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Abstract— Stochastic programs, where uncertainty distribu-
tion must be inferred from noisy data samples, are considered.
They are approximated with distributionally-robust optimiza-
tions that minimize the worst-case expected cost over ambiguity
sets, i.e., sets of distributions that are sufficiently compatible
with observed data. The ambiguity sets capture probability
distributions whose convolution with the noise distribution is
within a ball centered at the empirical noisy distribution of data
samples parameterized by total variation distance. Using the
prescribed ambiguity set, the solutions of the distributionally-
robust optimizations converge to the solutions of the original
stochastic programs when the number of the data samples
grow to infinity. Therefore, the proposed distributionally-robust
optimization problems are asymptotically consistent. The distri-
butionally-robust optimization problems can be cast as tractable
optimization problems.

I. INTRODUCTION

In this paper, we consider a single-stage stochastic pro-
gram of the form infx∈X EP[h(x, ξ)], where x ∈ Rn is a
decision variable that must be determined to minimize the
expected cost EP[h(x, ξ)] while ξ ∈ Rm is a random uncer-
tainty with distribution P. Distribution P is not available and
must be inferred from data samples. Merely relying on the
empirical distribution evaluated using data samples, instead
of the original distribution P, can result in disappointing
outcomes. This is known colloquially as the “optimizer’s
curse” and is caused by over-fitting [1]. One way to avoid this
concern is to instead consider a set of distributions that are
sufficiently compatible with the observed data, known as an
ambiguity set P , and minimizes the worst-case expected cost
over the ambiguity set supQ∈P EQ[h(x, ξ)]. This approach is
known as distributionally-robust optimization [2].

Distributionally-robust optimization dates back to
ambiguity-averse or robust news-vendor problem [3].
However, there has been a recent revival in the field due
to computationally-favourable reformulations [2], [4]–[10].
These results mostly differ on how they construct the
ambiguity sets using, e.g., moment constraints [5], the
Prohorov metric [6], the Kullback-Leibler divergence [7],
and the Wasserstein metric [2], [9].

Distributionally-robust optimization has however mostly
focused on noiseless data [2], [4]–[9], i.e., high-quality inde-
pendently and identically realized samples from distribution
P are required. Noting that we sometimes only have access to
noisy data samples, there has been some recent investigations
into situations where the data samples are noisy [11], [12].
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For instance, data samples may be intentionally corrupted
by privacy-preserving noise [13]. Alternatively, data can be
truly noisy because of inherent instrumentation uncertainty
or noise. The problem with noisy data is that, even with
infinitely-many data points, the empirical distribution does
not coverage to the original distribution P. The empirical
distribution instead converges to P′, which is the outcome
of convolution of the original distribution P and the noise
distribution O [11], [12]. One way to pose distributionally-
robust optimization in the presence of noisy data is to expand
the ambiguity sets, by setting the radius of the uncertainty
ball around the empirical noisy distribution large enough,
to contain the noiseless distribution [12], [14]. This however
can create unnecessary conservatism because we have to deal
with the worst-case expected cost over a large ambiguity set
that contains distributions that may behave differently from
the original noiseless distribution. Such ideas effectively
dictate that the radius of the ambiguity set must remain non-
trivially large even in the big data regime. Therefore, these
method can only provide useful solutions and guarantees in
the small noise regime, i.e., when the variance or entropy
of the noise is relatively small, and thus enlargement of
the ambiguity set is minimally conservative. As opposed, in
Section III of this paper, we observe that the radius of the
ambiguity set converges to zero as more samples are gath-
ered. Therefore, the method of this paper is asymptotically
less conservative. Another way is to use other metrics for
constructing the ambiguity set [11]. The alternatives however
still suffer from conservatism discussed above. None of these
studies consider the specific way that the noise distribution
changes the original distribution, i.e., through convolution.
In fact, in the large data regime, it is reasonable to expect
that the effect of the noisy measurements is negligible. This
is because we can always remove the effect of the noise
by density deconvolution [15], [16] even if the noise is
significant, i.e., it has large variance or entropy.

An important aspect of obtaining good results in distri-
butionally-robust optimization is to appropriately select the
ambiguity set. The ambiguity set must be large enough
to contain the original density P while it must be small
enough to not make the results conservative. The solution
of supQ∈P EQ[h(x, ξ)] must remain reasonably close to
EP[h(x, ξ)]. Otherwise, we incentivize overly conservative
decisions by considering distributions Q ∈ P that are
far from reality P. The ambiguity set must also be easily
reconstructable from the data samples to ensure computa-
tionally tractable reformulation of the distributionally-robust
optimization problem. In this paper, we define the ambiguity
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set by considering a set of probability distributions whose
convolution with the known noise distribution remains ap-
propriately close to the empirical noisy distribution of the
data samples in the sense of the total variation distance. We
prove that, using the prescribed ambiguity set, the solution
of the distributionally-robust optimization converges to the
solution of the original stochastic program when the number
of the data samples grows to infinity. Therefore, the dis-
tributionally-robust optimization problem is asymptotically
consistent. To prove this result, we need to assume that the
distribution of the noise is uniformly diagonally dominant.
Finally, we show that the robust optimization problem can
be cast as a tractable convex optimization problem.

The rest of the paper is organized as follows. First, we fin-
ish this section by presenting some useful notations. Subse-
quently, in Section II, we formally define distributionally-ro-
bust optimization based on noisy data samples. In Section III,
we consider asymptotic properties of the distributionally-
robust optimization, such as asymptotic consistency, using
concentration bounds for learning discrete distributions. We
re-cast the distributionally-robust optimization as a tractable
convex optimization problem in Section IV. Finally, we
present some numerical results in Section V and conclude
the paper in Section VI.

NOTATION

For any set A, the cardinality of the set is denoted by
|A|. For any finite set A, i.e., |A| < ∞, ∆(A) denotes the
probability simplex on A. The product of two probability
distributions P1 ∈ ∆(Ξ1) and P2 ∈ ∆(Ξ2) is the distribution
P1⊗P2 ∈ ∆(Ξ1×Ξ2). The N -fold product of a distribution
P ∈ ∆(Ξ) is denoted by PN ∈ ∆(ΞN ). The total variation
distance between any two distributions P1,P2 ∈ ∆(Ξ) is

dTV(P1,P2) := sup
A⊆Ξ

(P1(A)− P2(A))

=
1

2

∑
ξ∈Ξ

|P1(ξ)− P2(ξ)| ∈ [0, 1].

II. DATA-DRIVEN PROGRAMMING

Consider the stochastic program

J⋆ := inf
x∈X

EP[h(x, ξ)] =
∑
ξ∈Ξ

h(x, ξ)P(ξ)

 , (1)

with feasible set X ⊆ Rn, discrete/finite uncertainty set Ξ ⊆
Rm (i.e., |Ξ| < ∞), and loss function h : X × Ξ → R.
The loss function h depends on the decision vector x ∈
Rn and the random variable ξ ∈ Rm, whose distribution
P is supported on Ξ, i.e., P ∈ ∆(Ξ). The distribution P is
unknown. Therefore problem (1) cannot be solved exactly.
Although P is unknown, it is partially observable through
a finite set of N independently and identically distributed
(i.i.d.) noisy samples

ξ′i ∼ O(·|ξi), ξi ∼ P, i ∈ {1, . . . , N}, (2)

where ξi ∼ P are i.i.d. samples from P ∈ ∆(Ξ) while ξ′i are
noisy observations of ξi realized according to the conditional

distribution O(·|ξi) ∈ ∆(Ξ′). The marginal distribution of
the noisy observations is given by

P′(ξ′) =
∑
ξ∈Ξ

O(ξ′|ξ)P(ξ), ∀ξ′ ∈ Ξ′. (3)

Note that support set of P′, which is Ξ′, may not necessarily
be equal to the support set of P, which is Ξ. Nonetheless,
we assume that Ξ′,Ξ ⊆ Rm. This assumption is not strictly
necessary, however, it simplifies the narrative without sub-
stantial conservatism (up to relabeling the elements in Ξ′).
For instance, noisy data based on additive noise satisfies this
condition. For the sake of brevity, we write that

P′ = O ⋆ P. (4)

Note that, here, we have opted for the convolution nota-
tion ‘⋆’ because the relationship in (3) is visually similar
to discrete convolution of the probability mass functions,
particularly when the noise is additive1.

Remark 2.1 (Known Noise Distribution) We assume that
the distribution of the noise O is known. The motivation for
this is twofold. First, in privacy-preserving applications (e.g.,
the example in Section V), the distribution of the noise, which
is a function of the privacy budget and privacy-preserving
mechanism, is often publicly known to improve transparency
and accountability and to also allow for post process-
ing [17]. Furthermore, in sensing and instrumentation, the
distribution of the noise is usually publicly shared in data-
sheets while the distribution of the underlying variable is oft
unknown. When the distribution of the noise is not known
two approaches can be used. We can either use repeated
measurements to estimate the distribution of the noise [18],
which is not possible in privacy-preserving applications as
repeated queries/responses erode privacy, or follow a worst-
case adversarial approach [19], which may be conservative.

Remark 2.2 (Finite Uncertainty Set) The assumption that
the uncertainty set Ξ is finite is natural in some cases. For
instance, the data could be inherently discrete, such as cate-
gorical attributes [20] and finite state spaces [21]. In other
instances, communication constraints or post-processing can
render the data discrete [22], [23].

Remark 2.3 (Impact of Density Deconvolution) Combin-
ing density deconvolution [16] and techniques used for
developing computationally-efficient distributionally-robust
optimization [2] is non-trivial. This is because after deconvo-
lution, the empirical density function is no longer composed
of delta functions, which breaks down an important step in
the proof of Theorem 4.2 in [2].

We denote the training dataset composed of the noisy
samples by Ξ′

N := {ξ′i}Ni=1. A data-driven solution for
problem (1) is a feasible decision x̂N ∈ X that is constructed
from the training dataset Ξ′

N . The out-of-sample performance

1When dealing with additive noise, i.e., ξ′i = ξi + ni, the marginal
distribution of the noisy observations in (3) can be rewritten as P′(ξ′) =∑

ξ∈Ξ O(ξ′−ξ)P(ξ) as, by slight abuse of notation, O(ξ′|ξ) = O(ξ′−ξ).
This implies that P′ is equal to convolution of O and P.
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of x̂N is defined as EP[h(x̂N , ξ)], which is the expected cost
of the data-driven solution x̂N ∈ X for a new sample ξ
from P, which is independent of the training dataset. Since
P is unknown, the out-of-sample performance cannot be
evaluated explicitly in practice. Therefore, we would like
to establish performance guarantees for the out-of-sample
performance. By construction, because of the feasibility of
x̂N ∈ X, we know that

EP[h(x̂N , ξ)] ≥ J⋆,

where J⋆ is the optimal solution in (1). In line with the
literature on distributionally-robust optimization [2], we are
interested in out-of-sample performance bounds:

P′N{Ξ′
N : EP[h(x̂N , ξ)] ≤ ĴN} ≥ 1− β,

where ĴN is an upper bound that potentially depends on
the training dataset and β ∈ (0, 1) is a significance or
confidence parameter. Note that the dataset Ξ′

N is a random
variable governed by the N -fold product2 distribution P′N ∈
∆(Ξ′N ).

One way to solve this problem is to compute the discrete
empirical probability distribution P̂′

N ∈ ∆(Ξ′):

P̂′
N (ξ) =

1

N

N∑
i=1

δ[ξ′i − ξ], (5)

where δ : Rm → R is the Kronecker delta function, i.e.,
δ[x] = 1 if x = 0 and δ[x] = 0 otherwise. This amounts to
approximating the stochastic program in (1) with the noisy
sample-average approximation (NSAA) problem:

ĴNSAA := inf
x∈X

{
EP̂′

N [h(x, ξ)] =
1

N

N∑
i=1

h(x, ξ′i)

}
. (6)

However, it should be noted that limN→∞ EP̂′
N [h(x, ξ)]

a.s.
=

EP′
[h(x, ξ)] ̸= EP[h(x, ξ)]. This is caused by the noisy na-

ture of the samples. In this paper, we address this problem by
explicitly considering the effect of noisy measurements. We
particularly use Ξ′

N to create an ambiguity set P̂N ⊆ ∆(Ξ)
containing all distributions that could have generated the
noiseless samples with high confidence. This ambiguity set
enables us to define the distributionally-robust optimization
problem:

ĴDRO(P̂N ) := inf
x∈X

sup
Q∈P̂N

EQ[h(x, ξ)]. (7)

If the optimal solution to (7) exists and is attained for
some element of X, we denote the solution with x̂DRO(P̂N ).
We drop the reference to P̂N and use ĴDRO and x̂DRO

instead of ĴDRO(P̂N ) and x̂DRO(P̂N ), respectively, when
the ambiguity set is clear from the context.

Remark 2.4 (Existence of Solution) The inner optimiza-
tion problem in (7), i.e., supQ∈P̂N

EQ[h(x, ξ)], possesses

2Note that Ξ′N denotes N -fold Cartesian product of set Ξ′ with itself,
i.e., Ξ′N = Ξ′×· · ·×Ξ′, while Ξ′

N denotes the set of noisy data samples,
i.e., Ξ′

N = {ξ′i}Ni=1. Therefore, by definition, Ξ′
N ⊆ Ξ′N . The same

distinction also holds for ΞN and ΞN .

a finite supremum if the cost function h(x, ξ) is bounded
and the ambiguity set P̂N is compact, which holds for
the ambiguity sets defined using total variation distance in
Section III. Existence of solution to the outer problem, i.e.,
infx∈X(supQ∈P̂N

EQ[h(x, ξ)]), is more subtle. The solution
exists and is attained whenever supQ∈P̂N

EQ[h(x, ξ)] is
continuous in x (e.g., if the solution to the inner problem
is unique, and the cost function is bounded and continuous)
and the feasible set X is compact. Note that existence of
solutions does not imply computational feasibility of finding
one. The latter requires extra assumptions, e.g., convexity.

In what follows, we construct P̂N as a ball around the
empirical distribution (5) with respect to the total variation
distance with an additional constraint based on density
convolution to account for the noisy nature of the data.

III. CONCENTRATION BOUNDS ON EMPIRICAL
DISCRETE DISTRIBUTIONS

The following concentration bounds provide the basis for
establishing finite sample guarantees that we use to develop
the ambiguity set P̂N ⊆ ∆(Ξ) in the distributionally-robust
optimization framework of (7).

Theorem 3.1 ([24, Theorem 1]) For the empirical distri-
bution in (5), P′N{dTV(P′, P̂′

N ) ≤ ε} ≥ 1 − α if N ≥
max{|Ξ|, 2 ln(2/α)}/ε2.

Let us define total-variation ball B′
TV,ε(P̂′

N ) := {Q :

dTV(Q, P̂′
N ) ≤ ε} and

εTV(α) :=

√
max{|Ξ|, 2 ln(2/α)}

N
. (8)

The following corollary follows from Theorems 3.1.
Corollary 3.1: P′N{P′ ∈ B′

TV,εTV(α)(P̂
′
N )} ≥ 1− α.

Note that, so far, we have been focused on concentration
bounds for learning P′. However, to solve (1), we must learn
P. Let us define sets

BTV,ε(P̂′
N ) := {Q : O ⋆Q ∈ B′

TV,ε(P̂′
N )}. (9)

The following corollary immediately follows from Corol-
lary 3.1 and the definition of the ambiguity set in (9).

Corollary 3.2: P′N{P ∈ BTV,εTV(α)(P̂′
N )} ≥ 1− α.

Remark 3.1 (Total Variation Distance vs. Other Proba-
bility Metrics) Various probability metrics, such as Kull-
back–Leibler divergence [7] and Wasserstein distance [2],
are used for defining the ambiguity sets in distributionally-
robust optimization. The use of total variation distance in this
paper gives rise to a linear programming problem for com-
puting the worst-case distribution (see Theorem 4.1), which
is computationally favorable. The use of Kullback–Leibler
divergence would have resulted in a convex nonlinear pro-
gram. Also note that the total variation distance is an optimal
transportation distance with an indicator cost function [25].
To use other optimal transport distances, such as the Wasser-
stein distance, we must endow the finite uncertainty sets
Ξ and Ξ′ with distances. For categorical sets that are not
subsets of metric spaces, e.g., {male, female}, distances can
be artificial.
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Theorem 3.2 (Out-of-Sample Performance) Assume that
ĴDRO and x̂DRO denote the optimal value and an optimizer
of the distributionally-robust optimization problem (7), where
the ambiguity set is P̂N = BTV,εTV(α)(P̂′

N ). Then,

P′N{Ξ′
N : EP[h(x̂DRO, ξ)] ≤ ĴDRO} ≥ 1− α.

Proof: Corollary 3.2 shows that P ∈ P̂N with prob-
ability of at least 1 − α. Therefore, with probability of at
least 1 − α, EP[h(x̂DRO, ξ)] ≤ supQ∈P̂N

EQ[h(x̂DRO, ξ)]

= ĴDRO.
An important property for a stochastic estimator with

access to random samples is consistency, i.e., the property
that, as the number of samples increases towards infinity,
the resulting sequence of estimates converges in some sense
(convergence in probability or almost sure convergence)
to the true solution [26, § 2.3]. This has been a partic-
ularly sought-after property in distributionally-robust opti-
mization [2]. To prove consistency, we make the following
assumption regarding the conditional probability of the noisy
measurements.

Assumption 3.1: For Ξ′ = Ξ, O is uniformly diagonally
dominant if minξ∈Ξ O(ξ|ξ) > |Ξ|maxξ,ξ′∈Ξ,ξ ̸=ξ′ O(ξ′|ξ).

Assumption 3.1 focuses on conditional distributions that
are uniformly diagonally dominant. This is a slightly
stronger notion than diagonal dominance, i.e., O(ξ|ξ) >∑

ξ′ ̸=ξ O(ξ′|ξ). Diagonal dominance is a powerful tool for
analysis in linear algebra [27, § 2] and probability [28].
Assumption 3.1 essentially requires that the data is not
heavily perturbed by the noise.

Theorem 3.3: Assume that αN ∈ (0, 1), for all N ∈ N,
be such that

∑∞
N=1 αN < ∞ while limN→∞ ϵTV(αN ) =

0. Furthermore, assume that ĴDRO and x̂DRO denote the
optimal value and an optimizer of the distributionally-robust
optimization problem (7), where the ambiguity set is P̂N =
BTV,εTV(α)(P̂′

N ). Then, under Assumptions 3.1,
• If there exists L ≥ 0 such that |h(x, ξ)| ≤ L for all

(x, ξ) ∈ X× Ξ, then limN→∞ ĴDRO
a.e.
= J⋆.

• If there exists L ≥ 0 such that |h(x, ξ)| ≤ L for all
(x, ξ) ∈ X × Ξ, X is closed, and h(x, ξ) is lower
semi-continuous in x for every ξ ∈ Ξ, then any
accumulation point of {x̂DRO}N∈N is almost surely an
optimal solution for (1).
Proof: The proof of this theorem is inspired by [2,

Theorem 3.6]. Several aspects are however changed to ac-
commodate noisy measurements, which was not considered
in that paper. The detailed proof is moved to an online
report [29] due to space constraints.

Remark 3.2 (Finite-Sample Convergence) Under Assump-
tion 3.1, the proof of Theorem 3.3 demonstrates that ĴDRO−
J⋆ = O(εTV(αN )) = O(ln1/2(1/αN )N−1/2) when the
ambiguity set is determined by the total variation distance,
i.e., P̂N := BTV,εTV(α)(P̂′

N ). Therefore, for fixed αN = α,
ĴDRO − J⋆ = O(N−1/2). The dependency on N seems to
be order optimal, i.e., there seems to exist cost functions and
distributions for which ĴDRO − J⋆ = Ω(N−1/2) even when
the samples are not noisy; see, e.g., [30, Proposition 1] for

continuous distributions. An interesting direction for future
research remains to prove the lower bound ĴDRO − J⋆ =
Ω(N−1/2) for the exact problem formulation in this paper,
i.e., noisy samples and discrete random variables.

Remark 3.3 (Deconvolution) The importance of
Assumption 3.1 remains to be fully investigated. In
our proofs, this assumption is used to show that
limN→∞ BTV,εTV(αN)(P̂′

N ) = {P}. Therefore, under
appropriate conditions that ensure the uniqueness of the
deconvolution, i.e., conditions under which it is guaranteed
that {Q ∈ ∆(Ξ) : O⋆Q = P′} = {P}, the uniform diagonal
dominance in Assumption 3.1 may not be necessary to
ensure consistency. Asserting appropriate conditions and
proving this statement remains an important direction for
future research.

IV. WORST-CASE DISTRIBUTIONS

Motivated by the results of the previous section, we
examine a generic worst-case expectation problem:

sup
Q∈BTV,ε(P̂′

N )

EQ[ℓ(ξ)]. (10)

For instance, ℓ(ξ) = h(x, ξ) for a fixed x ∈ X.
Theorem 4.1: The worst-case expectation problem

in (10) equals

inf
(λ(ξ′))ξ′∈Ξ′ ,

(µ(ξ′))ξ′∈Ξ′ ,

r, t

r + 2εt+
∑
ξ′∈Ξ

(µ(ξ′)− λ(ξ′))P̂′
N (ξ′),

s.t. ℓ(ξ) +
∑
ξ′∈Ξ

(λ(ξ′)− µ(ξ′))O(ξ′|ξ) ≤ r,

λ(ξ′) + µ(ξ′) ≤ t,

λ(ξ′) ≥ 0,∀ξ′ ∈ Ξ′,

µ(ξ′) ≥ 0,∀ξ′ ∈ Ξ′.
Proof: The proof is moved to an online report [29] due

to space constraints.
Now, we are ready to leverage the result of Theorem 4.1

to compute the solution to the distributionally-robust opti-
mization problem in (7) with P̂N = BTV,ε(P̂′

N ). In the next
corollary, a computationally-friendly convex reformulation
for this problem is provided.

Corollary 4.1: The worst-case expectation problem in (7)
with P̂N = BTV,ε(P̂′

N ) equals

inf
(λ(ξ′))ξ′∈Ξ′ ,

(µ(ξ′))ξ′∈Ξ′ ,

r, t, x ∈ X

r + 2εt+
∑
ξ′∈Ξ

(µ(ξ′)− λ(ξ′))P̂′
N (ξ′),

s.t. h(x, ξ) +
∑
ξ′∈Ξ

(λ(ξ′)− µ(ξ′))O(ξ′|ξ) ≤ r,

∀x ∈ X
λ(ξ′) + µ(ξ′) ≤ t,

λ(ξ′) ≥ 0,∀ξ′ ∈ Ξ′,

µ(ξ′) ≥ 0,∀ξ′ ∈ Ξ′.
Remark 4.1: Note that (7) involves two nested optimiza-

tion problems (one maximization and one minimization)
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Fig. 1. Out-of-sample performance EP[h(x̂N , ξ)] for linear regression with noise-less non-private data ( ), naı̈ve linear regression with noisy data
( ⋄ ), and distributionally-robust linear regression ( ◦ ) versus number of data points N .

while the equivalent problem in Corollary 4.1 contains only
a single minimization. This can significantly reduce the
complexity of solving the problem. Furthermore, if h(·, ξ) :
X → R is quasi-convex, the overall optimization problem
in Corollary 4.1 is convex because the cost function and the
constraints are convex in all decision variables. This problem
can be then be solved using the interior point method,
which has proved successful in solving generic nonlinear
convex problems. In the following section, we solve this
optimization problem using SeDuMi [31]. Although the
proof of Corollary 4.1 may not require convexity of h,
solving the optimization problem for non-convex h can be
numerically difficult as the constraint set can become the
union of disjointed sets.

V. NUMERICAL EXAMPLE

In this section, we demonstrate the capabilities of our
results on distributionally-robust optimization with noisy data
in the context of privacy-preserving linear regression. We use
a dataset containing information regarding nearly 2,260,000
loans made on a peer-to-peer lending platform, called the
Lending Club, which is available on Kaggle [32]. The dataset
contains loan attributes, such as total loan size and interest
rates of the loans per annum, and borrower information, such
as number of credit lines, state of residence, and age. In our
numerical example, we aim to learn a linear regression model
for estimating interest rates of the loans based on features of
loan size and credit rating. Since our results are for discrete
random variables, we discretize the credit rating (mapping
scores of 650 to 850 with brackets of 50 to {1, . . . , 5}),
the loan amount (mapping $0 to $40,000 with brackets
of $10,000 to {1, . . . , 5}), and the interest rate (mapping
5% to 35% with increments of 5% to {1, . . . , 7}). Let ξ
be a vector whose entries are, respectively, the discretized
credit rating, the discretized loan amount, and the discretized
interest rates. To train the linear regression model, we aim
to solve (1) with h(x, ξ) = (ξ3 − [ξ1 ξ2 1]x)2. In what
follows, however, we assume that we do not have access
to the exact measurements of ξ. We are in fact supplied
with differentially-private perturbed measurements ξ′. The
following definition and the subsequent theorem make this
more clear. Before stating these results, we would like to
define the notation diam(Ξ) = maxξ,ξ̄ ∥ξ − ξ̄∥.

Definition 5.1 (Local Differential Privacy) Conditional
probability O(ξ′|ξ) is ϵ-differentially-private if O[ξ′ ∈
A|ξ] ≤ exp(ϵ)O[ξ′ ∈ A|ξ̄], for all A ⊆ Ξ′ and all ξ, ξ̄ ∈ Ξ.

Proposition 5.1: Assume Ξ′ = Ξ. The following condi-
tional probability guarantees ϵ-local differential privacy:

O(ξ′|ξ) = exp

(
−ϵ∥ξ − ξ′∥
2diam(Ξ)

)
/
∑
ξ′′∈Ξ

exp

(
−ϵ∥ξ − ξ′′∥
2diam(Ξ)

)
.

Proof: The proof is similar to that of exponential
mechanisms for differential privacy in [33, §3.4]. Detailed
derivations are removed due to space constraints and can be
found in an online report [29].

For the sake of comparison, we consider three linear
regression models. The baseline for the best achievable
performance is given by the optimal linear regression model
using noise-less data. Note that, by construction, no linear
regression model can beat the baseline. However, according
to Theorem 3.3, the performance of the distributionally-
robust linear regression converges to the baseline, i.e., the
proposed distributionally-robust regression model is asymp-
totically consistent and optimal, if O in Proposition 5.1 is
uniformly diagonally dominant. Due to the special form of
the conditional probability O in Proposition 5.1,

max
ξ ̸=ξ′

O(ξ′|ξ)∝exp

−ϵmin
ξ ̸=ξ′

∥ξ−ξ′∥

2diam(Ξ)

=exp

(
−ϵ

2diam(Ξ)

)
,

where ∝ denotes equality up to re-scaling by a constant or
proportionality (c.f., Proposition 5.1) and minξ ̸=ξ′ ∥ξ−ξ′∥ =
1 in this example. Therefore, Assumption 3.1 is satisfied if

O(ξ|ξ)
maxξ ̸=ξ′ O(ξ′|ξ)

= exp

(
ϵ

2diam(Ξ)

)
> |Ξ|,

or equivalently if ϵ > 2diam(Ξ) log(|Ξ|) ≈ 64.17. Note
that, although we consider privacy budgets ϵ that are below
this bound and thus the conditional density of the privacy-
preserving noise is not uniformly diagonally dominant, we
can still observe asymptotic consistency numerically. We
compare the baseline performance with the performance of
two linear regression models in the noisy regime. One of the
regression models is naı̈vely constructed from the noisy data
without any processing (i.e., as if the data was noiseless). The
other model is the distributionally-robust regression model
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that can be extracted from Corollary 4.1. This optimization
problem is modelled using CVX [34] and solved using
SeDuMi [31]. The codes for conducting the experiments in
this section can be downloaded from GitHub3.

Figure 1 illustrates the out-of-sample performance
EP[h(x̂N , ξ)] for linear regression with noise-less non-
private data, naı̈ve linear regression with noisy data, and
distributionally-robust linear regression with noisy data ver-
sus the number of data points N . For ϵ = 3.0, the out-of-
sample performance of the distributionally-robust regression
model improves rapidly and surpass the naı̈ve regression
model. For ϵ = 10.0, the out-of-sample performance of
the distributionally-robust regression model is superior to
the naı̈ve regression model for the entire range. Finally, for
ϵ = 30.0 ϵ = 100.0, due to the small magnitude of the
noise, the out-of-sample performance of the naı̈ve regression
model and linear regression with noise-less non-private data
are almost identical, and the out-of-sample performance of
the distributionally-robust regression model approaches that
of the noise-less regression model rapidly. In all cases,
as the number of data points N grows, the out-of-sample
performance of the distributionally-robust regression model
approaches that of the noise-less regression model.

VI. CONCLUSIONS AND FUTURE WORK

We considered stochastic programs where the uncertainty
distribution must be inferred from noisy data samples. We
showed that the stochastic programs can be approximated
with distributionally-robust optimizations that minimize the
worst-case expected cost over an ambiguity set of distribu-
tions that are sufficiently compatible with the observed data.
Future work can focus on continuous random variables.
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