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Abstract— The paper focuses on estimating the rectifier
current in slim DC-Link AC drives, known for their reduced
DC-Link capacitance. Particularly, at full load, the capacitor’s
filtering effect on the input voltage diminishes. This allows
the estimation of the input voltage from DC-Link voltage
measurements. We adopt a simplified model, treating the drive
as a DC-Link that supplies a constant power load. Notably,
the model accounts for the equivalent series resistance (ESR)
of the capacitor, adding intricacy to the design. We propose
an adaptive observer to estimate both the rectification current
and the input voltage. We design a Luenberger state observer
with output injection terms. The study on the observer stability
is based on decoupling the state estimation errors from the
input estimation errors through swapping design. Theoretical
developments are validated through numerical simulations.

I. INTRODUCTION

Three phase electrical motor drives equipped with volt-
age source PWM inverters are used in many applications
such as Heating, Ventilation, Air-Conditioning (HVAC) [1],
electric vehicles [2], water and wastewater treatment [3],
oil and gas industry [4], etc. A typical motor drive system
employing a front-end diode rectifier is shown in Figure 1.
The 6-pulse diode bridge rectifies the three-phase voltages
(VA(t), VB(t), VC(t)). The role of the capacitor at the output
of the rectifier is to filter the rectified voltage. The resulting
DC-link voltage across the capacitor is then modulated by
the inverter to generate three-phase voltage signals, enabling
precise control of the motor’s speed or torque. For applica-
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Fig. 1. Three phase drive system.

tions with low dynamic performance requirements such as
the HVAC applications [5], the DC-Link capacitance can
be reduced. In the literature, AC drives with small DC-
Link capacitance are called slim DC-Link AC drives [6].
Such types of drives have low cost and low total harmonic
distortion (THD) of the grid current. In addition, the DC-Link
electrolytic capacitors can be replaced by film capacitors [7].
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The three phase circuit of Figure 1 can be simplified to have
the single phase circuit shown in Figure 2 (see [8], [9], [10]
and references therein). We recall here the definition of the
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Fig. 2. Simplified drive circuit.

circuit variables
Rdc = 2Rcc + 2rd + 6FccLcc

Ldc = 2Lcc

(1)

where Fcc is the grid frequency, Rcc is the source resistance,
Lcc is the source inductance, rd is the diode bridge on-
resistance, C is the DC-Link capacitance, rC is the ESR, P is
the power consumed by the motor, irec(t) is the rectification
current and Vdc(t) is the DC-Link voltage. The resistance
6FccLcc in (1) models the commutation effect of the 6-pulse
diode bridge. The three phase inverter and the motor are
modeled as a constant power load of current idc(t) inversely
proportional to the DC-Link voltage Vdc(t). For an electrical
grid with nominal line-line RMS voltage UN , the rectification
voltage can be expressed as [9]:

Vrec(t) = Vavg + 2Vavg

+∞∑
n=1

(−1)n

1− 36n2
cos(12πFccnt) (2)

with Vavg = 3
√
2UN/π. Since the capacitance C is small,

the capacitor filtering effect is almost neglected at full load.
The DC-Link voltage Vdc(t) and the input voltage Vrec(t)
have similar dynamics. The idea is to estimate Vrec(t) and
irec(t) simultaneously from the DC-Link voltage measure-
ments. More precisely, we consider that

Vrec(t) ≈ F⊤(t)θ (3)

with

F (t) =


1

cos
(
12π(Fcc)t

)
cos
(
12π(2Fcc)t

)
...

cos
(
12π(mFcc)t

)

 , θ =


θ0
θ1
...
θm

 (4)
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where θ0 is Vavg and θ1, . . . , θm are the amplitudes of
the first, . . . , mth harmonic respectively. The harmonics
amplitudes θ are considered to be unknown while the har-
monics spectrum F (t) is considered to be known. The aim
of this paper is to simultaneously estimate θ and irec(t)
using Vdc(t). Notably, input voltage measurements are not
always available in drive systems. In the estimation problem
considered in this paper, the input voltage measurements are
not required. Only grid frequency information is needed.
Observers for the rectification current irec(t) are not widely
studied in the literature. In [11], the authors proposed a Luen-
berger observer for the rectification current aiming for active
DC-Link stabilization. The observer considers that the source
Vrec(t) is constant and unknown. The ESR was neglected,
and only the DC component of Vrec(t) was estimated. In
[12], the authors introduced a sliding mode observer for the
unknown power P and the rectification current irec(t) in DC-
Link stabilization. For constant power loads in DC micro
grids, the authors [13] proposed a nonlinear disturbance
observer to estimate the input voltage variations and the
parameters variations. Inspired by [11], we propose an adap-
tive observer to estimate the amplitudes of the rectification
voltage harmonics as well as the rectification current for slim
DC-Link AC drives. Our DC-Link model accounts for the
ESR resistance, and we employ the swapping design method
[14] to decouple the state estimation errors from the inputs
estimation errors. The convergence of the observer is proved
via Lyapunov analysis. In practical terms, the input Vrec(t)
is an ideal voltage source that cannot be directly measured.
The adaptation scheme outlined in this paper for Vrec(t)
assists in accurately estimating the rectifier current irec(t).
This estimation is crucial for stabilizing the DC-Link voltage
in slim DC-Link AC Drives.
The paper is organized as follows: in Section II we present
the model of the DC-Link under constant power load,
incorporating the ESR resistance. The adaptive observer
architecture is detailed in Section III. Section IV is dedicated
to the stability analysis of the adaptive observer. Section V
presents the simulation results, while concluding remarks are
provided in Section VI.
Notation
The symbols Sn

+ represent the set of real n × n symmetric
positive definite matrices. For a symmetric matrix A, positive
and negative definiteness are denoted, respectively, by A ≻ 0
and A ≺ 0. For a vector z ∈ Rn,

∣∣z∣∣
1
=
∑n

i=1 |zi| and∣∣z∣∣
2
=
√∑n

i=1 z
2
i . The space of all signals that are globally

bounded is denoted by L∞.

II. MODEL PRESENTATION

Consider the single phase circuit of Figure 2. Using basic
circuit analysis, the system dynamics are

Ldc
direc(t)

dt
= Vrec(t)−Rdcirec(t)− Vdc(t) (5)

C
dVc(t)

dt
= irec(t)−

P

Vdc(t)
(6)

Vdc(t) = rCC
dVc(t)

dt
+ Vc(t) (7)

where irec(t) is the rectification current and Vc(t) is the
capacitor voltage. We assume that P is sufficiently large
so that the rectification current irec(t) is always positive.
The virtual diode shown in Figure 2 has no effect in this
case. Now, we consider that irec(t) and Vdc(t) are the
system states. The dynamics of the rectification current
irec(t) is already defined as a function of Vdc(t). Our goal
is to calculate the dynamics of the DC-Link voltage Vdc(t).
Differentiate (7) in time and substitute (6) and (5) to get

dVdc(t)

dt
=
( 1
C

− rCRdc

Ldc

) V 2
dc(t)

V 2
dc(t)− rCP

irect(t)

− rC
Ldc

V 3
dc(t)

V 2
dc(t)− rCP

− Vdc(t)

V 2
dc(t)− rCP

P

C

+
V 2
dc(t)

V 2
dc(t)− rCP

rC
Ldc

Vrec(t)

(8)

Equation (5) and equation (8) model the dynamics of the
circuit shown in Figure 2 with rC ̸= 0. The inputs of
the system are the rectification voltage Vrec(t) and the
power P . The output of the system is the DC-Link voltage
Vdc(t). The input Vrec(t) is approximated by the harmonic
decomposition in (4). The DC-Link model becomes

direc(t)

dt
≈ 1

Ldc
F⊤(t)θ − Rdc

Ldc
irec(t)−

1

Ldc
Vdc(t) (9)

dVdc(t)

dt
≈
( 1
C

− rCRdc

Ldc

) V 2
dc(t)

V 2
dc(t)− rCP

irect(t)

− rC
Ldc

V 3
dc(t)

V 2
dc(t)− rCP

− Vdc(t)

V 2
dc(t)− rCP

P

C

+
V 2
dc(t)

V 2
dc(t)− rCP

rC
Ldc

F⊤(t)θ

(10)

Our goal is to estimate irec(t) and θ given the measure-
ments of the DC-Link voltage y(t) = Vdc(t) and the power
P .

III. ADAPTIVE OBSERVER DESIGN

We denote by îrec(t) the estimated value of irec(t), V̂dc(t)
the estimated value of Vdc(t) and θ̂(t) the estimated value
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of θ. We introduce the following adaptive observer design

dîrec(t)

dt
=

1

Ldc
F⊤(t)θ̂(t)− Rdc

Ldc
îrec(t)−

1

Ldc
V̂dc(t)

+ L1(y(t)− V̂dc(t)) +m1(t)

(11)

dV̂dc(t)

dt
=
( 1
C

− rCRdc

Ldc

) y2(t)

y2(t)− rCP
îrect(t)

− rC
Ldc

y3(t)

y2(t)− rCP
− y(t)

y2(t)− rCP

P

C

+
y2(t)

y2(t)− rCP

rC
Ldc

F⊤(t)θ̂(t)

+ L2(y(t)− V̂dc(t)) +m2(t)

(12)

where L1 and L2 are two observer gains to be designed later.
The signals m1(t) and m2(t) are two feedback gains to be
defined later. Now, we define the estimation error variables:
ĩrec(t) = irec(t) − îrec(t), Ṽdc(t) = Vdc(t) − V̂dc(t) and
θ̃(t) = θ − θ̂(t). By subtracting (11)-(12) from (9)-(10), we
obtain the following error dynamics

dĩrec(t)

dt
=

1

Ldc
F⊤(t)θ̃(t)− Rdc

Ldc
ĩrec(t)− L

′

1Ṽdc(t)

−m1(t)

(13)

dṼdc(t)

dt
=
( 1
C

− rCRdc

Ldc

) y2(t)

y2(t)− rCP
ĩrect(t)− L2Ṽdc(t)

+
y2(t)

y2(t)− rCP

rC
Ldc

F⊤(t)θ̃(t)−m2(t)

(14)

where L
′

1 = 1
Ldc

+ L1. The observer in (11)-(12) is of
Luenberger type, which is a copy of the original system with
output injections y(t), and two additional feedback gains
m1(t) and m2(t). Our goal is to find L1, L2, m1(t), m2(t)
and a proper adaptive law for θ so that the error system
(13)-(14) converge to zero.

IV. OBSERVER STABILITY ANALYSIS

The first step is to decouple the state estimation errors
ĩrec(t), Ṽdc(t) from the input estimation errors θ̃(t) using the
swapping design method. The idea of the swapping method
is to parameterize the state estimation errors ĩrec(t), Ṽdc(t)
using K-filters (see [14]) as follows

ĩrec(t) = ĩnrec(t)−R⊤(t)θ̃(t) (15)

Ṽdc(t) = Ṽ n
dc(t)−N⊤(t)θ̃(t) (16)

where R(t) and N(t) are K-filters given by

R(t) =


R0(t)
R1(t)

...
Rm(t)

 , N(t) =


N0(t)
N1(t)

...
Nm(t)

 (17)

ĩnrec(t) and Ṽ n
dc(t) are the states estimation errors if the

input is known i.e. θ̃(t) = 0. Differentiate (15) in time and
substitute (13) and (16) to get

dĩnrec(t)

dt
= −Rdc

Ldc
ĩnrec(t)− L

′

1Ṽ
n
dc(t) +R⊤(t)

dθ̃

dt
(t)−m1(t)

+

(
dR⊤

dt
(t) +

Rdc

Ldc
R⊤(t) + L

′

1N
⊤(t)

+
1

Ldc
F⊤(t)

)
θ̃(t)

(18)

In the same way, differentiate (16) in time and substitute (14)
and (15) to have

dṼ n
dc(t)

dt
=
( 1
C

− rCRdc

Ldc

) y2(t)

y2(t)− rCP
ĩnrec(t)− L2Ṽ

n
dc(t)

+N⊤(t)
dθ̃

dt
(t)−m2(t) +

(
dN⊤

dt
(t) + L2N

⊤(t)

−
( 1
C

− rCRdc

Ldc

) y2(t)

y2(t)− rCP
R⊤(t)

+
y2(t)

y2(t)− rCP

rC
Ldc

F⊤(t)

)
θ̃(t)

(19)

Equations (18)-(19) suggest the following dynamics
1) Observation error dynamics

dĩnrec(t)

dt
= −Rdc

Ldc
ĩnrec(t)− L

′

1Ṽ
n
dc(t)

dṼ n
dc(t)

dt
=
( 1
C

− rCRdc

Ldc

)
v(t)̃inrect(t)− L2Ṽ

n
dc(t)

(20)

2) K-filter dynamics
dR(t)

dt
= −Rdc

Ldc
R(t)− L

′

1N(t)− 1

Ldc
F (t)

dN(t)

dt
=
( 1
C

− rCRdc

Ldc

)
v(t)R(t)− L2N(t)

− v(t)
rC
Ldc

F (t)

(21)

3) Feedback Gains

m1(t) = R⊤(t)
dθ̃(t)

dt
= −R⊤(t)

dθ̂(t)

dt

m2(t) = N⊤(t)
dθ̃(t)

dt
= −N⊤(t)

dθ̂(t)

dt

(22)

4) Output dependent term

v(t) =
y2(t)

y2(t)− rCP
(23)

Equation (16) also suggests the following normalized
adaptation law:

dθ̂(t)

dt
= −dθ̃(t)

dt
= − Pθ(t)N(t)

1 +N⊤(t)N(t)
Ṽdc(t) (24)

dPθ(t)

dt
= βPθ(t)−

Pθ(t)N(t)N⊤(t)Pθ(t)

1 +N⊤(t)N(t)
(25)
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Pθ(t) ∈ Sm+1
+ and β > 0 is the forgetting factor. The

initial conditions θ̂(0) = θ̂0 and Pθ(0)=Pθ,0=PT
θ,0 are chosen

arbitrary. It is useful to illustrate that the adaptation law
(24)-(25) is derived using the superposition principle, i.e. fix
Ṽ n
dc(t) to zero in order to get the linear regressor equation

Ṽdc(t) = −NT (t)θ̃(t) (26)

Then using (26), choose the adaptation law (24)-(25) to
estimate θ. The adaptive law (24)-(25) is called continuous
time recursive least square estimator with a forgetting factor
(see [15] for various linear regression estimation techniques).
Using (24) and (16), compute the dynamics of the input
estimation errors θ̃(t) as follows

dθ̃(t)

dt
=

Pθ(t)N(t)

1 +NT (t)N(t)

(
Ṽ n
dc(t)−N⊤(t)θ̃(t)

)
(27)

In view of equations (15)-(16) and the derived dynamics
(20), the states estimation errors (̃irec(t), Ṽdc(t)) splits into
two parts: 1) an observation error (̃inrec(t), Ṽ

n
dc(t)) that is

totally decoupled from θ̃(t), and 2) an induced error due
to the parameters mismatch N(t)θ̃(t) and R(t)θ̃(t) which is
proportional to the input parameter estimation errors θ̃(t). To
prove the convergence of (̃irec(t), Ṽdc(t), θ̃(t)) it is sufficient
to prove the convergence of (̃inrec(t), Ṽ

n
dc(t), θ̃(t)) and the

boundedness of the filters R(t) and N(t). This is what we
establish in the following series of Lemmas.

Remark 1: The output dependent term v(t) is equal to 1
if rC = 0. Actually, for an electric drive which is correctly
sized and operating at the nominal power P , we have that

y2(t) >> rCP (28)

which means

v(t) =
y2(t)

y2(t)− rCP
≈ 1 (29)

From now on, we replace v(t) by 1 in view of the plant
assumption (29).

Lemma 1: Consider the observation error dynamics (18)-
(20) with initial conditions (̃inrec(0), Ṽ

n
dc(0)). If

L1 =
1(

1
C − rCRdc

Ldc

)(λ1 −
Rdc

Ldc

)(
λ2 −

Rdc

Ldc

)
− 1

Ldc
(30)

L2 = −Rdc

Ldc
+ λ1 + λ2 (31)

for any λ1 > 0 and λ2 > 0. Then, the observation error
dynamics (̃inrec(t), Ṽ

n
dc(t)) is exponentially stable.

Proof 1: Let x̃(t) = (̃inrec(t), Ṽ
n
dc(t))

⊤. The observation
error dynamics can be written as

dx̃(t)

dt
= Adx̃(t) (32)

with Ad = A− LC such as

A =

(
−Rdc

Ldc
− 1

Ldc(
1
C − rCRdc

Ldc

)
0

)
, L =

(
L1

L2

)
, C =

(
0 1

)
(33)

By inserting (30)-(31) in Ad, one can find that −λ1 and
−λ2 are the eigenvalues of Ad. Since the couple (A,C) is
observable, −λ1 and −λ2 can be chosen anywhere in the
left half of the complex plane. Since the eigenvalues of Ad

are less than zero, then there exists P ∈ S2
+ such that

A⊤
d P + PAd = −Q (34)

The Lyapunov equation (34) has a unique solution P for
every predefined Q ∈ S2

+. Furthermore, it is easy to verify
that

ĩrec(t) = A1e
−λ1t +A2e

−λ2t (35)

Ṽdc(t) = B1e
−λ1t +B2e

−λ2t (36)

is the solution of (32) for λ1 ̸= λ2, where A1, A2, B1, B2

are constants depending on the initial conditions
(̃inrec(0), Ṽ

n
dc(0)). From (35)-(36), we deduce that the

solution converge to zero, ĩrec(t) ∈ L∞ and Ṽdc(t) ∈ L∞.
The proof is complete.

Lemma 2: Consider the K-filters R(t) ∈ Rm+1 and
N(t) ∈ Rm+1 with zero initial conditions R(0) = 0 and
N(0) = 0. If L1 and L2 are chosen as in (30)-(31), then
R(t) ∈ L∞, N(t) ∈ L∞.

Proof 2: The K-filters in (21) can be written as

K̇i(t) = AdKi(t) +BFi(t) (37)

where Ki(t) = (Ri(t), Ni(t))
⊤ for every 0 ≤ i ≤ m. B is

the constant matrix given by B = − 1
Ldc

(1, rC)
⊤. From the

definition of F (t) given in (4), we have

Fi(t) ≤ 1 ∀ 0 ≤ i ≤ m (38)

The system (37) is a linear time invariant system with
bounded input Fi(t). Since Ad is exponentially stable (by
the choice of L1 and L2 in (30)-(31)), then Ki(t) is bounded
for every 0 ≤ i ≤ m. By this, the proof ends.

Lemma 3: If N(t) is bounded and persistently exciting
(PE), i.e. for all t ≥ 0 there exist positive constants T0, c0
and c1 such that

c0I ≤
∫ t+T0

t

N(τ)N⊤(τ)dτ ≤ c1I (39)

where I ∈ Rm+1 is the identity matrix. Then, there exists
four positive constants α0,α1,β0,β1 such that

α0I ≤ Pθ(t) ≤ α1I

β0I ≤ P−1
θ (t) ≤ β1I

(40)

The matrix P−1
θ (t) ∈ Sm+1

+ (the inverse of Pθ(t)) can be
calculated by

dP−1
θ (t)

dt
= −βP−1

θ (t) +
N(t)N⊤(t)

1 +NT (t)N(t)
(41)

Proof 3: See corollary 4.3.2 in [15].
Now, consider the Lyapunov function for the input estimation
errors

V (t) =
1

2
θ̃⊤(t)P−1

θ (t)θ̃(t) (42)

2781



Differentiate (42) in time and substitute (27) to have

dV (t)

dt
=

N⊤(t)θ̃(t)

1 +N⊤(t)N(t)
Ṽ n
dc(t)

− 1

2
θ̃⊤(t)

(
βP−1

θ (t) +
N(t)N⊤(t)

1 +NT (t)N(t)

)
θ̃(t)

(43)

The last term of (43) is always negative if N(t) is persistently
exciting by Lemma 3. Let us look on the first term of (43)

N⊤(t)θ̃(t)

1 +N⊤(t)N(t)
Ṽ n
dc(t) ≤ |N⊤(t)θ̃(t)||Ṽ n

dc(t)|

≤ Nmax

∣∣θ̃(t)∣∣
1
|Ṽ n

dc(t)|
≤ Nmax

√
m+ 1

∣∣θ̃(t)∣∣
2
|Ṽ n

dc(t)|
≤ G|Ṽ n

dc(t)|
√

V (t)
(44)

where Nmax is the bound on N(t) given in Lemma 2 and
G is a positive constant given by

G =

√
2(m+ 1)

β0
Nmax (45)

To prove (44), we have used: the triangle inequality
∣∣x+y| ≤

|x|+ |y|, the equivalency of norms in Rn i.e.
∣∣x∣∣

1
≤

√
n
∣∣x∣∣

2
and the fact that

1

2
β0

∣∣θ̃∣∣2
2
≤ V (t) ≤ 1

2
β1

∣∣θ̃∣∣2
2

(46)

Now using (43) and (44), one can obtain the following bound
on the derivative of the Lyapunov function

dV (t)

dt
≤ G|Ṽ n

dc(t)|
√
V (t) (47)

By integrating (47) in the interval [0, t], we calculate the
following bound on the Lyapunov function√

V (t) ≤
√
V (0) +

G

2

∫ t

0

|Ṽ n
dc(τ)|dτ (48)

Therefore, the estimation error is bounded by above as∣∣θ̃(t)∣∣
2
≤
∣∣θ̃(0)∣∣

2
+

G

2
√
β0

∫ t

0

|Ṽ n
dc(τ)|dτ (49)

Hence, θ̃(t) ∈ L∞ and V (t) ∈ L∞. By (47), the bound-
edness of V (t) and the convergence of Ṽ n

dc(t) to zero, we
have limt→∞

dV (t)
dt = 0 (see similar proof in [16, equation

(11)]). By (43), since P−1
θ (t) and N(t)N⊤(t) are positive

definite, this means that limt→∞ θ̃(t) = 0. From (15)-(16)
and the boundedness of the K-filters in Lemma 2, then
limt→∞ ĩrec(t) = 0 and limt→∞ Ṽdc(t) = 0.

V. NUMERICAL SIMULATIONS

The parameters used in the simulations are
• Electrical grid parameters: UN = 400V and Fcc =

50Hz. The grid resistance and the grid inductance
corresponds to a 10 kA electrical grid and they are
Rcc = 7mΩ and Lcc = 70 µH.

Harmonics Amplitude
0Hz 540.2V

300Hz 30.87V
600Hz −7.55V
900Hz 3.34V
1.2KHz −1.87V
1.5KHz 1.2V
1.8KHz −0.83V
2.1KHz 0.61V
2.4KHz −0.46V

TABLE I
AMPLITUDES OF THE FIRST EIGHT HARMONICS OF Vrec(t)

• Electrical drive parameters (11 kW): the diode bridge
on-resistance is rd = 5mΩ, the capacitance C = 12 µF
and the ESR rC = 0.575Ω.

From (1), one can calculate the equivalent circuit parameters
to have: Rdc = 45mΩ and Ldc = 140 µH. The simulations
are conducted in two steps: the first step is to simulate
the model (5)-(7) to get the DC-Link voltage measurement
y(t) = Vdc(t). The second step is to inject y(t) in the adap-
tive observer (11), (12) and (24) to estimate the rectification
current irec(t) and the harmonics of the rectification input
Vrec(t).

A. Step 1: Model Simulation

The model (5)-(8) is simulated in Matlab2022a with a
fixed step solver (ode3). The time step is Ts = 10 µs. The
initial conditions are: irec(0) = 0A and Vdc(0) = 540V.
The load power is fixed to P = 7.5 kW and the rectification
voltage Vrec(t) is calculated as

Vrec(t) = max
{
|VA(t)− VB(t)|, |VB(t)− VC(t)|,

|VC(t)− VA(t)|
} (50)

where VA(t), VB(t) and VC(t) are three ideal grid sources
given by

VA(t) = UN

√
(2/3)sin(2πFcct)

VB(t) = UN

√
(2/3)sin(2πFcct− 2π/3)

VC(t) = UN

√
(2/3)sin(2πFcct+ 2π/3)

(51)

Note that Vrec(t) in (2) is the Fourier series decomposition
of (50). The output DC-Link voltage y(t) = Vdc(t) of the
model is injected in the adaptive observer.

B. Step 2: Adaptive Observer Simulation

To simulate the adaptive observer (11)-(12), one must
know the following parameters (in addition to the circuit
parameters): the load power P , the number of harmonics m,
the observer gains L1 and L2 and the forgetting factor β. The
power P is same as the model P = 7.5 kW. The number
of harmonics is m = 8. In Table I, we list the amplitudes
of the first eight harmonics of Vrec(t) (see (2)). The number
of harmonics that can be estimated by the observer depends
on the dynamics of the measurement y(t) = Vdc(t). It is
impossible to estimate an input harmonic if it is not present
in the measurement. In the case of slim DC-Link AC drives,
the capacitor plays a minor role in filtering the input voltage
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especially if P is not very small (light load). In this case,
the input harmonics with significant amplitudes are present
in the DC-Link voltage y(t). The observer gains L1 and L2

are calculated by (30)-(31). The eigenvalues of Ad are placed
at λ1 = −1 and λ2 = −5 which leads to L1 = −7141.6
and L2 = −315.4. The forgetting factor is set to β = 0.1.
The adaptive observer is started from the following initial
conditions: îrec(0) = 0, V̂dc(0) = 490V and θ̂(0) = 0. The
right column of Figure 3 shows that the observer succeeds in
estimating the rectification current irec(t) with an error less
than 1A. The rectification voltage Vrec(t) and the DC-Link
voltage Vdc(t) are estimated with absolute errors less than
10V. The left column shows the estimated current and the
estimated voltages at t = 7 seconds. The observer captures
the transients of the system although the input Vrec(t) is not
completely known. The swapping error systems x̃(t) and
θ̃(t) are shown in Figure 4. The observation error system
x̃(t) converges after 5 seconds. The convergence time is
completely controllable by the position of the poles of Ad.
It is interesting to notice that the error on the estimation
amplitudes

∣∣θ̃(t)∣∣ increases with the harmonics frequency. As
the frequency increases, the capacitor starts to filter the input
amplitudes. This results in removing the signature of the high
frequencies from the measurement Vdc(t). Figure 4 shows an
error of less than 0.1V on all the estimated harmonics. This
shows that the adaptive observer is capable of estimating the
first eight harmonics of the input. Recall that this capability is
inherited from the fact that the capacitor is small in such slim
AC Drives. Finally, the Lyapunov function V (t) is shown
in Figure 5. Between 0 and 2 seconds, V (t) is not always
decreasing. Indeed, the dynamics of V (t) are not linked only
to θ̃(t) but also to x̃(t) (see (43)). Figure 4 shows that when
x̃(t) starts to decrease, the Lyapunov function V (t) starts to
decrease as well.

VI. CONCLUSION

An adaptive observer for slim DC-Link AC drives is
presented in the paper. In theory, as well as in numerical
simulations, the designed observer is able to estimate the
rectification current and the input voltage at the same time.
The work is limited for slim DC-Link AC drives. Because
of the reduced size of the DC-Link capacitor, we were able
to estimate the amplitudes of the input voltage harmonics.
The limitation is an intrinsic property of the system given
that the only available measurement is Vdc(t). Indeed, if the
rectification current is measured, the input voltage can be
always reconstructed even for large values of the DC-Link
capacitance (see (5)).
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