk) +H(zk, vk)(zk+1 − zk) + F (zk+1) ∋ 0 (9)

with f : Z × V → Z ′ and H(z, v) : Z → Z ′. As before,
define fH(z, ζ, v) = f(ζ, v) + H(ζ, v)(z − ζ). Here, the
perturbation vk ∈ V might model, e.g., the inexact evaluation
of the gradient ∇f(z) or a nonzero remainder in solving (1).
We make the following assumptions.

Assumption 1: Let z̄ ∈ Z and κ, γz, γv > 0 satisfy:

(a) z̄ is a solution of f(·, 0) + F ∋ 0;
(b) fH(·, ζ, v) is Lipschitz continuous uniformly in (ζ, v)

at (z̄, z̄, 0);
(c) fH(z, ·, v) is Lipschitz continuous with constant γz

uniformly in (z, v) at (z̄, z̄, 0);
(d) fH(z, ζ, ·) is Lipschitz continuous with constant γv

uniformly in (z, ζ) at (z̄, z̄, 0);
(e) fH(·, z̄, 0) + F is strongly regular with constant κ at

z̄ for 0;

and κγz < 1.
To satisfy these assumptions, H must be chosen such

that fH provides a ‘sufficiently good’ approximation of f
around z̄, measured by Lipschitz continuity, strong regularity,
and the condition that κγz < 1. Our result is based on
an extension of Robinson’s implicit function theorem for
generalized equations with multiple parameters, given in the
appendix.

Theorem 2: Under Assumption 1, the iteration in (9) is
unique for (zk, vk) sufficiently close to (z̄, 0) and satisfies

∥zk+1 − z̄∥ ≤ κγz∥zk − z̄∥+ γ∥vk∥

that is, (9) is locally input-to-state stable around z̄.
Proof: By virtue of Corollary 2 (in the Appendix) with

h = fH(·, z̄, 0) and µ = 0, the Josephy–Newton step (9) has
a locally unique solution s : Z × V → Z for (zk, vk) in the
neighbourhood of (z̄, 0) satisfying

∥s(z, v)− s(z′, v′)∥ ≤ κγz∥z − z′∥+ κγv∥v − v′∥

for (z, v), (z′, v′) around (z̄, 0). Taking α = κγz < 1 and
γ = κγv as well as noting that zk+1 = s(zk, vk) and z̄ =
s(z̄, 0) leads to the desired result.

We can further strengthen this result if the perturbation
affects the gradient of f , that is, f(·, v) = f and H(ζ, v) =
∇f(ζ)+ v, assuming continuous differentiability of f . Note
that this implies Lipschitz continuity of fH with arbitrarily
small constants γz and γv; moreover, fH(·, z̄, 0) + F is
strongly regular if and only if f + F is. In this case, (9) re-
sembles a quasi-Newton method. Specialising Theorem 2 to
the quasi-Newton method, we obtain quadratic convergence
to Bγ,v(z̄) where the gain γ vanishes close to z̄.

Corollary 1: Under Assumption 1, not only is

f(zk) + (∇f(zk) + vk)(zk+1 − zk) + F (zk+1) ∋ 0 (10)
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locally input-to-state stable around z̄ but the generated se-
quence {zk}∞k=0 satisfies

∥zk+1 − z̄∥ ≤ κL∥zk − z̄∥2 + γk∥vk∥ (11)

for all k ∈ N with γk = κ∥zk − z̄∥.
Proof: Let {zk}∞k=0 be the sequence generated by (10)

which, by virtue of Theorem 2, exists, is unique, and remains
in the neighbourhood of z̄ for z0 and v close to (z̄, 0). We
now argue with [17, Proof of Theorem 15.2] that

∥f(zk)− f(z̄)− (∇f(zk) + vk)(zk − z̄)∥
≤ L∥zk − z̄∥2 + |⟨vk, zk − z̄⟩|

where 2L is the Lipschitz constant of ∇f(z) around z̄, guar-
anteed to exist by Assumption 1 and H(z, v) = ∇f(z) + v,
and hence (11) holds by strong regularity of fH .

B. Multistep Newton-type Method

For our second result, we consider the perturbed multi-
variate generalized equation

f(x, y, v) + F (x, y) ∋ 0 (12)

with f : X×Y ×V → Z ′ and F : X×Y ⇒ Z ′. We propose
to solve (12) by the multistep Newton-type method

f̃(xk+1, yk, vk) + F̃ (xk+1) ∋ 0 (13a)
fHy(xk+1, yk+1, yk, vk) + F (xk+1, yk+1) ∋ 0 (13b)

where, in the first step, f̃ : X ×Y ×V → Z ′′ and F̃ : X ⇒
Z ′′ provide a (possibly lower-order) generalized equation for
x parametrized in y; in the second step, fHy(ξ, y, η, v) =
fH(ξ, ξ, y, η, v) with

fH : (x, ξ, y, η, v) 7→ f(ξ, η, v) +H(ξ, η, v)(x− ξ, y − η)

and operator H(ξ, η, v) : X × Y → Z ′ is a perturbed
approximation of f(ξ, y, 0) with respect to y around η.

The intuition behind the multistep Newton-type method is
that the inclusion (13a) is solved separately, e.g., through a
nested sequence of Newton-type iterations, to obtain xk+1;
whereas (13b) represents a Josephy–Newton step partially in
y. The multistep Newton-type method is a useful framework
to study bilevel optimization problems, where (13a) corre-
sponds to the KKT system of a lower-level parametrized
optimization problem. If the inclusion (13a) is solved inex-
actly, e.g., by limiting the number of nested Newton-type
steps, the error would be reflected by the perturbation. We
will demonstrate the usefulness of the multistep framework
on the example of the augmented Lagrangian method which
can be interpreted as solving the dual problem of (4), which
leads to a bilevel optimization [22].

Assumption 2: Let z̄ = (x̄, ȳ) ∈ X × Y and κ̃, κ, γy, γv,
γw > 0 satisfy:

(a) (x̄, ȳ) is a solution of (12);
(b) f̃(·, ȳ, 0)+ F̃ is strongly subregular with constant κ̃ at

x̄ for 0;
(c) f̃(·, y, v) is Lipschitz continuous uniformly in (y, v) at

(x̄, ȳ, 0);

(d) f̃(x, ·, ·) is Lipschitz continuous with constant γw
uniformly in x at (x̄, ȳ, 0);

(e) fH(·, ξ, ·, η, v) is Lipschitz continuous uniformly in
(ξ, η, v) at (x̄, x̄, ȳ, ȳ, 0);

(f) fH(x, ·, y, ·, v) is Lipschitz continuous with constant
γy uniformly in (x, y, v) at (x̄, x̄, ȳ, ȳ, 0);

(g) fH(x, ξ, y, η, ·) is Lipschitz continuous with constant
γv uniformly in (x, ξ, y, η) at (x̄, x̄, ȳ, ȳ, 0);

(h) fH(·, x̄, ·, ȳ, 0)+F is strongly regular with constant κ
at (x̄, ȳ) for 0;

and κγy < 1.
Remark 1: The mapping fH(·, x̄, ·, ȳ, 0) + F is strongly

regular if f(·, ·, 0) + F is strongly regular with constant
κ̃ and fH(·, ξ, ·, η, v) − f(·, ·, 0) is Lipschitz continuous
with constant smaller than κ̃−1 uniformly in (ξ, η, v) [17,
Theorem 8.6].

Remark 2: An immediate consequence of Assumption 2
is that the solution mapping S : Y × V ⇒ X of (13a) has
the isolated calmness property with constant κ̃γw at (ȳ, 0)
for x̄ by virtue of [17, Theorem 12.4].

Remark 3: If F is a piecewise polyhedral mapping, then
strong subregularity is equivalent to x̄ being an isolated point
in S(ȳ, 0), a consequence of outer Lipschitz continuity of
piecewise polyhedral mappings [17, Theorem 12.5], which
is again equivalent to a unique solution of (12).

For the following result, we impose the norm on X × Y
as ∥(x, y)∥ := ∥x∥+ ∥y∥; recall that v = (v0, v1, . . .) ⊂ V .

Theorem 3: Under Assumption 2, there exists a sequence
{(xk, yk)}∞k=0 generated by (13) for (x0, y0) and v ⊂ V
sufficiently close to (x̄, ȳ, 0) such that {yk} is unique and

∥(xk, yk)− (x̄, ȳ)∥ ≤ αk∥(x0, y0)∥+ κγv∥v∥∞ (14)

for all k ∈ N with αk → 0 as k → ∞, that is, (13) is locally
input-to-state stable with gain κγv .

Proof: Take (yk, vk) ∈ Y ×V close to (ȳ, 0); by strong
subregularity (Assumption 2-b), there exists a solution xk+1

of (13a) close to x̄. Let yk+1 solve (13b) and observe that

0 ∈ f(xk+1, yk, vk) + F (xk+1, yk+1)

+H(xk+1, yk, vk)(xk+1 − xk+1, yk+1 − yk)

in other words, (xk+1, yk+1) is a Josephy–Newton step in
the sense of (9) for (12) with zk = (xk+1, yk). By virtue of
Theorem 2, the point yk+1 is unique, satisfies

∥(xk+1, yk+1)− z̄∥ ≤ κγy∥(xk+1, yk)− z̄∥+ κγv∥vk∥

and hence,

∥yk+1 − ȳ∥ ≤ κγy∥yk − ȳ∥+ κγv∥vk∥ (15a)

by choice of ∥ · ∥ on X ×Y and κγy < 1 by Assumption 2.
Moreover, the solution map S of (13a) has the isolated
calmness property (Remark 2) and thus,

∥xk+1 − x̄∥ ≤ κ̃γw∥yk − ȳ∥+ κ̃γw∥vk∥. (15b)

Combining (15a) and (15b), we obtain (14) with αk =
(κγy)

k−1(κγy + κ̃γw), the desired result.
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Remark 4: It should be noted that is never evaluated for
a nonzero argument x− ξ but in the theoretical analysis and
hence can freely be chosen to satisfy the strong regularity
condition in Assumption 2. In particular, a possible choice
for H is

H(ξ, η, v) : (dx, dy) 7→ f(ξ + dx, η, v)

+Hy(ξ + dx, η, v)dy − f(ξ, η, v)

with Hy(ξ, η, v) : Y → Z ′, that is,

fH(x, ξ, y, η, v) ≡ f(x, η, v) +Hy(x, η, v)(y − η)

and regularity and continuity of fH depend on fHy only.
We present applications of these results in nonlinear

optimization in the next section.

C. Related Results

Previous works studied a Newton-type iteration of the
form of (9) with H(z, p) = ∇xf(z, p) to solve parametrized
generalized equations, assuming Fréchet differentiability of
f with respect to z and continuity of f and ∇xf . Under
strong regularity assumptions similar to Assumption 1, the
authors of [4] concluded that the sequence {zk}∞k=0 is locally
unique and convergent to a solution z(p) for any constant p
sufficiently close to 0, and ∥z(p)− z(0)∥ ≤ µ∥p∥ for some
constant µ > 0. Furthermore, in [5], it was proven that the
sequence satisfies

sup
k∈N+

∥zk − z̄∥ ≤ α∥z0 − z̄∥+ γ∥p∥

for some α < 1 and γ > 0; this result is both necessary and
sufficient for local input-to-state stability in the sense of (8).

Another classical topic in the study of Newton-type meth-
ods is the convergence of the iteration (2) or (6) if the right-
hand side is a nonzero remainder, viz.

f(zk) +H(zk)(zk+1 − zk) + F (zk) ∋ ek

typically corresponding to solving inexactly the underlying
linear equations (see, e.g., [23]). Using local input-to-state
stability properties, we can immediately retrieve the desired
convergence of {zk}∞k=0 to z̄ if ∥ek∥ → 0.

IV. APPLICATIONS

We apply the results of Theorems 2 and 3 to derive
new robust convergence properties for nonlinear optimization
algorithms. We consider a perturbed variant of (4), viz.

min
x∈C

h(x, v) subject to g(x, v) = 0 (16)

where we assume that h and g are twice continuously
differentiable in x at (x̄, 0) uniformly in v; and the derivatives
are Lipschitz continuous in v uniformly in x.

A. Approximate Sequential Quadratic Programming

A classical approach to sequential quadratic programming
is the approximation of the Hessian of the (perturbed)
Lagrangian L(x, y, v) := h(x, v) + ⟨g(x, v), y⟩ for (16),
which appears in the upper-left block of the gradient when
computing the (exact) Newton step for the perturbed variant
of (5). Approximating the Hessian by a positive definite
matrix Bk+1 at step k ∈ N, the Newton step then becomes
equivalent to solving the convex program [17, Theorem 11.1]

min
x∈C

1

2
⟨Bk+1(x− xk), x− xk⟩+∇h(xk, vk)(x− xk)

(17a)
subject to g(xk, vk) +∇g(xk, vk)(x− xk) = 0 (17b)

and taking zk+1 =(x, y)k+1 as (unique) primal-dual solution
of (17). Popular algorithms to compute the approximation
Bk+1 along the solution {(x, y)k}k∈N include the BFGS
and DFP methods (named, respectively, for its discoverers),
which belong to the larger Broyden class of Hessian update
formulas and often provide superlinear convergence of the
quasi-Newton iteration [24].

Assumption 3: Eq. (4) has an optimal solution (x̄, ȳ) ∈
X × Y such that (5) is strongly regular at (x̄, ȳ) for 0;
the update Bk+1 = Ψ(Bk, zk+1, vk) is locally input-to-state
stable around ∇2L(x̄, ȳ, 0) with inputs (zk+1, vk).

Hessian approximations such as BFGS and DFP of-
ten require additional conditions to ensure that Bk →
∇2L(x̄, ȳ, 0). Here, however, we neglect the intricacies of
the approximation and instead focus on the interplay between
quasi-Newton step and Hessian update.

Proposition 3: Under Assumption 3, the quasi-Newton
step of (17) with Hessian update Bk+1 = Ψ(Bk, zk+1, vk)
is locally input-to-state stable.

Proof: Note that the KKT system of (17) can be written
in the form of (9) with zk = (xk, yk),

Hk =

(
∇2L(xk, yk, vk) + wk + ek ∇g(xk, vk)

∗

∇g(xk, vk) 0

)
with wk = Bk+1 − ∇2L(xk, yk, 0) and ek =
∇2L(xk, yk, 0)−∇2L(xk, yk, vk). By virtue of Corollary 1,
Assumption 3, and Lipschitz continuity of ∇2L, we have
that

∥zk+1 − z̄∥ ≤ α1∥zk − z̄∥+ γw∥wk∥+ γv∥vk∥

and

∥wk+1∥ ≤ α2∥wk∥+ γBz∥zk+1 − z̄∥+ γBv∥vk∥

with α1, α2 ∈ [0, 1), γw, γv, γBz, γBv > 0, and α1, γw → 0
as zk → z̄. Combining these results, we obtain

∥zk+1 − z̄∥+ ∥wk+1∥ ≤ ᾱ(∥zk − z̄∥+ ∥wk∥) + γ̄∥vk∥
(18)

with ᾱ = max{α1(1+ γB), α2+ γ(1+ γB)}; assuming that
zk is sufficiently close to z̄ such that ᾱ < 1 gives the desired
result.
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B. Augmented Lagrangian Method

The augmented Lagrangian method solves the perturbed
nonlinear program (16) by iterating over

xk+1 ∈ argmin
x∈C

{
h(x, vk) + ⟨yk, g(x, vk)⟩+

ϱ

2
∥g(x, vk)∥2

}
(19a)

yk+1 = yk + ϱg(xk+1, vk) (19b)

for some penalty ϱ > 0 and perturbation vk ∈ V . The
cost function in (19a) is the titular augmented Lagrangian,
parametrized in the dual variable yk, and the necessary
conditions can be written as a parametrized generalized
equation

∇h(x, vk) +∇g(x, vk)
∗yk

+ ϱ∇g(x, vk)
∗g(x, vk) +NC(x) ∋ 0 (20)

provided that h and g are continuously differentiable. A
classical result [22] states that, under mild assumptions and
for sufficiently large (but finite) value of ϱ, the function
minimized in (19a) with vk = 0 becomes locally strictly
convex and (19b) can be interpreted as gradient ascent for
the dual problem. This also corresponds to strong regularity
of (20) for all yk around ȳ.

Assumption 4: Eq. (4) with v = 0 has an optimal solution
(x̄, ȳ) ∈ X × Y and (5) is strongly regular at (x̄, ȳ) for 0.

An immediate consequence is strong subregularity of (20)
for sufficiently large penalties; to that extent, we introduce

fϱ(x, y, yk, vk) =

(
∇h(x, vk) +∇g(x, vk)

∗y
g(x, vk) + ϱ−1(yk − y)

)
and study the augmented KKT system as follows.

Lemma 1: Under Assumption 4, there exist constants
ϱ0 > 0 and kϱ0

> 0 such that, for all ϱ ≥ ϱ0,
(a) fϱ(·, ·, ȳ, 0) +NC×X∗ is strongly subregular at (x̄, ȳ)

for 0 with constant kϱ ∈ (0, kϱ0
];

(b) Eq. (20) is strongly subregular at x̄ for 0 with constant
kϱ ∈ (0, kϱ0 ] if yk = ȳ and vk = 0.

Proof: We observe that since (5) is strongly subregular
at (x̄, ȳ) for 0 with some constant κ > 0, the set-valued
mapping

Fϱ(x, y) := fϱ(x, y, ȳ, 0) +NC×X∗((x, y)) (21)

is strongly subregular at (x̄, ȳ) for 0 with constant kϱ =
ϱκ/(ϱ−κ) for all ϱ > κ [17, Theorem 12.2]. Note that kϱ is
strictly decreasing as ϱ → ∞. Substituting yx = ȳ+ϱg(x, 0),
we have that Fϱ(x, yx) ∋ (δ, 0) if and only if

∇h(x, 0) +∇g(x, 0)∗ȳ + ϱ∇g(x, 0)∗g(x, 0) +NC(x) ∋ δ

for all δ around 0. Hence, (20) is strongly subregular at x̄
for 0 with constant kϱ ≤ kϱ0

if yk = ȳ and ϱ ≥ ϱ0 > κ.
We show that the augmented Lagrangian method is an

instance of the multistep Newton-type method (13) for the
generalized equation (5) in (x, y), hence proving local input-
to-state stability. Note that our approach does not require f
to be twice differentiable.

Proposition 4: Under Assumption 4, the iteration (19) is
locally input-to-state stable around (x̄, ȳ) for all ϱ ≥ ϱ̄ > 0.

Proof: Let (xk+1, yk+1) be the result of (19) for a given
(yk, vk) ∈ Y × V ; then

fϱ(xk+1, yk+1, yk, vk) +NC×X∗((xk+1, yk+1)) ∋ 0 (22)

for any ϱ > 0. Eq. (22) corresponds to a partial Newton step
for (5) in the sense of (13b) and Remark 4, where

fHy(ξ, y, η, v) =(
∇h(ξ, v) +∇g(ξ, v)∗η

g(ξ, v)

)
+

[
∇g(ξ, v)∗

−ϱ−1

]
(y − η)

and fHy(ξ, y, ·, v) is Lipschitz continuous with constant ϱ−1

uniformly in (ξ, y, v). Moreover, fHy(·, ·, ȳ, 0) +NC×X∗ is
strongly subregular with constant kϱ ≤ kϱ0

at (x̄, ȳ) for 0
for all ϱ ≥ ϱ0 by virtue of Lemma 1. Pick ϱ̄ ≥ ϱ0 such that
ϱ̄−1kϱ0

< 1; the desired result follows from Theorem 3 for
any ϱ ≥ ϱ̄.

V. CONCLUSIONS

Newton methods for generalized equations play a major
role in nonlinear optimization. Our local input-to-state stabil-
ity result for the perturbed Josephy–Newton method enables
the study of optimization algorithms interconnected with dy-
namic systems, such as in optimization-based control, under
perturbations or uncertain conditions. In addition, our locally
input-to-state stable multistep Newton-type method allows
for advanced optimization techniques as demonstrated on
the augmented Lagrangian method. Further work will focus
on relaxations of strong regularity and Lipschitz continuity
conditions within the general ISS framework.

APPENDIX

We provide implicit function theorems for generalized
equations with multiple parameters, extending [17, Theo-
rems 8.5 and 12.4]. To that extent, define

l̂ipx(f ; (x̄, p̄)) = lim sup
x1,x2→x̄,x1 ̸=x2

p→p̄

∥f(x1, p)− f(x2, p)∥
∥x1 − x2∥

for f : X × P → Y , and note that f(·, p) is Lipschitz
continuous with constant γ uniformly in p around (x̄, p̄) if
and only if l̂ipx(f ; (x̄, p̄)) ≤ γ. We consider the parametrized
generalized equation

f(x, p1, p2) + F (x) ∋ 0 (23)

with solution map

S : p = (p1, p2) 7→ {x ∈ X | (x, p) solves (23)}

and P = P1 × P2.
Theorem 4: Let (x̄, p̄) ∈ graphS and suppose that h :

X → Y satisfies
(a) f(x̄, p̄) = h(x̄);
(b) h+F is strongly subregular with constant κ at x̄ for 0;
(c) f(·, p) − h is Lipschitz continuous with constant µ

uniformly in p at (x̄, p̄);
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(d) f(x, ·, p2) and f(x, p1, ·) are Lipschitz continuous uni-
formly in (x, p) at (x̄, p̄);

and κµ < 1; then the solution S(·) of (23) has the isolated
calmness property at p̄ for x̄ satisfying

∥x− x̄∥ ≤ ω l̂ipp1
(f ; (x̄, p̄))∥p1 − p̄1∥

+ ω l̂ipp2
(f ; (x̄, p̄))∥p2 − p̄2∥

with ω = (1 − κµ)−1κ for all (p1, p2, x) ∈ graphS in a
neighbourhood of (x̄, p̄).

Proof: The proof is analogous to [17, Proof of Theo-
rem 12.4] using that

∥f(x, p1, p2)− f(x, p̄1, p̄2)∥ ≤ γ1∥p1 − p̄1∥+ γ2∥p2 − p̄2∥

for all (x, p) around (x̄, p̄) with some constants γ1, γ2 ≥ 0
by uniform Lipschitz continuity3 of f .

Corollary 2: If the assumptions of Theorem 4 hold with
h + F being strongly regular with constant κ at x̄ for 0,
then the solution S(·) of (23) has a single-valued localization
s : P1 × P2 → X at p̄ for x̄ satisfying

∥s(p1, p2)− x̄∥ ≤ ω l̂ipp1
(f ; (x̄, p̄))∥p1 − p̄1∥
+ ω l̂ipp2

(f ; (x̄, p̄))∥p2 − p̄2∥

with ω = (1 − κµ)−1κ for all (p1, p2) in a neighbourhood
of p̄. ◁
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