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Abstract— This paper proposes a novel Koopman operator-
based finite impulse response (KFIR) filter for nonlinear dy-
namic systems. This filter is generalized from the minimum
variance unbiased (MVU) FIR filter for linear systems by
using a global linear approximation of the nonlinear dynamics
obtained from Koopman operator theory and the extended
dynamic mode decomposition (EDMD) algorithm. Based on the
recursive linear model, a reduced-order FIR filtering structure
is proposed, and the optimal gain is derived to minimize
the trace of the estimation error covariance. Unlike tradi-
tional methods, the KFIR filter requires no prior knowledge
of the initial state and fully utilizes the data of a moving
horizon. Simulation results show that the proposed filter has
excellent robustness against unexpected modeling uncertainties
and inaccurate noise information, making it suitable for real
applications.

I. INTRODUCTION

Nonlinear dynamic systems are prevalent across various

fields, including engineering, physics, economics, and biol-

ogy. Accurate state estimation is crucial for controlling and

monitoring such systems. However, developing effective fil-

tering algorithms for nonlinear systems is a challenging task.

While there is no universal mathematical framework capable

of addressing all nonlinear problems, most existing nonlinear

techniques, such as the extended Kalman filter (EKF) and the

unscented Kalman filter (UKF) [1], fall under the infinite

impulse response (IIR) structure. These methods leverage

all past measurements, leading to a gradual accumulation

of modeling and computational errors over time. Moreover,

their success heavily relies on accurate model and noise

assumptions. The utilization of inadequate models can result

in compromised or even unstable estimation performance.

Furthermore, the accumulation of errors frequently triggers

a decline in performance or even divergence in the case of

nonlinear IIR filters.

In contrast to the IIR structure, filters with a finite impulse

response (FIR) architecture utilize only a finite set of recent

data to estimate the current state, effectively preventing

the accumulation of errors. Furthermore, FIR filters directly
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employ all recent data to optimize the current state, enhanc-

ing their robustness and degree of freedom. These filters

possess advantageous engineering characteristics such as

bounded input/bounded output (BIBO) stability, resilience

against transient model uncertainties, and round-off errors

[2], rendering them highly competitive for various appli-

cations. Due to their simplicity, stability, and robustness,

FIR filters have been widely used for state estimation in

linear dynamic systems [3]–[5]. However, designing FIR

filters for nonlinear systems is challenging, and only a few

attempts have been made to date. In [6], the unbiased FIR

(UFIR) filter was extended to nonlinear systems and then

applied to indoor robot localization [6]. In [7], an alternative

nonlinear FIR filter that can manage the horizon length was

proposed. These methods are based on the local linearization

of the nonlinear system, which actually still requires previous

estimation results.

In recent years, the Koopman operator has received sig-

nificant attention in the field of nonlinear dynamic systems.

The Koopman operator [8], [9] is an infinite-dimensional

linear operator that describes the evolution of a system’s

observables over time. By utilizing the Koopman operator,

a nonlinear system can be transformed into a linear system

in an infinite-dimensional Hilbert space. With the advance-

ment of theoretical studies [10] and data-driven techniques

such as the dynamic mode decomposition (DMD) algorithm

[11], [12] and deep learning [13] to find finite-dimensional

approximations, the Koopman operator theory has emerged

as a powerful tool for analyzing nonlinear systems. The

use of Koopman theory has shown promising results in

various applications, including control [14], forecasting, and

identification [15] of nonlinear systems.

As a result of the well-established research on state

estimation of linear systems, it is an attractive idea to apply

the Koopman operator to nonlinear state estimation. In [16], a

Koopman operator-based Kalman filter (KKF) was proposed,

which used a linear regression model to approximate the

Koopman operator from data. This method was later im-

proved by using a bilinear approximation of the Koopman

operator in [17]. However, data-driven models may have

difficulty to capture time-varying system parameters, noises,

and faults, which could impact the estimation accuracy. To

overcome the non-Gaussian problem and outlier issues in the

lifted state space, a robust generalized maximum-likelihood

Koopman operator-based Kalman filter was introduced in

[18] using the Student’s t-distribution. However, all of these

Koopman-based filters discussed above are IIR filters, which

require prior knowledge of the initial state, and there is an
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error accumulation problem.

In this paper, we introduce a novel Koopman operator-

based finite impulse response (KFIR) filter for state estima-

tion of nonlinear dynamic systems. The proposed filter is a

generalized form of the minimum variance unbiased (MVU)

FIR filter designed for linear systems [3]. By utilizing the

Koopman operator theory and the extended DMD (EDMD)

algorithm, the nonlinear system is transformed and approx-

imated into a linear model in a finite-dimensional space.

Next, we propose a reduced-order FIR filtering structure

and derive the optimal gain that minimizes the trace of the

error covariance. The proposed KFIR filter does not require

any data outside the moving horizon. A Gaussian-Newton

method is adopted to estimate the unknown initial state.

Compared to EKF and KKF, the proposed filter has better

robustness against unexpected modeling uncertainties and

inaccurate noise information.

The remainder of the paper is organized as follows. Sec-

tion II formulates the state estimation problem for nonlinear

systems. Section III constructs the Koopman-based linear

system and its recursive model. Section IV proposes the

FIR filter structure and derives the optimal gain. Simulation

results to evaluate the performance of the proposed filter are

presented in Section V. Finally, Section VI concludes the

paper and discusses future research directions.

II. PROBLEM FORMULATION

Consider the following nonlinear dynamic systems:

xk+1 = f(xk,uk,vk), (1a)

yk = g(xk,uk,vk), (1b)

where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , and vk ∈ Rnv

refer to the system state, input, measurement, and noise

respectively; nonlinear mappings f : Rnx 7→ Rnx and

g : Rnx 7→ Rny are single-valued and analytic. To provide a

more general description and simplify the notation, both the

process noise and the measurement noise are included in one

vector vk. Additionally, it is assumed that vk is a random

variable with zero mean and known covariance, i.e.,

mean{vk} = 0, cov{vk} = Qv. (2)

The objective is to design a filter to estimate the system

state xk by fully using a moving horizon of ℓ inputs

and measurements {(um,ym), ..., (uk−1,yk−1), (uk,yk)},

where m = k − ℓ + 1. In contrast, data before time instant

m will be ignored in estimating xk.

To solve the problem, a linear recursive model based on

the Koopman operator through offline analysis is established

in Section.III. Building upon this foundation, Section.IV

presents the development of an online FIR filter.

III. LINEAR RECURSIVE MODEL BASED ON THE

KOOPMAN OPERATOR

A. Koopman operator

Definition 1 (Koopman operator). Consider a nonlinear

autonomous system xk+1 = f(xk), where xk ∈ X ⊆ Rnx .

The Koopman operator K : H → H is defined as a linear

operator who makes

Kϕ , ϕ ◦ f , ∀ϕi : X → R
1(or C

1), (3)

where ϕ = [ϕ1(x), ϕ2(x), · · · ]
T ∈ H is a vector of basis

functions (typically infinite-dimensional).

Based on the above definition, a infinite-dimensional linear

system can be represented as

ϕ(xk+1) = ϕ(f(xk)) = Kϕ(xk). (4)

According to the Koopman operator theorem [8], [10], the

above linear system can fully describe the nonlinear dynamic

xk+1 = f(xk), without produce errors. Consider the input

uk and noise vk, we can define an extended state ζk =
[

xT

k ,u
T

k ,v
T

k

]T

. Therefore, the system (1a) can be convert to

ϕ(ζk+1) = ϕ
(

f(ζk),Suk,Svk
)

= Kϕ(ζk), (5)

where S denote the left-shift operator, i.e., Suk = uk+1.

Readers can refer [10] for more details on Koopman operator

theory.

The Koopman operator maps basis functions to their

corresponding future states. However, for real systems, the

analytic form of K is usually infinite-dimensional. To make

it computationally feasible, a common approach is to use

a finite-dimensional approximation in the form of a linear

time-invariant (LTI) system, which can be expressed as

zk+1 = Azk +Buk +Evk +Gδk, (6a)

yk = Czk +Duk + Fvk +Hδk, (6b)

zk =

[

xk

ψ(xk)

]

, xk = Tzk. (6c)

In this system, zk ∈ RNx represents the lifted state,

where Nx is the number of the lifted state variables. The

vector ψ(xk) ∈ Rnψ is a set of finite-dimensional

basis functions that are used to approximate the

Koopman operator, it is a simplified version of ϕ(ζk).
The approximation error δk ∈ RNx+ny consists of

two parts: δk =
[

δxk
T, δyk

T
]T

, where δxk ∈ RNx and

δ
y
k ∈ Rny . The matrices A ∈ RNx×Nx , B ∈ RNx×nu ,

C ∈ R
ny×Nx , F ∈ R

ny×Nx , G = [I, 0] ∈ R
Nx×(Nx+ny),

and H = [0, I] ∈ Rny×(Nx+ny) are the lifted system

matrices, respectively. T = [I, 0] ∈ Rnx×Nx is used to

transform zk back to xk.

Remark 1. To ensure differentiability of the Koopman

operator’s basis functions, which is required for derivative

calculations in Section IV-B, here the optional types of basis

functions are restricted to smooth ones, e.g., polynomials,

sines, and Gaussians.

To facilitate filter design, a global linearization between

zk and xk is obtained as

zk = Lxk + cz + εk, (7)

where L ∈ RNx×nx is the linear transformation matrix, and

cz and εk ∈ RNx are the bias and error vectors, respectively.
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Matrices in (6a), (6b), and (7) can be determined by

using the extended dynamic mode decomposition (EDMD)

algorithm [12]:

A,B,E = arg min
A,B,E

‖Z̃D
+ −AZ̃D −BŨD −EṼD‖2F,

(8a)

C,D,F = arg min
C,D,F

‖ỸD −CZ̃D −DŨD − FṼD‖2F,

(8b)

L, cz = argmin
L,cz

‖Z̃D − LX̃D − cz1‖
2
F, (8c)

where X̃D = [x0,x1, ...,xM], ỸD = [y0,y1, ...,yM],
ŨD = [u0,u1, ...,uM], and ṼD = [v0,v1, ...,vM] represent

the data stack matrices of x, y, u, and v respectively,

which are generated from the real nonlinear system (1).

M denotes the data length. Z̃D = [z0, z1, ..., zM], and

Z̃D
+ = [z1, z2, ..., zM+1], are the data stack matrices of z

and the next step of z, respectively, which are obtained by

substituting X̃D into the lifting function (6c). The analytical

solution to (8) is

[A,B,E] = Z̃D
+





Z̃D

ŨD

ṼD





†

, [C,D,F] = ỸD





Z̃D

ŨD

ṼD





†

, (9a)

[L, cz ] = Z̃D

[

X̃D

1

]†

, (9b)

where † denotes the pseudo-inverse.

Meanwhile, the variances of the errors δxk , δ
y
k , and εk can

also be estimated using the available data set:

cov{δk} = Rδ = diag{Rx
δ ,R

y
δ},

with Rx
δ ≈ cov{Z̃D

+ −AZ̃D −BŨD −EṼD},

R
y
δ ≈ cov{ỸD −CZ̃D −DŨD − FṼD}, (10a)

cov{εk} = Rε ≈ cov{Z̃D − LX̃D − cz1}. (10b)

To obtain the statistical characteristics accurately, the data

set used in (10) should be distinguished from that of (8).

Remark 2. The data stack can be obtained by simulating the

nonlinear system model (1), with the simulation involving

either a single trajectory or multiple trajectories.

B. The linear recursive model

The system (6) on a horizon of ℓ points, with recursively

computed forward-in-time solutions, is derived as follows

z[k,m] = Aℓzm +Bℓu[k,m] +Eℓv[k,m] +Gℓδ[k,m], (11a)

y[k,m] = Cℓzm +Dℓu[k,m] + Fℓv[k,m] +Hℓδ[k,m], (11b)

where z[k,m] =
[

zTk , ..., z
T

m

]T

∈ R
ℓNx , y[k,m] =

[

yTk , ...,y
T

m

]T

∈ R
ℓny , u[k,m] =

[

uT

k , ...,u
T

m

]T

∈ R
ℓnu ,

v[k,m] =
[

vTk , ...,v
T

m

]T

∈ Rℓnw , v[k,m] =
[

vTk , ...,v
T

m

]T

∈
Rℓnv . The extended system matrices Aℓ ∈ RℓNx×ℓNx ,

Bℓ ∈ RℓNx×ℓnu , Eℓ ∈ RℓNx×ℓnv , Cℓ ∈ Rℓny×ℓNx , Dℓ ∈

Rℓny×ℓnu , and Fℓ ∈ Rℓny×ℓnv are time-invariant, and are

specified as

Aℓ =
[

(

Aℓ−1
)T

,
(

Aℓ−2
)T

, . . . , AT, I
]T

,

Bℓ =















0 B · · · Aℓ−2B Aℓ−1B

0 0 . . . Aℓ−3B Aℓ−2B
...

...
. . .

...
...

0 0 · · · 0 B

0 0 · · · 0 0















,

Eℓ =















0 E · · · Aℓ−2E Aℓ−1E

0 0 . . . Aℓ−3E Aℓ−2E
...

...
. . .

...
...

0 0 · · · 0 E

0 0 · · · 0 0















,

Gℓ =















0 G · · · Aℓ−2G Aℓ−1G

0 0 . . . Aℓ−3G Aℓ−2G
...

...
. . .

...
...

0 0 · · · 0 G

0 0 · · · 0 0















,

Cℓ = diag
{

C,C, ...,C
}

Aℓ,

Dℓ = diag
{

C,C, ...,C
}

Bℓ + diag
{

D,D, ...,D
}

,

Fℓ = diag
{

C,C, ...,C
}

Eℓ + diag
{

F,F, ...,F
}

,

Hℓ = diag
{

C,C, ...,C
}

Gℓ + diag
{

H,H, ...,H
}

, (12)

The variances of uncertainties v[k,m] and δ[k,m] are

cov{v[k,m]} = QV = diag{Qv,Qv, ...,Qv}, (13a)

cov{δ[k,m]} = R∆ = diag{Rδ,Rδ, ...,Rδ}. (13b)

Moreover, the ℓ-steps prediction from zm to zk can also be

derived from (11a) as

zk = Āℓzm + B̄ℓu[k,m] + Ēℓv[k,m] + Ḡℓδ[k,m], (14)

where Āℓ, B̄ℓ, Ēℓ, and Ḡℓ refer to the first Nx rows of Aℓ,

Bℓ, Eℓ, and Gℓ, respectively. This equation will be used in

the filter design.

IV. FILTER DESIGN

A. FIR filter structure

To estimate the value of xk based on the extended system

(11), we propose the use of a reduced-order filter with a

finite impulse response (FIR) structure:

x̂k = Λky[k,m] + µk, (15)

where Λk ∈ Rnx×ℓny is the filter gain, and µk ∈ Rnx is a

compensation vector that ensures x̂k is unbiased.

Define the estimation error as ek = xk − x̂k. The

optimal gain is designed by minimizing the trace of the error

covariance Pk = cov{ek}:

Λ∗
k,µ

∗
k = arg min

Λk,µk
tr{Pk}. (16)
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To solve the optimal gain, the estimation error should be

analyzed. By substituting (15) and (14) into the estimation

error expression, one can obtain:

ek = Tzk − x̂k

=
(

TĀℓ −ΛkCℓ

)

zm +
(

TB̄ℓ −ΛkDℓ

)

u[k,m]

+
(

TĒℓ −ΛkFℓ

)

v[k,m] +
(

TḠℓ −ΛkHℓ

)

δ[k,m]

− µk. (17)

It implies that the estimation error relates to the unknown

initial lifted state zm. To this end, existing linear FIR filters

can compute the covariance of zm [19], or use the unbiased

condition TĀℓ − ΛkCℓ to eliminate the influence of zm
[3]. However, both methods are too conservative for the

Koopman-based linear system (6) since the definition of (6c)

provides additional information about zm. In other words, the

degree of freedom of zm is only equal to that of xm. If xm

is determined, then zm is also determined. For this purpose,

the constraint (6c) should be taken into account when dealing

with zm.

B. Initial state estimation

We propose a novel method based on weighted nonlinear

least squares to estimate the unknown initial lifted state

zm, aiming to improve estimation accuracy by utilizing

the constraint information in the lift function (6c). The

optimization problem is formulated as minimizing the fitting

error:

x̂∗
m = argmin

x̂m
‖r(x̂m)‖2

M−1 , (18)

where the residuals r(x̂m) and the penalty matrix M are

specified as

r(x̂m) = y[k,m] −Cℓ

[

x̂m

ψ (x̂m)

]

−Dℓu[k,m], (19a)

M = FℓQV F
T

ℓ +HℓR∆H
T

ℓ . (19b)

The optimization problem (18) belongs to the category of

weighted nonlinear least squares thus has no analytical

solution. Therefore, we use the Gauss-Newton algorithm to

solve it iteratively:

x̂t+1
m = x̂t

m +Kt
mr(x̂

t
m), t ∈ {0, 1, ..., ts} (20)

where ts is the maximum number of iterations, the step size

Kt
m is computed as

Kt
m =

[

(CℓL
t
m)TM−1(CℓL

t
m)

]−1
(CℓL

t
m)TM−1, (21a)

Lt
m =

[

I

J t
m

]

, J t
m =

∂ψ(x)

∂x

∣

∣

∣

∣

x=x̂tm

. (21b)

To begin with, the global linearization equation (7) is uti-

lized. By combining (7) with (11b), an unbiased smoother

can be employed:

x̂0
m =K0

m

(

y[k,m] −Cℓcz −Dℓu[k,m]

)

, (22)

where

K0
m =

[

(CℓJ)
TM̄−1(CℓJ)

]−1
(CℓJ)

TM̄−1, (23a)

M̄ = M+CℓRεC
T

ℓ . (23b)

Finally, the iteration process will stop when either the

estimate converges or when the iteration step exceeds ts.

Remark 3. The initial state estimation utilizes only the data

within the moving horizon. While it is possible to obtain x̂m

from the previous estimation step, doing so would result in

a filter that no longer belongs to a FIR structure.

C. Optimal gain

After obtaining x̂∗
m, the lifted state estimate ẑ∗m =

[

(x̂∗
m)T,ψT(x̂∗

m)
]T

can be computed. However, the estima-

tion error zm − ẑ∗m is unknown. To reduce the influence of

the error, the following local linearization is used to describe

the dependence between zm and xm:

zm = ẑ∗m +L∗
m(xm − x̂∗

m) + σm, (24)

where L∗
m is the result of Lt

m in (21b) when x̂t
m = x̂∗

m, and

σm ∈ RNx represents the linearization error. In this way, the

error zm− ẑ∗m is divided into two parts. By substituting (17)

into (24), the first part L∗
m(xm − x̂∗

m) can be eliminated by

using the new unbiased condition
(

TĀℓ −ΛkCℓ

)

L∗
m = 0. (25)

Compared the direct use of TĀℓ−ΛkCℓ, the constraint (25)

is time-varying and more relaxed. It is still a difficult task

to obtain the covariance of the local linearization error σm,

so we approximate it as a decay of the covariance of Rε,

which is the global linearization error:

cov{σm} = Rσ ≈ αRε, α ∈ [0, 1]. (26)

Now, by using µk to balance known bias in (17), the

estimation error covariance becomes

Pk =
(

TĀℓ −ΛkCℓ

)

Rσ

(

TĀℓ −ΛkCℓ

)T

+
(

TĒℓ −ΛkGℓ

)

QV

(

TĒℓ −ΛkGℓ

)T

+
(

TḠℓ −ΛkHℓ

)

R∆

(

TḠℓ −ΛkHℓ

)T

. (27)

Then, the optimization problem (16) can be rewritten as the

following form:

Λ∗
k = argmin

Λk
tr {Pk} , s.t. (25). (28)

Finally, the solution is given by the following Theorem.

Theorem 1. Given system (11), the optimal FIR filter

minimizing the trace of the estimation error covariance is

expressed as

x̂∗
k = Λ∗

ky[k,m] + µ
∗
k, (29)

with

[Λ∗
k,⋄] =

[

TΠ TAℓL
∗
m

]

[

Ω CℓL
∗
m

(CℓL
∗
m)T 0

]†

, (30a)

µ∗
k =

(

TĀℓ −Λ
∗
kCℓ

)

ẑ∗m +
(

TB̄ℓ −Λ
∗
kDℓ

)

u[k,m],
(30b)
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where ⋄ can be set free, and matrices Π and Ω are specified

as

Π = ĀℓRσC
T

ℓ + ĒℓQV F
T

ℓ + ḠℓR∆H
T

ℓ (31a)

Ω = CℓRσC
T

ℓ + FℓQV F
T

ℓ +HℓR∆H
T

ℓ . (31b)

Proof. For convenience, partition the matrices Λk and T

by rows into ΛT

k = [λ1,λ2, ...,λnx ], T
T = [t1, t2, ..., tnx ],

respectively. After that, the minimization problem (28) is

reduced to

Λ∗
k = arg min

λ1,...,λnx

nx
∑

i=1

Ji,

s.t. (L∗
m)TCT

ℓ λi = (L∗
m)TĀT

ℓ ti, i = 1, 2, ..., nx, (32)

where each Ji is given as

Ji =
(

tTi Āℓ − λ
T

i Cℓ

)

Rσ

(

tTi Āℓ − λ
T

i Cℓ

)T

+
(

tTi Ēℓ − λ
T

i Gℓ

)

QV

(

tTi Ēℓ − λ
T

i Gℓ

)T

+
(

tTi Ḡℓ − λ
T

i Hℓ

)

R∆

(

tTi Ḡℓ − λ
T

i Hℓ

)T

= λT

i Ωλi − 2tTi Πλi + tTi Φti, (33)

where Φ = ĀℓRσĀ
T

ℓ + ĒℓQV Ē
T

ℓ + ḠℓR∆Ḡ
T

ℓ . It implies

that the i-th sub-objective function Ji only depends on hi

and is only subject to the i-th constraint (L∗
m)TCT

ℓ λi =
(L∗

m)TĀT

ℓ ti. This simplifies the minimization problem (32)

to nx independent minimization problems:

λ∗
i = argmin

λi
Ji, s.t. (L∗

m)TCT

ℓ λi = (L∗
m)TĀT

ℓ ti. (34)

It can be found that (34) belongs to the equality constrained

convex quadratic programming problem. By using a La-

grange multiplier θi ∈ Rnx and searching for the extremum

of the Lagrangian, the solution to (34) is given by the

following linear equation

[

Ω CℓL
∗
m

(L∗
m)TCT

ℓ 0nx×nx

] [

λi

θi

]

=

[

ΠTti
(L∗

m)TĀT

ℓ ti

]

. (35)

All of the above linear equations for i = 1, 2, ..., dx share

the same coefficient matrix. Hence, the optimal gain Λ∗ is

a value of Λ that satisfies

[

Ω CℓL
∗
m

(L∗
m)TCT

ℓ 0nx×nx

] [

ΛT

Θ

]

=

[

(TΠ)T
(

TĀℓL
∗
m

)T

]

, (36)

where Θ = [θ1, θ2, ..., θdx ]. By solving the above equation,

the result of the optimal Λk is shown in (30a). After that,

µ∗
k in (30b) is obtained to have x̂∗

k unbiased. �

Remark 4. If system (1) is linear, the lifted state zk =
xk, the system matrices G = H = 0, T = I, the linear

transformation matrices L = Lt
m = L∗

m = I, and the errors

δk = εk = σm = 0. In that case, the proposed filter will be

reduced to the MVU FIR filter [3].
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Fig. 1. Input and measurement sequences (Normal case).

V. SIMULATION

A. System description

Consider a discrete-time nonlinear prey-predator model

that is adopted from [20]. The dynamic equation and mea-

surement function for this system are given by

xk+1 =

[

x1,k +Ts

(

ax1,k − bx2
1,k − cx1,kx2,k + v1,k

)

x2,k +Ts

(

dx2,k + ex1,kx2,k + uk + v2,k
)

]

,

(37a)

yk =
[

1 1
]

xk + v3,k. (37b)

In this system, the two states, x1,k and x2,k, represent the

populations of prey and predators, respectively. An input,

uk, is included to modify the evolution of the predator

population. The system parameters are set to a = 0.25,

b = 0.2, c = 0.95, d = 0.55, and e = 1.1, while the sampling

interval is Ts = 0.1. The system noise vk follows a Gaussian

distribution vk ∼ N
(

0, diag(0.012, 0.012, 0.042)
)

. In the

simulation, the true state trajectory starts from the initial

value x0 = [0.83, 0.28]T and lasts more than 1000 samples.

The input signal is designed as uk = 0.02e−
mod(k,100)

10 , where

mod(·) is the modulo operation. The designed input signal

and the resulting measurement sequences are shown in Fig.1.

B. Linear model based on the Koopman operator

To obtain the linear model (6), we generate 300 state

trajectories, each with 1000 samples. The initial states and

inputs are generated by uniform distributions within their

bounds given by x1,0 ∈ [0.2, 0.9], x2,0 ∈ [0.05, 0.5], and

uk ∈ [−0.02, 0.02]. The training data set is shown in Fig.2,

each gray line is a state trajectory. The basis functions are

selected as ψ(x) =
[

x2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

4
1,

x3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2, x

5
1, x

4
1x

1
2, x

3
1x

2
2, x

2
1x

3
2, x1x

4
2, x5

2

]T

so that the dimension of zk is Nx = 20. After obtaining the

linear model (6), another 200 state trajectories are used to test

the model and get the covariance of the approximation error

δk. Using the acquired linear model, the long-term prediction

outcome is illustrated in Fig.2. The prediction trajectory
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Fig. 2. Training data set and long-term prediction.
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Fig. 3. Estimation results (Normal case).

originates from [0.8, 0.3]T and is driven by the same inputs as

the true trajectory. Evidently, the predicted trajectory derived

from the Koopman operator (dashed magenta line) closely

follows the actual state trajectory (black line).

C. Estimation results

By applying the proposed KFIR to the above system, the

estimation results are shown in Fig.3. The horizon length of

KFIR here is set to ℓ = 40. In the initial state estimation, α =
0.1 and ts = 1 are used. As a comparison, the results based

on the EKF [1] and the KKF [16] are also displayed. Both

EKF and KKF are IIR filters, and they require a guess x̂0

of the initial state x0. We consider three different scenarios

to compare their performances:

• Case A: The initial guess is accurately equal to the true

value, and the initial error covariance is set to zero, i.e.,

x̂0 = x0 and P̂0 = 0.

• Case B: The initial guess is imprecise, but the initial

error covariance effectively reflects the uncertainty in

the guessed value. We set x̂0 = [0.5, 0.5]T and P̂0 =
0.1I.

• Case C: The initial guess is imprecise, and the initial er-

0 10 20 30 40 50 60 70 80 90 100

10-2

10-1

100

101

KFIR

Fig. 4. Estimation performance comparison (Normal case).

ror covariance cannot effectively reflect the uncertainty

in the guessed value. We set x̂0 = [0.5, 0.5]T and

P̂0 = I.

Fig. 3 also shows the results of EKF and KKF under Case B.

Both methods converge to the true state after some iterations.

On average, computing one state estimate costs 1.2287 ×
10−2 (s), 2.3349×10−5(s), and 7.6491×10−3 (s) for KFIR,

KKF, and EKF, respectively.

The complete comparison of their estimation accuracy is

presented in Fig. 4. The root mean square error (RMSE)

is used as the accuracy criterion. In the case of the KKF,

the RMSE is computed using the formula RMSE =
√

1
Kmax−ℓ

∑Kmax

k=ℓ ‖xk − x̂k‖2, where Kmax is the total sim-

ulation steps. For other filters, the RMSEs are calculated as

RMSE =
√

1
Kmax

∑Kmax

k=1 ‖xk − x̂k‖2. It is observed that

EKF provides the best estimation results when the initial state

is perfectly known (Case A). However, in the case where

the initial error covariance is set to a bad one (Case C), EKF

appears to be non-converging and generates the worst results.

The performance of the proposed KFIR does not require an

initial guess of the state, but it is dependent on the horizon

length. As shown in Fig. 4, the RMSE of KFIR decreases

with the horizon length, and if the horizon length is long

enough, the estimation results of KFIR surpass those of KKF

under any case and approach those of EKF with a perfect

initial guess.

D. Robust test

To further evaluate the robustness of the KFIR filter, a

fault is introduced into the system. Specifically, the system

parameters are changed to a = 0.15, b = 0.1, c = 1.15,

d = 0.35, e = 1.3, and Ts = 0.12 between time steps

k ∈ [300, 500]. Moreover, the noise covariance is assumed

to be known inaccurate, i.e., Qv in filter settings is known

as diag(γ20.012, γ20.012, 1/γ20.042), where γ = 5. The

remaining settings are the same as in the previous subsection.

The estimation results produced by KFIR, KKF, and EKF

are presented in Fig.5. It is observed that all filters have

negligible errors in the first 300 samples. During the fault
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Fig. 5. Estimation results (Fault case).
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Fig. 6. Estimation performance comparison (Fault case).

period, KFIR provides the most reliable estimation results.

Moreover, KFIR converges to the true state much faster than

the other two filters after the system returns to normal.

We also conducted a comparison of the estimation perfor-

mance of the KFIR filter with different horizon lengths, and

the results are presented in Fig.6. It can be observed that the

RMSE of KFIR is concave with respect to the horizon length

and has a minimal value of ℓ = 31. When ℓ > 31, increasing

ℓ reduces the estimation accuracy. This is because increasing

the window length causes the FIR filter to approach an IIR

one. Furthermore, Fig. 6 also shows the estimation results

of EKF and KKF. In this case, both EKF and KKF perform

similarly due to the fault and noise covariance mismatch that

are the main factors affecting the estimation accuracy.

VI. CONCLUSIONS

In this paper, a novel Koopman operator-based FIR filter

that minimizes the trace of the state estimation error covari-

ance for nonlinear dynamic systems is proposed. This filter

is a generalized version of the MVU FIR filter, originally

designed for linear systems. Compared to IIR filters, the

proposed filter does not require an initial state guess and

converges to optimal estimates using any initial state value.

Simulation results demonstrate that the proposed filter has

better robustness against faults and inaccurate noise infor-

mation than EKF and KKF. Some possible directions for

future research include considering the approximation error

as bounded noise to further improve robustness, as well as

exploring more efficient iterative realization of the batch

algorithm to reduce computational cost.
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