
Long-Time Behavior of Stochastic
Linear-Quadratic Optimal Control Problems

1st Jingrui Sun
Shenzhen Key Laboratory of Safety and Security

for Next Generation of Industrial Internet
Department of Mathematics

Southern University of Science and Technology
Shenzhen, Guangdong, 518055, China

sunjr@sustech.edu.cn

2nd Huojun Wu
Department of Mathematics

Southern University of Science and Technology
Shenzhen, Guangdong, 518055, China

12131235@mail.sustech.edu.cn

Abstract—The turnpike property refers to the phenomenon
that in many optimal control problems over finite but long-
time horizon, optimal trajectories approach to a steady state of
the system and stay close to it for the major part of the time
horizon. In the past several decades, the turnpike properties
have attracted extensive attentions in control theory. Numerous
results have been established for deterministic optimal control
problems of both finite and infinite dimensions. However, the
study of turnpike phenomena for stochastic optimal control is
quite lacking in literature. This paper is concerned with the
turnpike properties for stochastic linear-quadratic optimal con-
trol problems. Under suitable conditions, the strong exponential,
the strong integral, and the mean-square turnpike properties
are established. The crucial issues are to correctly formulate
the corresponding static optimization problem and find the
correction processes, which illustrate the essential differences
between stochastic and deterministic cases.

keywords—Stochastic optimal control, linear-quadratic,
strong turnpike property, static optimization, stabilizability.

I. INTRODUCTION

Let (Ω,F ,P) be a complete probability space on
which a standard one-dimensional Brownian motion W =
{W (t); t > 0} is defined. Denote by F = {Ft}t>0 the usual
augmentation of the natural filtration generated by W . For a
stochastic process X , we write X ∈ F if it is progressively
measurable with respect to the filtration F.

Consider the following controlled linear stochastic differ-
ential equation (SDE, for short):

dX(t) = [AX(t) +Bu(t) + b]dt

+ [CX(t) +Du(t) + σ]dW (t),

X(0) = x,

(1)

and the following quadratic cost functional:

JT (x;u(·)) = E
∫ T

0

[〈(
Q S>

S R

)(
X(t)
u(t)

)
,

(
X(t)
u(t)

)〉
+ 2
〈(
q
r

)
,

(
X(t)
u(t)

)〉]
dt, (2)

The first author is supported by NSFC grant 12271242, Guangdong
Basic and Applied Basic Research Foundation 2021A1515010031, Shenzhen
Fundamental Research General Program JCYJ20220530112814032, and
ZDSYS20210623092007023.

where A,C,Q ∈ Rn×n, B,D ∈ Rn×m, S ∈ Rm×n,
and R ∈ Rm×m are constant matrices with Q and R
being symmetric; the superscript > denotes the transpose
of matrices; 〈· , ·〉 denotes the Frobenius inner product of
two matrices; and b, σ, q ∈ Rn and r ∈ Rm are constant
vectors. The classical stochastic linear-quadratic (LQ, for
short) optimal control problem over the finite time horizon
[0, T ] is to find a control uT (·) from the space

U [0, T ] =
{
u : [0, T ]×Ω → Rm

∣∣ u ∈ F and

E
∫ T

0

|u(t)|2dt <∞
}

such that the cost functional (2) is minimized over U [0, T ] for
any given initial state x ∈ Rn. More precisely, the problem
can be stated as follows.

Problem (SLQ)T . For any given initial state x ∈ Rn, find
a control u∗T (·) ∈ U [0, T ] such that

JT (x;u
∗
T (·)) = inf

u(·)∈U [0,T ]
JT (x;u(·)) ≡ VT (x). (3)

The process u∗T (·), if it exists, is called an open-loop
optimal control of Problem (SLQ)T for the initial state x.
The corresponding state process X∗T (·) is called an open-loop
optimal state process, and (X∗T (·), u∗T (·)) is called an open-
loop optimal pair. The function VT (·) is called the value
function of Problem (SLQ)T .

It is well-known by now that under proper conditions,
Problem (SLQ)T is uniquely solvable, whose optimal control
has a state feedback form and usually depends on the initial
state x, as well as the time horizon T . However, in practice
it is not convenient to compute the optimal control using
the existing results, since this is an infinite dimensional
problem without analytical solutions and the optimal control
varies with time. The turnpike property of Problem (SLQ)T
implies that for most of the time the optimal control-state pair
remains very close to the solution of some static optimization
problem. Such a property gives us the essential picture of the
optimal pair without having to solve it analytically, which is
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very useful in improving the numerical methods for solving
optimal control problems.

The study of turnpike phenomena can be traced back to
the work of von Neumann [11] on problems in economics,
while the term was first coined by Dorfman, Samuelson, and
Solow in 1958 (see [3]), referring to an American English
word for a Highway. In the past several decades, the turnpike
properties have attracted attentions of many researchers from
various areas (see, e.g., [6], [7], [9], [10], [13]) as such a
property often gives people an essential picture of the optimal
pair without solving it analytically and leads to a significant
simplification in numerical methods for solving such kind
of optimal control problems. Numerous relevant results have
been established for finite and infinite dimensional problems
in the context discrete-time and continuous-time systems
(see, e.g., [1], [2], [4], [5], [8], [18], [19], [21]–[24] and
the references therein).

For the deterministic LQ optimal control problem, denoted
by Problem (DLQ)T , the exponential turnpike property has
been established in [12] and [19], which states that the
optimal pair exponentially converges in the transient time
(as T → ∞) to the minimum point of a certain static
optimization problem. To be precise, let (x∗, u∗) be the
solution to the following static optimization problem:

Minimize F0(x, u) , 〈Qx, x〉+ 2〈Sx, u〉+ 〈Ru, u〉
+ 2〈q, x〉+ 2〈r, u〉,

subject to Ax+Bu+ b = 0.

(4)

Then there exist positive constants K and λ, independent
of T , such that the optimal pair (X∗T (·), u∗T (·)) of Problem
(DLQ)T satisfies

|X∗T (t)− x∗|+ |u∗T (t)− u∗| 6 K
[
e−λt + e−λ(T−t)

]
for all t ∈ [0, T ].

For the stochastic LQ optimal control problem (i.e., Prob-
lem (SLQ)T ), Sun, Wang, and Yong [15] recently found that
the corresponding static optimization problem should take the
following form:

Minimize F (x, u),〈P (Cx+Du+σ), Cx+Du+σ〉
+ F0(x, u),

subject to Ax+Bu+ b = 0,

(5)

where P > 0 is the solution to the following algebraic Riccati
equation (ARE, for short):

Q(P )− S(P )>R(P )−1S(P ) = 0, (6)

where 
Q(P ) , PA+A>P + C>PC +Q,

S(P ) , B>P +D>PC + S,

R(P ) , R+D>PD.

(7)

It was shown in [15] that the expectation of the optimal pair
exhibits similar turnpike properties as the deterministic case,
that is, for some constants K,λ > 0 independent of T ,∣∣E[X∗T (t)]− x∗∣∣+ ∣∣E[u∗T (t)]− u∗∣∣ 6 K

[
e−λt + e−λ(T−t)

]

for all t ∈ [0, T ].
In this paper, we establish a stronger turnpike property for

Problem (SLQ)T , which gives further information about the
paths of the optimal pair. We show that for some stochastic
processes X∗(·) and u∗(·) independent of T , the optimal
pair (X∗T (·), u∗T (·)) of Problem (SLQ)T satisfies the following
strong exponential turnpike property:

E|X∗T (t)−X∗(t)|2 + E|u∗T (t)− u∗(t)|2

6 K
[
e−λt + e−λ(T−t)

]
, ∀t ∈ [0, T ], (8)

for some constants K,λ > 0 independent of T . The pair
of processes (X∗(·),u∗(·)), which we call the turnpike
limit of Problem (SLQ)T , can be determined explicitly: the
expectation (x∗, u∗) of (X∗(·),u∗(·)) is time-invariant, and
is exactly the solution to the static optimization problem (5);
and the correction processes (for the state and control)

X∗(·) , X∗(·)− x∗, u∗(·) , u∗(·)− u∗

are solutions of some linear SDEs that are easy to solve. As
consequences of (8), the strong integral and the mean-square
turnpike properties are also established for Problem (SLQ)T .
Further, we show that the value function of Problem (SLQ)T
converges to the minimum of the static optimization problem
(5) in the time-average sense.

The rest of this paper is structured as follows. In section II,
we give the preliminaries, introduce the static optimization
problem, and collect some relevant results. In section III, we
state the main results of the paper and give some brief proofs.
In section IV, we conclude the paper.

II. PRELIMINARIES

In this section, we first introduce the basic notation and
assumptions that will be used throughout this paper. Then
we recall the connection between the differential Riccati
equation and the algebraic Riccati equation. Finally, we
formulate the static optimization problem associated with
Problem (SLQ)T .

A. Notation and assumptions

Let Rn×m be the space of n×m all real matrices equipped
with the Frobenius inner product

〈M,N〉 , tr (M>N), M,N ∈ Rn×m,

where tr (M>N) is the trace of the matrix M>N . The
norm induced by the Frobenius inner product is denoted by
| · |. For a subset H of Rn×m, we denote by C([0, T ];H)
the space of all continuous functions from [0, T ] into H.
The identity matrix of size n is denoted by In (or simply
by I if no confusion should occur), and a vector always
refers to a column vector if not specified. Let Sn be the
subspace of Rn×n consisting of symmetric matrices. For Sn-
valued functions M and N , we write M > N (respectively,
M > N ) if M − N is positive semidefinite (respectively,
positive definite) almost everywhere with respect to the
Lebesgue measure.

2797



The following basic assumptions will be imposed through-
out the paper.
(A1) The weighting matrices in the cost functional (2) satisfy

R > 0, Q− S>R−1S > 0.

(A2) The controlled linear system

dX(t) = [AX(t)+Bu(t)]dt+[CX(t)+Du(t)]dW (t) (9)

is L2-stabilizable, i.e., there exists a matrix Θ ∈ Rm×n such
that for any initial state x, the solution X(·) of (9) corre-
sponding to the linear state feedback control u(·) = ΘX(·)
satisfies

E
∫ ∞
0

|X(t)|2dt <∞.

In this case, Θ is called a stabilizer of the system (9).

B. Differential and algebraic Riccati equations

With the notation (7), the differential Riccati equation
associated with Problem (SLQ)T can be written as

ṖT (t) +Q(PT (t))
− S(PT (t))>R(PT (t))−1S(PT (t)) = 0,

PT (T ) = 0.

(10)

Under the assumption (A1), it can be shown that (10) admits
a unique positive semidefinite solution PT (·) ∈ C([0, T ];Sn);
see, e.g., [14], [20]. So we have the following result.

Lemma 2.1. Let (A1) hold. Then for any T > 0, the
differential Riccati equation (10) admits a unique solution
PT (·) ∈ C([0, T ];Sn) satisfying PT (t) > 0 for all t ∈ [0, T ].

The following result is concerned with the solvability of
the ARE (6), whose proof can be found in [16]; see also the
book [17].

Lemma 2.2. Let (A1)–(A2) hold. Then the ARE (6) admits
a unique solution P ∈ Sn satisfying P > 0. Moreover, the
matrix

Θ , −R(P )−1S(P ) (11)

is a stabilizer of the system (9).
Now we present the connection between the solutions

to the differential Riccati equation (10) and the ARE (6).
Let PT (·) and P be the unique solutions to (10) and (6),
respectively.

Lemma 2.3. Let (A1)–(A2) hold. Then there exist constants
K,λ > 0, independent of T , such that

|PT (t)− P | 6 Ke−λ(T−t), ∀t ∈ [0, T ]. (12)

The property (12) plays an essential role in establishing
the strong turnpike property of Problem (SLQ)T . Please see
[15] for a proof of Lemma 2.3.

C. The static optimization problem

We now introduce the static optimization problem associ-
ated with Problem (SLQ)T , whose solution serves as part of
the strong turnpike limit of Problem (SLQ)T . Let

V ,
{
(x, u) ∈ Rn × Rm | Ax+Bu+ b = 0

}
, (13)

which is nonempty under the assumption (A2) since the
stabilizability of the system (9) implies that (A,B) has rank
n. Also, define a continuous function F : V → R by

F (x, u) , 〈Qx, x〉+ 〈Ru, u〉+ 2〈Sx, u〉+ 2〈q, x〉+ 2〈r, u〉
+ 〈P (Cx+Du+ σ), Cx+Du+ σ〉, (14)

where P is the unique solution of the ARE (6). The static
optimization problem associated with Problem (SLQ)T can
be stated as follows.

Problem (O). Find a pair (x∗, u∗) ∈ V such that

F (x∗, u∗) = min
(x,u)∈V

F (x, u) ≡ V.

For the above static optimization problem, we have the
following result.

Lemma 2.4. Let (A1)–(A2) hold. Then Problem (O) admits
a unique solution. Moreover, (x∗, u∗) ∈ V is the solution if
and only if for some λ∗ ∈ Rn, the following hold:

Ax∗ +Bu∗ + b = 0

Qx∗ +A>λ∗ + C>Pσ∗ + S>u∗ + q = 0,

Ru∗ +B>λ∗ +D>Pσ∗ + Sx∗ + r = 0,

(15)

where σ∗ , Cx∗ +Du∗ + σ.
We omit the proof of Lemma 2.4 here and refer the reader

to [15] for details.

III. MAIN RESULTS

In this section, we state and prove the main results of the
paper, including the strong exponential, the strong integral,
and the mean-square turnpike properties, as well as the
convergence of the value function of Problem (SLQ)T .

Let (x∗, u∗) be the unique solution of Problem (O), and let
Θ be the matrix defined by (11). Let X∗(·) be the solution
to the SDE (recalling σ∗ = Cx∗ +Du∗ + σ)

dX∗(t) = (A+BΘ)X∗(t)dt

+ [(C +DΘ)X∗(t) + σ∗]dW (t),

X∗(0) = 0,

(16)

and set

X∗(t) , X∗(t) + x∗, u∗(t) , ΘX∗(t) + u∗. (17)

Note that E[X∗(t)] ≡ 0. Thus,

E[X∗(t)] = x∗, E[u∗(t)] = u∗, ∀t > 0.

Proposition 3.1. Let (A1)–(A2) hold. Then there exist a
constant K > 0, such that

E|X∗(t)|2 6 K, ∀t > 0.
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Proof. Let P > 0 be the solution to the ARE (6) and let Θ
be defined by (11). It is easy to see that

P (A+BΘ) + (A+BΘ)>P + (C +DΘ)>P (C +DΘ)

= −(Q+Θ>RΘ + S>Θ +Θ>S).

This, together with Itô’s rule, implies that

d

dt
E〈PX∗(t), X∗(t)〉

= E
{
2〈PX∗(t), (A+BΘ)X∗(t)〉

+〈P [(C+DΘ)X∗(t)+σ∗], (C+DΘ)X∗(t)+σ∗〉
}

= E
[
−〈(Q+Θ>RΘ+S>Θ+Θ>S)X∗(t), X∗(t)〉

+ 2〈P (C +DΘ)X∗(t), σ∗〉+ 〈Pσ∗, σ∗〉
]
.

Note that by the assumption (A1),

Q+Θ>RΘ + S>Θ +Θ>S

= Q− S>R−1S + (Θ +R−1S)>R(Θ +R−1S) > 0.

Let µ > 0 and ν > 0 be the largest and the smallest
eigenvalues of P and Q+Θ>RΘ+S>Θ+Θ>S, respectively.
Then, with β , |(C +DΘ)>Pσ∗|, we have

d

dt
E〈PX∗(t), X∗(t)〉

6 E
[
− ν|X∗(t)|2 + 2β|X∗(t)|+ 〈Pσ∗, σ∗〉

]
= E

{
− ν

2
|X∗(t)|2 − ν

2

[
|X∗(t)| − 2

ν
β
]2

+
2

ν
β2 + 〈Pσ∗, σ∗〉

}
6 E

[
− ν

2µ
〈PX∗(t), X∗(t)〉+ 2

ν
β2 + 〈Pσ∗, σ∗〉

]
.

It follows from the Gronwall inequality that

E〈PX∗(t), X∗(t)〉 6
[
2

ν
β2 + 〈Pσ∗, σ∗〉

] ∫ t

0

e
ν
2µ (s−t)ds

6
2µ

ν

[
2

ν
β2 + 〈Pσ∗, σ∗〉

]
.

The desired result follows, since P > 0.

A. The strong exponential turnpike property

Under (A1), the uniform convexity holds (see [17, Propo-
sition 2.5.1]). Thus, by Proposition 2.5.2 of [17], Problem
(SLQ)T admits a unique optimal control for every initial state
x. Further, by Theorem 2.3.2 of [17], a state-control pair
(X∗T (·), u∗T (·)) is optimal for x if and only if the adapted
solution (Y ∗T (·), Z∗T (·)) to the backward SDE

dY ∗T (t) = −
[
A>Y ∗T (t) + C>Z∗T (t) +QX∗T (t)

+ S>u∗T (t) + q
]
dt+ Z∗T (t)dW (t),

Y ∗T (T ) = 0

(18)

satisfies the following stationary condition:

B>Y ∗T (t) +D>Z∗T (t) + SX∗T (t) +Ru∗T (t) + r = 0. (19)

Let (X∗T (·), u∗T (·)) be the optimal pair of Problem (SLQ)T for
the initial state x, and let (Y ∗T (·), Z∗T (·)) be the corresponding
adapted solution to (18). Let λ∗ ∈ Rn be the Lagrange
multiplier in (15) and define

X̃T (t) = X∗T (t)− x∗,
ũT (t) = u∗T (t)− u∗,
ỸT (t) = Y ∗T (t)− λ∗.

(20)

Using (15) and (20), we can obtain by a straightforward
calculation that

dX̃T (t) = [AX̃T (t) +BũT (t)]dt

+ [CX̃T (t) +DũT (t) + σ∗]dW (t),

dỸT (t) = −[A>ỸT (t) + C>Z∗T (t) +QX̃T (t)

+ S>ũT (t)− C>Pσ∗]dt+ Z∗T (t)dW (t),

X̃T (0) = x− x∗, ỸT (T ) = −λ∗,
B>ỸT (t)+D

>Z∗T (t)+SX̃T (t)+RũT (t)=D
>Pσ∗.

(21)

Again, by Theorem 2.3.2 of [17], we see from (21) that
(X̃T (·), ũT (·)) is the optimal pair of the stochastic LQ
problem with the state equation

dX(t) = [AX(t) +Bu(t)]dt

+ [CX(t) +Du(t) + σ∗]dW (t),

X(0) = x− x∗,
and the cost functional

J(x;u(·)) , E
{
− 2〈λ∗, X(T )〉

+

∫ T

0

[〈(
Q S>

S R

)(
X(t)
u(t)

)
,

(
X(t)
u(t)

)〉
− 2
〈(
C>Pσ∗

D>Pσ∗

)
,

(
X(t)
u(t)

)〉]
dt

}
.

Thus, by Corollary 4.7 of [14], we have the following result.
Proposition 3.2. Let (A1)–(A2) hold. Let PT (·) and P be

the solutions to (10) and (6), respectively. Define

ΘT (t) , −R(PT (t))−1S(PT (t)), (22)

and let ϕT (·) be the solution to the ordinary differential
equation (ODE, for short)

ϕ̇T (t) + [A+BΘT (t)]
>ϕT (t)

+ [C +DΘT (t)]
>[PT (t)− P ]σ∗ = 0,

ϕT (T ) = −λ∗.

Then the process ũT (·) defined in (20) is given by

ũT (t) = ΘT (t)X̃T (t) + θT (t), (23)

where

θT (t) = −R(PT (t))−1[B>ϕT (t) +D>(PT (t)− P )σ∗].

Lemma 3.3. Let (A1)–(A2) hold. Then there exist constants
K,λ > 0, independent of T , such that

|ϕT (t)|+ |θT (t)| 6 Ke−λ(T−t), ∀t ∈ [0, T ].
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Proof. It is shown in Lemma 5.1 of [15] that ϕT (·) satisfies

|ϕT (t)| 6 Ke−λ(T−t), ∀t ∈ [0, T ]

for some constants K,λ > 0 independent of T . The desired
result then follows from the fact R(PT (t)) > R > 0 and
Lemma 2.3.

Substituting (23) into the SDE for X̃T (·) in (21), we see
that the process X̃T (·) satisfies the following closed-loop
system:
dX̃T (t) =

{
[A+BΘT (t)]X̃T (t) +BθT (t)

}
dt

+
{
[C +DΘT (t)]X̃T (t) +DθT (t) + σ∗

}
dW (t),

X̃T (0) = x− x∗ ≡ x̃.

The function t→ E[X̃T (t)] satisfies the following ODE:
d

dt
E[X̃T (t)] = [A+BΘT (t)]E[X̃T (t)] +BθT (t),

E[X̃T (0)] = x̃.

Now we give an estimate for E[X̃T (t)]. The proof is similar
to that of Theorem 5.1 in [15] and is omitted here.

Lemma 3.4. Let (A1)–(A2) hold. Then there exist constants
K,λ > 0, independent of T , such that

|E[X̃T (t)]| 6 K
[
e−λt + e−λ(T−t)

]
, ∀t ∈ [0, T ].

We are ready for the main result of the paper, which es-
tablishes the strong exponential turnpike property of Problem
(SLQ)T .

Theorem 3.5. Let (A1)–(A2) hold. Let (X∗T (·), u∗T (·)) be
the optimal pair of Problem (SLQ)T for the initial state x,
and let X∗(·) and u∗(·) be defined by (17). Then there exist
constants K,λ > 0, independent of T , such that

E|X∗T (t)−X∗(t)|2 + E|u∗T (t)− u∗(t)|2

6 K
[
e−λt + e−λ(T−t)

]
, ∀t ∈ [0, T ]. (24)

Proof. Let Θ and ΘT (·) be as in (11) and (22), respectively.
For notational simplicity, we write

A = A+BΘ, AT (t) = A+BΘT (t),

C = C +DΘ, CT (t) = C +DΘT (t).

Then the process

ṼT (t) , X̃T (t)− E[X̃T (t)]−X∗(t)

satisfies ṼT (0) = 0 and

dṼT = [AT ṼT + (AT −A)X∗]dt
+ [CT ṼT + (CT − C)X∗ + hT ]dW (t),

where we have suppressed t, and

hT (t) , CT (t)E[X̃T (t)] +DθT (t).

Let P > 0 be the solution to the ARE (6). By Itô’s rule,
d

dt
E〈PṼT (t), ṼT (t)〉 = E

{〈
(PAT+A>TP+C>TPCT )ṼT , ṼT

〉
+ 2
〈
[P (AT −A) + C>T P (CT − C)]X∗, ṼT

〉
+
〈
C>T PCTE[X̃T ],E[X̃T ]

〉
+ kT

}
, (25)

where

kT (t) ,
〈
P [CT (t)− C]X∗(t), [CT (t)− C]X∗(t)

〉
+
〈
2PCT (t)E[X̃T (t)] + PDθT (t), DθT (t)

〉
.

We observe the following facts:

PAT +A>T P + C>T PCT
= PA+A>P + C>PC + P (AT−A) + (AT−A)>P

+ (CT − C)>PC + C>T P (CT − C),
PA+A>P + C>PC
= −(Q+Θ>RΘ + S>Θ +Θ>S) < 0.

Also, observe that by Lemma 2.3, for some positive constants
K and λ,

|AT (t)−A|+ |CT (t)− C| 6 Ke−λ(T−t),

∀0 6 t 6 T <∞.

For simplicity, in the following proof we shall denote by K
and λ two generic positive constants, which do not depend
on T and may vary from line to line. Then it follows that
for some constant α > 0,

E
〈
[PAT (t) +AT (t)>P + CT (t)>PCT (t)]ṼT (t), ṼT (t)

〉
6 K

[
− 2α+ e−λ(T−t)

]
E|ṼT (t)|2. (26)

Moreover, by the Cauchy–Schwarz inequality, Proposition
3.1, and Lemmas 3.3 and 3.4, we have

2E
〈
[P (AT (t)−A) + CT (t)>P (CT (t)− C)]X∗(t), ṼT (t)

〉
6 K

[
αE|ṼT (t)|2 + e−λ(T−t)

]
, (27)〈

CT (t)>PCT (t)E[X̃T (t)],E[X̃T (t)]
〉
+ E|kT (t)|

6 K
[
e−λt + e−λ(T−t)

]
. (28)

Substitution of (26)–(28) into (25) yields
d

dt
E〈PṼT (t), ṼT (t)〉 6 K

[(
− α+ e−λ(T−t)

)
E|ṼT (t)|2

+ e−λt + e−λ(T−t)
]
.

Proceeding similarly to the proof of Proposition 3.1, we
obtain

E|ṼT (t)|2 6 K
[
e−λt + e−λ(T−t)

]
, ∀t ∈ [0, T ].

By (17), (20), (23), and the definition of ṼT (·), we have

X∗T (t)−X∗(t) = ṼT (t) + E[X̃T (t)],

u∗T (t)− u∗(t) = ΘT (t)[X
∗
T (t)−X∗(t)]

+ [ΘT (t)−Θ]X∗(t) + θT (t),

which, together with Lemma 3.4, implies (24).
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B. Other turnpike properties
The following result, which is a direct consequence of

Theorem 3.5, shows that the strong integral and the mean-
square turnpike properties hold for Problem (SLQ)T .

Theorem 3.6. Let (A1)–(A2) hold. Then the following
strong integral turnpike property holds:

lim
T→∞

1

T

∫ T

0

E
[
|X∗T (t)−X∗(t)|2 + |u∗T (t)−u∗(t)|2

]
dt = 0.

Consequently, the mean-square turnpike property also holds:

lim
T→∞

1

T

∫ T

0

[
|E[X∗T (t)]− x∗|2 + |E[u∗T (t)]− u∗|2

]
dt = 0.

The next result shows that for any initial state x, the value
VT (x) of Problem (SLQ)T converges to the minimum of
Problem (O) in the time-average sense.

Theorem 3.7. Let (A1)–(A2) hold. Then

lim
T→∞

1

T
VT (x) = V, ∀x ∈ Rn,

where V is the minimum of Problem (O).

Proof. By Proposition 3.1, E|X∗(·)|2 and E|u∗(·)|2 are
bounded. Thus, by Theorem 3.5,

E|X∗T (t)|2 + E|u∗T (t)|2 6 K, ∀0 6 t 6 T <∞,

for some K > 0. The above, together with Theorem 3.6,
implies that

lim
T→∞

1

T
VT (x) = lim

T→∞

1

T
JT (x;u

∗
T (·))

= lim
T→∞

1

T

∫ T

0

{
E
[
〈QX∗T (t), X∗T (t)〉+2〈SX∗T (t), u∗T (t)〉

]
+〈Ru∗T (t), u∗T (t)〉+2〈q,E[X∗T (t)]〉+2〈r,E[u∗T (t)]〉

}
dt

= lim
T→∞

1

T

∫ T

0

{
E
[
〈QX∗(t),X∗(t)〉+2〈SX∗(t),u∗(t)〉

+〈Ru∗(t),u∗(t)〉
]
+2〈q,E[X∗(t)]〉+2〈r,E[u∗(t)]〉

}
dt.

Noting that

E[X∗(t)] ≡ 0, E[X∗(t)] ≡ x∗, E[u∗(t)] ≡ u∗,

and letting

Σ , Q+ S>Θ +Θ>S +Θ>RΘ,

we further have

lim
T→∞

1

T
VT (x) = lim

T→∞

1

T

∫ T

0

{
E
[
〈QX∗(t), X∗(t)〉

+ 〈Qx∗, x∗〉+ 2〈SX∗(t), ΘX∗(t)〉+ 2〈Sx∗, u∗〉
+ 〈RΘX∗(t), ΘX∗(t)〉+ 〈Ru∗, u∗〉

]
+ 2〈q, x∗〉+ 2〈r, u∗〉

}
dt

= lim
T→∞

1

T

∫ T

0

E〈ΣX∗(t), X∗(t)〉dt

+ 〈Qx∗, x∗〉+ 2〈Sx∗, u∗〉+ 〈Ru∗, u∗〉
+ 2〈q, x∗〉+ 2〈r, u∗〉. (29)

On the other hand, letting P > 0 be the solution to the ARE
(6) and noting that E[X∗(t)] = 0, we have

E〈PX∗(T ), X∗(T )〉

= E
∫ T

0

{
〈[P (A+BΘ) + (A+BΘ)>P

+(C+DΘ)>P (C+DΘ)]X∗(t), X∗(t)〉+〈Pσ∗, σ∗〉
}
dt

= E
∫ T

0

[
− 〈ΣX∗(t), X∗(t)〉+ 〈Pσ∗, σ∗〉

]
dt.

Since E|X∗(T )|2 is bounded in T , we have

lim
T→∞

1

T

∫ T

0

E〈ΣX∗(t), X∗(t)〉dt

= lim
T→∞

1

T

[
− E〈PX∗(T ), X∗(T )〉+

∫ T

0

〈Pσ∗, σ∗〉dt
]

= 〈Pσ∗, σ∗〉. (30)

Combining (29) and (30), we get the desired result.

Example 3.8. Consider the one-dimensional state equation{
dX(t) = [u(t)− 1]dt+ [X(t) + u(t)]dW (t),

X(0) = x,

and the cost functional

JT (x;u(·)) , E
∫ T

0

[
|X(t)|2 + |u(t)|2 + 2X(t) + 2u(t)

]
dt.

The corresponding ARE (6) reads

P + 1− 4P 2

1 + P
= 0,

whose positive solution is P = 1. Thus, the Θ defined by
(11) is equal to −1. Now, (15) becomes

u∗ − 1 = 0

x∗ + (x∗ + u∗) + 1 = 0,

u∗ + λ∗ + (x∗ + u∗) + 1 = 0,

from which we get

u∗ = 1, x∗ = −1, λ∗ = −2.

Moreover, the SDE (16) becomes{
dX∗(t) = −X∗(t)dt,
X∗(0) = 0,

whose solution is identically zero. So the turnpike limit
defined by (17) is

(X∗(t),u∗(t)) = (x∗, u∗) = (−1, 1).

In light of Theorems 3.5 and 3.7, we could regard (−1, 1)
as an approximation of the optimal pair of Problem (SLQ)T
when T is sufficiently large.

2801



IV. CONCLUSIONS

In this paper, we establish the strong exponential, the
strong integral, and the mean-square turnpike properties for
a class of stochastic LQ optimal control problems. We also
show that the value function of the stochastic LQ optimal
control problem converges to the minimum of the corre-
sponding static optimization problem in the time-average
sense. The keys are to correctly formulate the corresponding
static optimization problem and find the equations determin-
ing the correction processes. The idea and methods of the
paper might be applied to more general problems, such as
mean-field LQ optimal control, periodic LQ optimal control,
and LQ optimal control with partial information, etc. We
will report some further results along this line in our future
publications.
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