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Abstract— The paper addresses the problem of the safe im-
plementation of a state predictor used for stabilization of linear
time-invariant systems with input delay. To this end, we design
an observer generating an estimate of the state prediction error,
i.e., the estimate of the difference between the inaccessible true
state prediction and the state prediction estimate elaborated by
a state predictor. This estimate is used as feedback in the closed-
loop state predictor. The robustness of the proposed closed-loop
predictor with respect to parametric perturbations is proved
and illustrated by simulation results. Robustness with respect to
approximation errors caused by limited accuracy of a numerical
solver is discussed and illustrated by simulation results.

I. INTRODUCTION AND PROBLEM STATEMENT

Consider the problem of state-feedback asymptotic stabi-
lization of the following linear time-invariant system with
input delay1:

ẋ(t) = Ax(t) + bu(t− h), (1)

where x ∈ Rn is the state with the initial condition x0,
u ∈ R1 is the control (u(t) ≡ 0 for t < h), A ∈ Rn×n is
not Hurwitz, b ∈ Rn, the pair (A, b) is controllable, and h
is the known time delay.

Remark 1: We will assume that the states of all considered
dynamical systems are zero for t < 0, and under initial
condition we will assume the state at the instance t = 0,
e.g., x0 = x(0). By xT = x(T ) we will denote the state of
an integrator which is set/reset at the instance T . �

One of the known approaches to the problem consists in
the use of the following control law [9], [7]:

u(t) = −k>
(
eAhx(t) +

∫ t

t−h
eA(t−τ)bu(τ)dτ

)
, (2)

where the vector of feedback gains k ∈ Rn is such that the
matrix Ak = A− bk> is Hurwitz. It is worth noting that the
expression in the brackets is exactly predicted value of the
state, i.e.,

eAhx(t) +

∫ t

t−h
eA(t−τ)bu(τ)dτ = x(t+ h), (3)

while the control (2) yields the closed-loop characteristic
equation det

(
sI −A+ bk>

)
= 0.

Stabilizing feedback of the form (2) is widely used in
many control techniques such as model reduction through
state transformation [1], [2], finite spectrum assignment [9],
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[14], predictor-based stabilization of systems with multiple
delays [6], [13], output regulation in systems with delays [4],
[5], [11] and so on.

However, this elegant theoretical result has essential draw-
back related to practical implementation of the integral
term called distributed delay. In [9], it was proposed to
approximate the integral with some numerical quadrature
method when the integral is replaced by a discrete sum with
a finite number of terms. It was suggested that the closed-
loop system should be stable for sufficiently high accuracy
(i.e., for sufficiently large number of the terms). However, in
[3] it was demonstrated that for some conventional numerical
quadrature methods the control law (2) may not stabilize the
closed-loop system even for arbitrary large number of the
discrete terms in the sum. To overcome this obstacle, in [10]
it was proposed to include a low-pass filter in the control
loop, while in [15] modified safe discrete-delay implemen-
tations of the distributed delay were designed. However, in
[10], [15] robustness of the proposed techniques to the plant
parametric perturbations was not analyzed.

An alternative approach to the implementation of the
integral term is based on its treatment as the solution of
the ordinary differential equation

ψ̇(t) = Aψ(t) + bu(t)− eAhbu(t− h), ψ0 = 0, (4)

where ψ ∈ Rn. In this case,

x(t+ h) = eAhx(t) + ψ(t), (5)

and the control (2) takes the form

u = −k>
(
eAhx+ ψ

)
. (6)

Hereafter, we will consider (4) and (5) as a virtual mathe-
matical model of the true state prediction x(t+ h), while a
solution ψ(t) of (4) as the unmeasured true integral term.

At the same time, we will assume that for implementation
of a control law the integral term estimate ψ̂(t) is generated
as a solution (may be approximated by a numerical solver)
of the equation

˙̂
ψ(t) = Âψ̂(t) + b̂u(t)− eÂhb̂u(t− h), ψ̂0, (7)

where Â and b̂ are some constant estimates of A and b,
respectively. In this case, the state prediction estimate is

x̂(t+ h) = eÂhx(t) + ψ̂(t), (8)

while the control takes the form

u(t) = −k̂>
(
eÂhx(t) + ψ̂(t)

)
, (9)
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where the vector of feedback gains k̂ is such that the matrix
Âk = Â− b̂k̂> is Hurwitz.

We will call the prediction estimate (8) as the open-loop
state prediction estimate, because the value x̂(t + h) is not
corrected by a feedback on the state prediction error as it
will be proposed in Section II.

The main drawback of this approach consists in the fact
that it is not robust since the model (4) is internally unstable
when A is not Hurwitz [9]. It means that the closed-loop
system (1), (7), (9) may lose the stability under arbitrarily
small perturbations. Such perturbations can be caused either
by parametric uncertainty of the plant (when some estimates
Â and b̂ are used in the control law (7), (9) and Â 6= A,
b̂ 6= b) or by approximation errors.

The main purpose of this paper is to propose a modifi-
cation of the control law which preserves the boundedness
of all the closed-loop signals and asymptotic convergence
x(t) → 0 as t → ∞ at least for small parametric and
approximation perturbations. The main contributions of the
paper are the following:

1) a new stable closed-loop state predictor is proposed;
2) the robustness of the proposed state predictor with

respect to the parametric perturbations is proved.
Additionally, robustness with respect to approximation

errors caused by a numerical solver is considered as a
conjecture and illustrated by simulation results.

The paper is organized as follows. In Section II, for the
sake of methodological purposes, we design and analyze the
closed-loop predictor under assumption that the parameters
A and b of the plant are known exactly and there are no
approximation errors. Then, in Section III, for the case of
Â 6= A, we prove the robustness of the closed-loop predictor.
Simulation results are presented in Section IV.

II. CLOSED-LOOP PREDICTION

A. Control law design

To clarify motivation of the design, we start with the ideal
case when the control involves the true values of A and b,
and the equation (7) is solved absolutely precisely. In this
case, instead of equations (7)–(9) we have

˙̂
ψ(t) = Aψ̂(t) + bu(t)− eAhbu(t− h), ψ̂0. (10)

x̂(t+ h) = eAhx(t) + ψ̂(t), (11)

u(t) = −k>
(
eAhx(t) + ψ̂(t)

)
. (12)

Here, we set ψ̂0 6= 0 just to stress the fact that the designed
closed-loop predictor is asymptotically stable. Of course, in
practical implementation it is reasonable to set ψ̂0 = 0.
However, this choice is not crucial due to asymptotic stability
of the proposed predictor.

Introduce the state prediction error

ε(t) := x(t+ h)− x̂(t+ h). (13)

In view of (5) and (11), we have

ε(t) = ψ(t)− ψ̂(t), (14)

and in view of (4) and (10) we obtain:

ε̇(t) = Aε(t), ε(0) = −ψ̂0, (15)

where ε(t) is not measured. However, the value2

y(t) := ε(t− h) = x(t)− x̂(t) (16)

or (see (11))

y(t) = x(t)− eAhx(t− h)− ψ̂(t− h) (17)

is measured and can be considered as the delayed output of
the model (15). Then, in view of (15) and (16) we can write:

y(t) = e−Ahε(t). (18)

The key idea of the closed-loop predictor design is to
estimate the difference between the inaccessible true state
prediction x(t+h) and the state prediction estimate x̂(t+h)
described by the model

ε̇(t) = Aε(t), y(t) = ε(t− h) (19)

with the measured output y, and to use this estimate for
online correction of x̂(t+ h).

To this end, we use the following observer (which is a
particular case of the observer from Chapter 3 of [7]):

˙̂ε(t) = Aε̂(t) + LeAh
(
y(t)− e−Ahε̂(t)

)
, ε̂0 = 0, (20)

where ε̂ ∈ Rn is the estimate of the state prediction error,
and the designer-chosen matrix L ∈ Rn×n is such that AL =
A− L is Hurwitz.

Introducing the estimate error ε̃ := ε− ε̂ and calculating
its time derivative in view of (15), (18), and (20), we obtain

˙̃ε = ALε̃ (21)

and, therefore, ε̂(t)→ ε(t) = x(t+h)− x̂(t+h) as t→∞.
Remark 2: Since the model (18) is valid for t ≥ h only

(because x(t− h) ≡ 0 and ψ̂(t− h) ≡ 0 for 0 ≤ t < h), we
set y(t) ≡ 0 for 0 ≤ t < h. �

Relation (14) and model (21) motivate us to correct the
state prediction estimate according to the expression

x̄(t+ h) := eAhx(t) + ψ̂(t) + ε̂(t). (22)

It is easy to see that the following equality holds:

x̄(t+ h) = x(t+ h)− ε̃(t), (23)

where ε̃(t) → 0 as t → ∞. Therefore, instead of (12) we
use the control

u(t) = −k>
(
eAhx(t) + ψ̂(t) + ε̂(t)

)
. (24)

We will call the state prediction estimate (22) as the
closed-loop state prediction estimate because it is corrected
by ε̂ depending on the feedback signal of the state prediction
error (see (20) and (16)).

However, despite of the fact that ε̃(t)→ 0 as t→∞, the
estimates ε̂ and ψ̂ may grow unboundedly since the model

2Similar approach was employed in [8], where the state prediction error
was used to cope with external disturbances.
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(19) is not stable. To prevent unbounded growth of ψ̂ and ε̂,
we propose to reset the states in the models (10) and (20)
at each instance mT (where m = 1, 2, 3, . . . and T is a
sufficiently large time interval to be defined later) according
to the rule3

ψ̂mT = ψ̂(mT ) + ε̂(mT ), ε̂mT = 0. (25)

Taking into account that ε̂ = ε− ε̃ = ψ − ψ̂ − ε̃, we obtain

ψ̂mT = ψ(mT )− ε̃(mT ). (26)

To provide smooth switching of the feedback signal y(t)−
e−Ahε̂(t) in the observer (20) depending on the past values
ψ̂(t− h), instead of (17) we use the equation

y(t) = x(t)− eAhx(t− h)− ψ̄(t− h), (27)

where ψ̄(t− h) is defined as

ψ̄(t− h) =

 ψ̂(t− h) + ε̂(t− h)
if mT ≤ t < mT + h,

ψ̂(t− h) if mT + h ≤ t < (m+ 1)T.

(28)

To provide a decreasing sequence ε̃(mT ) needed for (26),
we choose T according to the following rule. Let a positive-
defined matrix P be a solution of the matrix equation
A>LP + PAL = −I , while λ1 and λ2 are the minimum and
maximum eigenvalues of the matrix P , respectively. Then,
in view of (21), we derive

|ε̃(t)|2 ≤ λ2
λ1
e−

t
λ2 |ε̃(0)|2.

To provide inequality ε̃((m+1)T ) < ε̃(mT ), we choose the
time interval T as

T ≥ max

{
−λ2 ln

(
λ1
λ2

)
, h

}
. (29)

Remark 3: Note, since (λ1/λ2) < 1, then ln(λ1/λ2) < 0

and −λ2 ln
(
λ1

λ2

)
> 0. �

Thus, the proposed control law consists of: the closed-loop
state predictor (10) and (22); the prediction error observer
(20), (27), and (28); the controller (24); the scheme of the
states resetting (25).

B. Stability properties in the ideal case

To analyze the stability properties, we derive a model
of the closed-loop system. As it will be seen later, it is
convenient to derive separately two dynamic subsystems. The
first one will be represented in the components (ε̃, x, ψ),
while the second one will be represented in (ε, ε̂, ψ̂).

Remark 4: Since we switch the initial conditions for ψ̂
and ε̂, the derived dynamic models are valid for the time
intervals mT ≤ t < (m+ 1)T . However, we will use these
models for stability analysis on the infinite time interval t ∈
[0,∞) taking into account the properties of the sequences
ε̃(mT ), ε̂(mT ) and ε(mT ). �

3An alternative approach to the resetting of the model (10) was proposed
in [12]. However, in this paper the predictor remains open-loop and does
not provide asymptotic behavior of the prediction.

Substituting (23) and (24) into (1), we obtain

ẋ = Ax− bk>x+ bk>ε̃(t− h) = Akx+ bk>e−ALhε̃.

Now, substituting (24) into (4), we have

ψ̇ = Aψ − bk>
(
eAhx+ ψ̂ + ε̂± ψ

)
+ eAhbk>x− eAhbk>ε̃(t− h)

= Akψ +Dx+ Cε̃,

where D = eAhbk> − bk>eAh, C = bk> − eAhbk>e−ALh.
Therefore, on the time intervals mT ≤ t < (m+ 1)T we

have  ˙̃ε
ẋ

ψ̇

 =

 AL 0 0
bk>e−ALh Ak 0

C D Ak

 ε̃x
ψ

 ,
where Ak and AL are Hurwitz. Therefore, this subsystem
is asymptotically stable due to its diagonal structure. If T
is defined by (29), the resetting does not destroy asymptotic
convergence and ε̃(mT ) → 0 as m → ∞, and ε̃(t) → 0 as
t→∞. Therefore, we conclude that ε̃(t), x(t), ψ(t)→ 0 as
t→∞.

Now, we will derive a subsystem in the components
(ε, ε̂, ψ̂). For ε̂, we have

˙̂ε = Aε̂+ LeAh
(
e−Ahε− e−Ahε̂

)
= ALε̂+ Lε.

Replacing (24) in (10), we obtain

˙̂
ψ = Aψ̂ − bk>

(
eAhx+ ψ̂ + ε̂

)
+ eAhbk>x− eAhbk> (ε(t− h)− ε̂(t− h))

= Akψ̂ +Dx−Kε+ K̂ε̂,

where K = eAhbk>e−Ah and K̂ = K − bk>.
Therefore, on the time intervals mT ≤ t < (m+ 1)T we

have  ε̇˙̂ε
˙̂
ψ

 =

 A 0 0
L AL 0

−K K̂ Ak

εε̂
ψ̂

+

 0
0
D

x. (30)

This subsystem is unstable because of the matrix A.
However, due to the states resetting (25), we have ε(mT ) =
ε̃(mT ), where ε̃(mT ) → 0 as m → ∞ (as proved above).
Therefore, ε(mT ) is a decreasing sequence. Since ε(t) =
eAtε(mT ) for t ∈ [mT, (m+1)T ), we conclude that ε(t)→
0 as t → ∞. Now, taking into account that x(t), ε(t) → 0
as t → ∞, from (30) we conclude that ε̂(t), ψ̂(t) → 0 as
t→∞. Thus, we have proved the following statement.

Proposition 1: In the ideal case, in the closed-loop
system consisting of the plant (1), the closed-loop state
predictor (10) and (22), prediction error observer (20),
(27), and (28), the controller (24), and the scheme of
states resetting (25) all the signals are bounded and
ε̃(t), ε̂(t), ε(t), x(t), ψ(t), ψ̂(t)→ 0 as t→∞ for any initial
conditions x0, ψ̂0. �

In the next section, we analyze robustness of the proposed
control with respect to parametric perturbations.
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III. ROBUSTNESS WITH RESPECT TO PARAMETRIC
PERTURBATIONS

Now let us assume that in the control law we use the
estimate Â instead of the true value A, and Â 6= A.

Remark 5: All results can be also extended to the esti-
mation of b̂. However, we consider the case of Â only to
simplify expressions and the proof. �

Therefore, the control law consists of:
the closed-loop state predictor

˙̂
ψ(t) = Âψ̂(t) + bu(t)− eÂhbu(t− h), (31)

x̄(t+ h) := eÂhx(t) + ψ̂(t) + ε̂(t); (32)

the prediction error observer

˙̂ε(t) = Âε̂(t) + L̂eÂh
(
y(t)− e−Âhε̂(t)

)
, (33)

y(t) = x(t)− eÂhx(t− h)− ψ̄(t− h), (34)

where L̂ is a designer-chosen matrix such that ÂL = Â− L̂
is Hurwitz and ψ̄(t− h) is defined by (28);

the controller

u(t) = −k̂>x̄(t+ h) (35)

= −k̂>
(
eÂhx(t) + ψ̂(t) + ε̂(t)

)
,

where a designer-chosen vector k̂ is such that the matrix
Âk = Â− bk̂> is Hurwitz;

the scheme of the states resetting (25), where T is chosen
as

T ≥ max

{
−λ̂2 ln

(
γ
λ̂1

λ̂2

)
, h

}
, (36)

λ̂1 and λ̂2 are the minimum and maximum eigenvalues of the
matrix P̂ , respectively, while P̂ is a solution of the matrix
equation Â>L P̂ + P̂ ÂL = −I .

As in Section II-B, we first derive a model of the closed-
loop system in the components (ε̃, x, ψ).

For methodological purposes, we define the open-loop
state prediction estimate x̂(t+ h) := eÂhx(t) + ψ̂(t). Then,
for the state prediction error we have

ε(t) = x(t+ h)− x̂(t+ h) = Ẽx(t) + ψ(t)− ψ̂(t), (37)

where Ẽ = eAh − eÂh.
Therefore,

ε̂ = Ẽx+ ψ − ψ̂ − ε̃ (38)

and (see (32))

x̄(t+ h) = eÂhx+ ψ̂ + eAhx− eÂhx+ ψ − ψ̂ − ε̃
= eAhx+ ψ − ε̃ = x(t+ h)− ε̃. (39)

Substituting (39) into (35) and (1), we obtain

ẋ = Ākx+ bk̂>ε̃(t− h),

where Āk = A− bk̂>.

Now consider y(t) defined by (34):

y(t) = eAhx(t− h) + ψ(t− h)− eÂhx(t− h)− ψ̄(t− h)

= Ẽx(t− h) + ψ(t− h)− ψ̄(t− h) = ε(t− h).

In view of (37), (4), and (31), we have

ε̇ = Ẽẋ+ ψ̇ − ˙̂
ψ = ẼAx+ Ẽbu(t− h)

+ Aψ + bu− eAhbu(t− h)

− Âψ̂ − bu+ eÂhbu(t− h)

= Âε+ ẼAx+ Ãψ, (40)

where Ã = A− Â and ẼA = ÃeAh − eÂhÃ.
In view of (40), we have

ε(t−h) = e−Âhε(t)−
∫ t

t−h
eÂ(t−h−τ)

(
ẼAx(τ) + Ãψ(τ)

)
dτ.

Define

η(x, ψ) = −
∫ t

t−h
eÂ(t−h−τ)

(
ẼAx(τ) + Ãψ(τ)

)
dτ. (41)

Then

y(t) = ε(t− h) = e−Âhε(t) + η(x, ψ) (42)

and (in view of (40) and (33)) we have

˙̃ε = ε̇− ˙̂ε = Âε+ ẼAx+ Ãψ

− Âε̂+ L̂eÂh
(
e−Âhε+ η(x, ψ)− e−Âhε̂

)
= ÂLε̃+ Ẽx+ Ãψ + L̂eÂhη(x, ψ). (43)

In view of (4), (35), and (39), we obtain

ψ̇ = Aψ − bk̂>
(
eÂhx+ ψ̂ + ε̂± ψ

)
+ eAhbk̂>x− eAhbk̂>ε̃(t− h)

= Ākψ + D̂x+ bk̂>ε̃− eAhbk̂>ε̃(t− h),

where D̂ = eAhbk̂> − bk̂>eÂh.
Therefore, on the time intervals mT ≤ t < (m+ 1)T we

have ˙̃ε
ẋ

ψ̇

 =

 ÂL Ẽ Ã
0 Āk 0

bk̂> D̂ Āk

 ε̃x
ψ


+

 0

bk̂>

−eAhbk̂>

 ε̃(t− h) +

L̂eÂhÃ0
0

 η(x, ψ). (44)

In view of Corollary 1 from Appendix, we conclude that
the matrix Āk is Hurwitz for sufficiently small ‖Ã‖. Further,
since the matrices ÂL, Āk are Hurwitz, then the matrix ÂL 0 0

0 Āk 0

eAhbk̂> D̂ Āk


is Hurwitz due to its diagonal structure, and by virtue of
Lemma 1 the matrix ÂL Ẽ Ã

0 Āk 0

bk̂> D̂ Āk
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is Hurwitz for sufficiently small ‖Ã‖ (and, as a result,
for sufficiently small ‖Ẽ‖). By Lemmas 2 and 3 from
Appendix, we conclude that the origin of the system (44) is
asymptotically stable on time intervals mT ≤ t < (m+1)T .
Further, we can prove that the sequence ε̃(mT ) is decreasing
for sufficiently small ‖Ã‖ if T is defined by (36). As a
result, we have that ε̃(t), x(t), ψ(t), η(t) → 0 as t → ∞
for sufficiently small ‖Ã‖.

Now, we will derive subsystem in the coordinates (ε, ε̂, ψ̂).
The model for ε is given by (40). In view of (33) and (42),
for ε̂ we obtain

˙̂ε = Âε̂+ L̂eÂh
(
e−Âhε+ Ãη − e−Âhε̂

)
= ÂLε̂+ L̂ε+ L̂eÂhÃη.

Further, substituting (35) in (31) instead of u(t), and (35),
(39) instead of u(t− h), we obtain

˙̂
ψ = Âψ̂ − bk̂>

(
eÂhx+ ψ̂ + ε̂

)
+ eÂhbk̂>x− eÂhbk̂>ε̃(t− h)

= Âkψ̂ − bk̂>ε̂+ D̄x− eÂhbk̂>ε̃(t− h),

where D̄ = eÂhbk̂> − bk̂>eÂh.
On the time intervals mT ≤ t < (m+ 1)T we have ε̇˙̂ε

˙̂
ψ

 =

Â 0 0

L̂ ÂL 0

0 −bk̂> Âk

εε̂
ψ̂

+

ẼA0
D̄

x
+

Ã0
0

ψ +

 0

L̂eÂhÃ
0

 η −
 0

0

eÂhbk̂>

 ε̃(t− h).

As it was proved above, x(t), ε̃(t), ψ(t), η(t) → 0 as t →
∞. However, this subsystem is unstable through the matrix
Â. At the same time, due to the states resetting (25) at the
instants (36) we have ε(mT ) = ε̃(mT ), where ε̃(mT )→ 0.
As a result, ε(mT ) is the decreasing sequence. Taking into
account that ÂL and Âk are Hurwitz, we can conclude that
ε(t), ε̂(t), ψ̂(t) → 0 as t → ∞. Thus, we have proved the
following statement.

Proposition 2: The closed loop system consisting of the
plant (1), the closed-loop state predictor (31) and (32),
the prediction error observer (33), (34), and (28), the
controller (35), and the scheme of states resetting (25),
(36) is robust with respect to parametric disturbances
in the sense that for sufficiently small parametric distur-
bances ‖Ã‖ all the closed-loop signals are bounded and
ε̃(t), ε̂(t), ε(t), x(t), ψ(t), ψ̂(t)→ 0 as t→∞ for any initial
conditions x0, ψ̂0. �

IV. SIMULATION RESULTS

Consider simulation results illustrating robustness of the
proposed controller with the closed-loop state prediction.

Example 1. Robustness with respect to parametric distur-
bances. Consider the plant (1) with h = 1sec,

A =

[
0.2 1
0 0

]
, b =

[
0
1

]
, x0 =

[
0

0.5

]
,

tt
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Fig. 1. Transients in the system stabilized by the controller with the open-
loop prediction estimate of the state
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Fig. 2. Transients in the system stabilized by the controller with the
proposed closed-loop prediction estimate of the state

and
Â =

[
0.35 1

0 0.1

]
.

We set k̂ = [3.17, 3.45]>. Simulations are carried out
in MATLAB/ Simulink with the use of ode8 (Dormand
-Prince) solver and fixed sample time 0.00001.

Simulation results obtained for the controller with the
open-loop state prediction estimate with ψ̂0 = 0 are pre-
sented in Fig.1 and demonstrate unbounded growth of x(t).
Fig.2 presents simulation results obtained for the proposed
controller with the closed-loop state prediction and the states
resetting. In this simulation, we set

L̂ =

[
5.35 0

6 0.1

]
, T = 10sec.

As seen from the plots, in spite of the parametric perturba-
tions the proposed controller provides asymptotic zeroing of
x(t), ψ̂(t), and ε̂(t) with all the closed-loop signals bounded.

Example 2. Robustness with respect to approximation er-
rors. We make conjecture that the proposed predictor is also
robust with respect to numerical solver errors. To illustrate
this conjecture, consider the plant (1) with h = 1sec,

Â = A =

[
0 1
0 0

]
, b̂ = b =

[
0
1

]
, x0 =

[
0

0.5

]
.

We set k̂ = [2, 3]> and

L̂ =

[
5.2 0
6 0

]
.

Let us first consider simulation results for the controller
with the open-loop state prediction obtained with the use of
ode8 (Dormand-Prince) solver and fixed sample time
0.00001 (see Fig.3.a). As seen from the plots, the controller
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Fig. 3. Evolutions of x(t) in the system stabilized by the controller with
the open-loop prediction estimate of the state. Calculation using: a) ode8
(Dormand-Prince) solver and fixed sample time 0.00001; b) ode1
(Euler) solver and fixed sample time 0.0001.
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Fig. 4. Transients in the system stabilized by the controller with the
proposed closed-loop prediction estimate of the state obtained using ode1
(Euler) solver and fixed sample time 0.0001.

provides zeroing of the state x(t) visible at least for the given
zoom and t ≤ 30sec. However, for the less accurate ode1
(Euler) solver with fixed sample time 0.0001 we obtain
fast diverging of x(t) (see Fig.3.b). The proposed controller
with the closed-loop state prediction estimate provides for
ode1 (Euler) solver with fixed sample time 0.0001 the
boundedness of all the closed-loop signals and asymptotic
zeroing of x(t), ψ̂(t), and ε̂(t) (see Fig.4).

V. CONCLUSION

The closed-loop state predictor is designed and its robust-
ness with respect to parametric perturbation is proved. As
a conjecture, its robustness with respect to approximation
errors of the differential equation solver is considered. The
further research directions will be focused on the rigorous
proof of the robustness with respect to approximation errors
as well as with respect to the plant external disturbances.

APPENDIX

In this appendix, we summarize some mathematical tools
used in the proof of the main result in Section III. All these
lemmas can be proved via the properties of linear systems.

Lemma 1: If a matrix A ∈ Rn×n is Hurwitz, then a matrix
Â ∈ Rn×n is also Hurwitz for sufficiently small ‖Ã‖, where
Ã = A− Â and ‖A‖ is the spectral norm of the matrix. �

Corollary 1: If a matrix Ak = A−bk> is Hurwitz, where
A ∈ Rn×n and b, k ∈ Rn, then a matrix Âk = Â − bk> is
also Hurwitz for sufficiently small ‖Ã‖. �

Lemma 2: If the LTI system[
ẋ1
ẋ2

]
=

[
A1 0
0 A2

] [
x1
x2

]
is asymtotically stable, then the system[

ẋ1
ẋ2

]
=

[
A1 Ã
0 A2

] [
x1
x2

]
+

[
0
B

]
x1(t− h)

is asymptotically stable for sufficiently small ‖Ã‖, where
A,A1, A2, B ∈ Rn×n and x1, x2 ∈ Rn. �

Lemma 3: If a matrix A1 ∈ Rn×n is Hurwitz, then the
origin of the system

ẋ = A1x+B1η(x),

where x ∈ Rn, B1 ∈ Rn×m,

η(x) =

∫ t

t−h
eA2(t−τ)B2x(τ)dτ, η ∈ Rn,

A2 ∈ Rm×m, B2 ∈ Rm×m, and h > 0 is a constant, is
asymptotically stable for sufficiently small ‖B2‖. �
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