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Abstract— This paper is about state estimation in a class of
labeled timed probabilistic automata. In detail, we consider
continuous time Markov processes where the occurrence of
some transitions produces observable events. Such observations
can be used to update and refine the state estimation. In this
setting, we discuss how a logical state estimation approach
can be used to characterize the probabilistic state estimation
whenever a new event is observed or when the system evolves
without producing new observations (silent closure). The main
results of the paper show that the final behaviour, as the silent
closure goes to infinity, cannot be characterized only in terms
of the graphical structure of the underlying automaton but also
depends on the values of the firing rates.

I. INTRODUCTION

In a standard Markov model there is no notion of observed
output and the only measurable signal that can be used for
the purpose of state estimation is the current time value
t. Starting from a given initial state probability vector π0

that is assumed to be known, the current state probability
vector π(t) can be computed from the knowledge of the
transition rate matrix of the model. Vector π(t) allows one
to estimate not only the set to which the current state belongs
but also to obtain a probability measure associated with all
possible values. Thus, a necessary and sufficient condition to
ensure that the estimation error goes to zero in probability
is the following: the system is ergodic — i.e., there exists
a unique stationary distribution for the probability vector
— and this distribution is non-ambiguous — i.e., it is
a standard unit vector.1 Furthermore, there exists a very
elegant structural characterization of this property, namely
the underlying graph of the Markov model must consist of
a single absorbing component which contains a single state.

The usual way to include observations in Markov
models is to associate them to the states according to
nondeterministic or probabilistic mappings. Such approaches
lead to hidden Markov processes or similar models [13],
[23]. In this paper, we consider a different Markovian
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model, called labeled timed probabilistic automaton [9],
[10], which can be seen as a continuous-time Markov
process where some transitions are labeled with symbols
from a given alphabet E of observable events. When such
a transition occurs, an observation (e, t) is produced, where
e is the observable event and t is the time of occurrence.
This observation mechanism can be used to update and
refine the state probability vector whenever a new event
occurs or when time elapses with no observation (silent
closure). In [9], [10] it has been shown that the conditional
state probabilities are piecewise continuous signals: they are
continuous when the silent closure increases, and (possibly)
present discontinuities each time a new event is observed.
The goal of this paper is that of better characterizing
this evolution, in particular as the silent closure, i.e.,
the time interval from the last observation to the current
time, increases. To this aim we investigate the relationship
that exists between the state estimation in terms of the
conditional state probability vector and the corresponding
logical observation in the underlying untimed automaton.
Two main cases are considered: 1) the silent closure is
finite, 2) the silent closure goes to infinity. A simple and
quite intuitive result is provided in the first case, which
applies to any labeled timed probabilistic automaton. On
the contrary, in the second case the final evolution can be
characterized in terms of the eigenstructure of the generator
matrix relative to a special automaton that depends on the
logical observation. We believe that such results are novel
and, surprisingly, they show that the state probability when
the silent closure goes to infinity, is not simply related
to ergodicity properties of the graphical structure of the
automaton as in the purely logical case.
In our opinion the proposed study has applications
in numerous problems related to state estimation and
detectability in a timed probabilistic setting as far as timed
observations are captured. Vulnerability and privacy but
also cyber attack detection are concerned at first. We notice
that the results presented in this paper may be preliminary
to further results in the framework of state estimation and
detectability of labeled timed probabilistic automata. This is
surely interesting because most of the contributions in the
discrete event systems framework related to such problems
either ignore probabilistic and timing aspects [1], [6], [14],
[16], [18], [19], [21], [22] or consider a probabilistic but
untimed setting [7], [8], [15].
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Fig. 1. LTPA in Example 1.

II. BACKGROUND

A. Labeled timed probabilistic automata

This section introduces the basic notions about the refer-
ence model used in this paper.

Definition 1 (Labeled timed probabilistic automata): A
(finite) labeled timed probabilistic automaton (LTPA) is a
4-tuple G = (X,E,Λ,π0), where:

• X = {x1, x2, . . . , xn} is a finite set of n states;
• E is an alphabet of observable events;
• Λ ⊆ X×Eε×R>0×X is the transition relation, where

Eε = E ∪ {ε} and ε denotes the empty string on E,
associated with events that are not observable;

• π0 ∈ [0, 1]1×n is an initial probability vector, with∑
xi∈X π0,i = 1, where π0,i (the i-th entry of vector

π0) refers to the initial probability of state xi. ▲

The transition relation Λ specifies the dynamics of the
LTPA: if (x, e, µ, x′) ∈ Λ, then a transition from state x to
state x′, which we call e-jump, may occur after a random
delay θ, counted from the time when the system enters x. The
delay θ follows an exponential distribution with probability
density function f(θ) = µ exp(−µθ), where µ is the rate of
the transition. An e-jump generates an observation e when
e ∈ E, while no observation is generated when e = ε (silent
transition).

A run of the LTPA G is a trajectory

xj0
e1, τ1−−−−→ xj1

e2, τ2−−−−→ . . .
eK , τK−−−−−→ xjK (1)

where, for i = 1, . . . ,K, (xji−1 , ei, ·, xji) ∈ Λ , τi denotes
the time of occurrence of the i-th jump and 0 < τ1 <
τ2 < ... < τK , where times τi are counted from the instant
when the system enters xj0 . Such a run determines a timed
sequence st = (e1, τ1)(e2, τ2) . . . (eK , τK) ∈ (Eε × R≥0)

∗,
consisting of K pairs: st has duration τlast(st) = τK (time
stamp of the last jump) and length |st| = K. The empty
sequence, denoted by λ, has duration and length equal to 0.

A timed sequence st produces a timed observation de-
noted P (st) and defined as σt = P (st) = (e′1, τ

′
1)

(e′2, τ
′
2) . . . (e

′
K′ , τ ′K′) ∈ (E × R≥0)

∗ obtained from st by
projection P , which filters out all silent pairs. The observa-
tion has duration τlast(σt) = τ ′K′ and length |σt| = K ′.
More specifically, P : (Eε × R≥0)

∗ → (E × R≥0)
∗

is formally defined by (i) P (λ) = λ, (ii) P ((e, τ)) =
(e, τ) for e ∈ E and P ((ε, τ)) = λ, (iii) P (st(e, τ)) =
P (st)P ((e, τ)) for st ∈ (Eε × R≥0)

∗ and (e, τ) ∈ Eε ×
R≥0.

We use σ = H(σt) = e′1e
′
2 . . . e

′
K′ ∈ E∗ to denote the

logical observation sequence associated with σt, where H
filters out the timing information.

A timed sequence st and a time tf ≥ τlast(st) define a
timed evolution (st, tf ) ∈ (Eε × R≥0)

∗ × R≥0 of duration
tf . Such a timed evolution includes a silent closure of
duration tf − τlast(st) during which no further jump occurs.
The observed timed evolution corresponding to (st, tf )
is (σt, tf ) = (P (st), tf ), which also includes a silent
closure of duration tε = tf − τlast(σt), during which no
further observable jump occurs. We denote by Ls(G) (resp.,
Lσ(G)) the set of timed evolutions (resp., the set of observed
timed evolutions) corresponding to runs which start from an
initial state, i.e., a state with nonzero initial probability.

Example 1: Figure 1 shows a graphical representation
of an LTPA with X = {x1, x2, x3, x4, x5}, alphabet
E = {a, b}, π0 = [1 0 0 0 0] and transition relation Λ =
{(x1, a, µa, x3), (x1, ε, µ, x2), (x3, a, µa, x3), (x2, a, µa, x4),
(x4, ε, µ, x5), (x5, b, µ, x5)}. A possible run starting from
the initial state x1 is

x1
ε, 0.5−−−→ x2

a, 2−−→ x4
ε, 4−−→ x5

which determines timed sequence st = (ε, 0.5)(a, 2)(ε, 4)
of duration τlast(st) = 4 and length |st| = 3. The cor-
responding observation σt = P (st) = (a, 2) has duration
τlast(σt) = 2, length |σt| = 1 and logical sequence H(σt) =
a. At current time tf = 6, the previous run determines
a timed evolution (st, tf ) = ((ε, 0.5)(a, 2)(ε, 4), 6) with
a silent closure of duration 6 − 4 = 2, and an observed
evolution (σt, tf ) = ((a, 2), 6) with a silent closure of
duration 6− 2 = 4. ⋄

B. Eigenstructure of matrices

This section contains a series of elementary definitions
of linear algebra. Given a real matrix Q of order n, we
denote by spec(Q) the set of its eigenvalues and by abs(Q) =
max{Re(ζ) | ζ ∈ spec(Q)} the maximum among the real
parts of the eigenvalues of Q İn addition, for any eigenvalue
ζ of Q, we use ν(ζ) to denote the algebraic multiplicity of ζ
and νgeo(ζ) the geometric multiplicity of ζ, i.e., the number
of blocks associated to ζ in the Jordan form of Q [2], [20].

Assume matrix Q has a Jordan form consisting of k
blocks. Given a block i ∈ {1, , . . . , k} we can associate with
it an eigenvalue ζi, a left eigenvector v

(0)
i and a chain of

generalized left eigenvectors of length hi

v
(hi−1)
i −→ v

(hi−2)
i −→ . . . −→ v

(0)
i .

Then, a basis2 V of Rn is defined, consisting of the
generalized left eigenvectors of the k chains

V =

k⋃
i=1

{
v
(hi−1)
i ,v

(hi−2)
i , . . . ,v

(0)
i

}
. (2)

2A complex conjugate pair of eigenvalues ζ, ζ′ can be associated with a
complex conjugate pair of eigenvectors v,v′ = u ± jw. In V , complex
vectors v,v′ can be replaced by real vectors u,w [5].
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Note that such a basis always exists and
∑k

i=1 hi = n.
Multiple chains may be associated to the same eigenvalue,
i.e., i, i′ ∈ {1, . . . k} and i ̸= i′ does not necessarily imply
ζi ̸= ζi′ .

III. STATE ESTIMATION FOR LTPA

In this section we focus on the problem of state estimation
for LTPA. In particular, in the first subsection we consider
the problem of state estimation only looking at the logical
sequence that is generated during the system evolution. The
solution is based on the notion of state observer, which
corresponds to the deterministic finite automaton (DFA)
equivalent to the original non deterministic finite automaton
(NFA). In the second subsection we show how to compute
the conditional state probability vector relative to a given
observed timed evolution.

A. Logical state estimation via observer

Given an LTPA G, let us first define the support of a
probability vector.

Definition 2 (Support): Given an LTPA G with set of
states X and state probability vector π, the support of π is
the subset of states X (π) = {xi ∈ X | πi > 0}, having
nonzero probability. ▲

An LTPA G can be associated with an underlying NFA
AG defined as follows.

Definition 3 (Underlying NFA associated to G): Let
G = (X,E,Λ,π0) be an LTPA. The underlying nonde-
terministic finite automaton associated to G is the 4-tuple
AG = (X,E,∆G, X0), where

• ∆G = {(x, e, x′) | (x, e, ·, x′) ∈ Λ} ⊆ X × Eε ×X is
the transition relation;

• X0 = X (π0) is the set of initial states. ▲

In simple words, AG is obtained from G by disregarding
the firing rates in the transition relation as well as the initial
probabilities associated with the initial states.

In the literature about discrete event systems, a fundamen-
tal notion for the state estimation of an NFA is that of an
observer, i.e., the DFA equivalent to the NFA [3]. Here we
point out that the observer of the underlying NFA AG can
be used for state estimation ignoring the timing/probabilistic
aspects: we call this automaton the logical observer of G and
denote it by OG. Each state of the logical observer is a subset
of states of AG, hence of states of G. Given AG = (X,E,∆,
X0), a subset X ′ ⊂ X and an event e ∈ E we first denote:

• Dε(X
′) ⊆ X: the set of states reachable in AG from

states in X ′ by executing zero or more ε-transitions;
• De(X

′) ⊆ X: the set of states reachable in AG from
states in X ′ by executing exactly one e-transition.

The logical observer is formally defined as follows.
Definition 4 (Logical observer of G): The logical ob-

server of an LTPA G with underlying NFA AG =
(X,E,∆, X0) is defined as a DFA OG = (XL, E, δL, xL,0)
where:

• XL ⊆ 2X is the set of observer states;
• E is the alphabet;

• δL is the transition function defined for all xL ∈ XL and
e ∈ E by δL(xL, e) = Dε(De(xL)) if Dε(De(xL)) ̸=
∅; otherwise δL(xL, e) is undefined;

• xL,0 = Dε(X0) is the observer initial state. ▲

The initial state of OG is defined as the set of states reach-
able from an initial state of AG by executing zero or more ε-
transitions. Then, all other states can be iteratively computed.
By searching the observer states that have cardinality equal to
1, i.e., they are of the form xL,k = {xi}, one can provide the
conditions to estimate exactly the LTPA state, based only on
the logical information H(σt) of a given timed observation.

B. Probabilistic state estimation via probability vector

In an LTPA, as in a classical Markov chain [12], it may
be possible to compute, for tf ≥ 0, the a priori probabilities
πi(tf ) that the system is in state xi ∈ X at time tf , given
an initial probability vector π0. In the next, we do not report
the dependence to π0 when no confusion exists.

Definition 5 (A priori state probability vector): Given
a state xi ∈ X , πi(tf ) is the probability to be in state xi

at time tf ignoring the observation of the timed sequence
σt. Consequently, π(tf ) is defined as the unconditional
probability vector. ▲

If we denote by µ(xi, xj) the sum of the rates of the
transitions from state xi to state xj ,

µ(xi, xj) =
∑

(xi,e,µ,xj)∈Λ

µ, (3)

the vector π(tf ) can be computed as [9], [12]:

π(tf ) = π(0) · exp(Qtf ) (4)

where the transition rate matrix (also known as generator
matrix) Q = {qi,j} has elements: qi,j = µ(xi, xj) for j ̸= i
and qi,i = −

∑
j ̸=i qi,j for all i.

For an LTPA, however, we can exploit the additional
information deriving from the observed evolution to update
a posteriori the state probability vector.

Definition 6 (Conditional state probability vector):
Given an observed timed evolution (σt, tf ) and a state
xi ∈ X , πi(σt, tf ) is the probability to be in state xi at
time tf conditioned by the observation of timed sequence
σt. Consequently, π(σt, tf ) is defined as the conditional
probability vector.

The maximal conditional state probability at time tf is
denoted by ρ(σt, tf ) = max{πi(σt, tf ) | xi ∈ X}. ▲

The conditional probability vector π(σt, tf ) can be for-
mally computed in an iterative way by considering the ex-
tended ε-sub chain of G and the set of e-transition matrices,
e ∈ E as described in [9], [10]. Note that when no event is
observable, i.e., Lσt

(G) = {(λ, tf ) | tf ∈ R≥0} then the a
posteriori probability vector π(σt, tf ) coincides with the a
priori probability vector π(t) solution of Eq. (4) (where the
entries of matrix Q are given by (3) with e = ε).

We conclude this section discussing how the conditional
state probability vector can be used for the purpose of state
estimation. Given an LTPA G, after observing evolution
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xL,0 = {x1, x2}

xL,1 = {x3, x4, x5} xL,2 = {x3}xL,3 = {x5}
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ab
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Fig. 2. The logical observer for the LTPA in Figure 1 for π0 = [1 0 0 0 0].

(σt, tf ) one wants to estimate the set of consistent states,
i.e., the set of states where G could be at time tf . Given
an observed evolution (σt, tf ), the set of states consistent
with this observation is X (π(σt, tf )), i.e., the support of the
corresponding a posteriori probability vector. In addition,
if the maximal state probability is ρ(σt, tf ) = 1, then
necessarily there exists a state xi∗ such that X (π(σt, tf )) =
{xi∗} and the state can be correctly estimated at time tf .

Example 2: Consider again the LTPA G in Figure 1 with
initial distribution π0 = [1 0 0 0 0]. The logical observer is
shown in Figure 2. Let µa = µ = 1. Let σt = (a, 1)(a, 4)
be a timed sequence of observations, and tf = 5 be the
final time instant of observation. The components πi(σt, tf ),
i = 1, 2, 3, 4, 5 of the conditional probability vector vary
with respect to time as shown in Figure 3. Finally, Figure 4
shows how the support of such probability vector changes
with respect to time during the time intervals (0, 1), (1, 4)
and (4, 5]. In particular, it shows how the support of the
conditional probability vector in such time intervals is related
to the states of the logical observer in Figure 2. Note that
after the second observation of a the state is perfectly
reconstructed; thus, the maximal state probability is equal
to ρ(σt, t) = 1, ∀t ∈ [4, 5]. ⋄

IV. PROBABILISTIC VS. LOGICAL ESTIMATION

The relation between probabilistic and logical state es-
timation for LTPAs, which we have previously defined, is
discussed in this section.

One can immediately verify that an LTPA G admits a
timed observed evolution (σt, tf ) ∈ Lσ(G) with σt =
(e1, τ1)(e2, τ2) . . . (eK , τK) if and only if its logical observer
OG admits an evolution3:

xL = δ∗L(xL,0, H(σt)) ∈ XL,

where sequence H(σt) = e1e2 . . . eK ∈ E∗ and xL is some
state in XL. In the following, we discuss how the conditional
probability vector π(σt, tf ) is related to such a state xL =
δ∗L(xL,0, H(σt)), thus characterizing the evolution of the
probabilistic state estimate.

For a given timed observed sequence σt, we will consider
all possible timed evolutions (σt, tf ) for a finite final time
tf ∈ [τlast(σt),∞) or, equivalently, for an ε-closure tε =

3Here δ∗L : X ×E∗ → X denotes the transitive and reflexive closure of
transition function δL : X × E → X .
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Fig. 3. Conditional probabilities relative to the LPTA in Figure 1, to the
observation σt = (a, 1)(a, 4) and to tf = 5.

0 1 2 3 4 5time
0

1
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3
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xL,0

xL,1

xL,2

Fig. 4. The support of the conditional probabilities in Figure 3 as a function
of the states of the logical observer in Figure 2 during the time intervals
(0, 1), (1, 4) and (4, 5].

tf − τlast(σt) ∈ [0,∞). The limit as tε → ∞ will also be
discussed.

A. Finite tε ∈ [0,∞)

The following lemmata describe how the support of the
conditional probability vector is related to the observer
structure when no event has occurred yet (Lemma 1) and
when a new event occurs (Lemma 2).

Lemma 1: Given an LTPA G = (X,E,Λ,π0) with logical
observer OG = (XL, E, δL, xL,0) and an observed timed
evolution (λ, tf ) ∈ Lσ(G), it holds:
(i) tf = 0 =⇒ X (π(λ, 0)) = X (π0) ⊆ xL,0;
(ii) tf > 0 =⇒ X (π(λ, tf )) = xL,0.

Proof. If tf = 0 then π(λ, 0) = π0 and X (π(λ, 0)) =
X (π0) = X0 ⊆ Dε(X0) = xL,0 according to the definition
of logical observer. If tf > 0 then in the interval [0, tf ] any
arbitrary sequence of unobservable jumps may have occurred
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(due to the exponential distribution of the delays). Thus
the states of G with a nonzero probability are exactly the
states of the underling NFA AG associated with G that are
reachable from a state in X0 with zero or more ε-transitions.
Thus, X (π(λ, tf )) = Dε(X0) = xL,0.

Lemma 1 claims that for an empty observation (λ, tf ) the
set of states with nonzero probabilities is a subset of the
initial state of the logical observer xL,0 at tf = 0 and is
equal to xL,0 for tf > 0.

Lemma 2: Given an LTPA G = (X,E,Λ,π0) with logical
observer OG = (XL, E, δL, xL,0), consider an observed
timed evolution (σt, tf ) ∈ Lσ(G) with σt = σ′

t (e, τ). If one
defines x′

L = δ∗L(xL,0, H(σ′
t)) and xL = δ∗L(xL,0, H(σt)) it

holds:
(i) tf = τlast(σt) =⇒ X (π(σt, tf ) = De(x

′
L) ⊆ xL;

(ii) tf > τlast(σt) =⇒ X (π(σt, tf )) = xL.

Proof. We first consider the particular case σ′
t = λ. The

occurrence time of event e is τ > τlast(λ) (= 0) according to
Eq. (1). This means that just before event e occurs, the prob-
ability vector has support X (π(σ′

t, τ
−)) = x′

L, according to
Lemma 1.(ii). Now at time τ a single transition labeled e
occurs, hence: X (π(σ, τ)) = De(x

′
L) ⊆ Dε(De(x

′
L)) = xL

according to the definition of logical observer, thus proving
(i). When tf > τ in the interval (τ, tf ] any arbitrary
sequence of unobservable jumps may have occurred and,
as in the proof of the previous lemma, we can claim that
X (π(σt, tf )) = Dε(De(x

′
L)) = xL, thus proving also (ii).

Iterating on the length of σ′
t, we can prove Lemma 2 for

observation sequences of arbitrary length.
Lemma 2 claims that each time a new event e is observed

after a previous sequence σ′
t, the set of states with nonzero

probabilities is the set of states that can be reached by the
occurrence of an e-transition from states in the observer state
consistent with the logical sequence H(σ′

t). Immediately
after, however, as time progresses without any new event
observation, the set of states with nonzero probabilities
coincides with the observer state consistent with the observed
logical sequence H(σt) = H(σ′

t e).
Example 3: Consider again the LTPA G in Figure 1 with

initial distribution π0 = [1 0 0 0 0] and let σt = (a, 1) be
a timed sequence of observations. At time t = 1 the state
probability vector switches to π(σt, 1) = [0 0 π3 π4 0] with
π3, π4 > 0 and π3 + π4 = 1 and whose support satisfies
X (π(σt, 1)) = {x3 x4} and is included in the observer state
xL,1 = {x3, x4, x5}. Then, an arbitrarily small amount of
time dt later, as shown in Figure 3, the probability vector
π(σt, 1 + dt) has support X (π(σt, 1 + dt)) = {x3, x4, x5}
that coincides with the observer state xL,1. ⋄

B. Limit as tε → ∞
Let xL be a state of the logical observer OG and let π be

an arbitrary probability vector of G such that X (π) = xL.
Let π′ be the vector of dimension |xL| obtained by projecting
π on its support xL. We define MxL

∈ {0, 1}|X|×|xL| to
be the matrix of binary entries such that π′ = π × MxL

.

In detail, we first order the states in xL according to the
enumeration used for X = {x1, x2, . . . , xn}. Then, mi,j ,
i.e., the element of MxL

at row i and column j, equals 1 if
the jth state in xL is xi, and equals 0 otherwise. Observe
that this also implies that π = π′ × (MxL

)T .
Definition 7 (xL-equivalent LTPA): Given an LTPA G =

(X,E,Λ,π0) and an observed timed sequence σt, let xL =
δ∗L(xL,0, H(σt)) be the state of the logical observer OG

consistent with σt. The xL-equivalent LTPA is defined by
G′ = (xL, E,Λ′,π′

0) where:

• Λ′ = {(x, ε, µ, x̄) ∈ Λ | x, x̄ ∈ xL} ∪ {(x, e, µ, x) |
x ∈ xL, e ∈ E, (x, e, µ, x̄) ∈ Λ};

• π′
0 = π(σt, τlast(σt))×MxL

. ▲

In other words, the structure of G′ is obtained from G
by i) changing the arrival state of any observable transition
emanating from a state x ∈ xL so that it is self-looped on
x; ii) removing all states in X \ {xL} and their input and
output transitions. The initial probability vector of G′ is the
projection on xL of the vector π(σt, τlast(σt)) of G.

To compute π′(λ, tf ), we adapt here the method initially
proposed in [9], [10]. For this purpose, we define the xL-
equivalent LTPA generator as the | xL | × | xL | real matrix
QxL

= {qi,j} where

• each off-diagonal element qi,j is equal to the sum of the
rates of ε-transitions in G′ from xi to xj , or is equal to
0 if no such a transition exists:

qi,j =
∑

(xi,ε,µ,xj)∈Λ′

µ, i, j ∈ {1, . . . , | xL |}, i ̸= j;

• each diagonal element is equal to the negative of the
sum of the rates of all transitions in G′ emanating from
xi, or is equal to 0 if no such a transition exists

qi,i = −
∑

(xi,e,µ,x)∈Λ′

µ, i ∈ {1, . . . , | xL |}.

Lemma 3: Consider an xL-equivalent LTPA G′ with initial
probability vector π′

0 and generator QxL
. Let V be a basis of

left generalized eigenvectors of QxL
composed by k chains

as detailed in Eq. (2). The state probability vector at time tf
assuming no event is observed in [0, tf ] is

π′(λ, tf ) =

k∑
i=1

hi−1∑
j=0

βi,j

(
j∑

p=0

(tf )
p

p!
exp(ζit)v

(j−p)
i

)
∣∣∣∣∣∣
∣∣∣∣∣∣

k∑
i=1

hi−1∑
j=0

βi,j

(
j∑

p=0

(tf )
p

p!
exp(ζit)v

(j−p)
i

)∣∣∣∣∣∣
∣∣∣∣∣∣
1

,

(5)
where parameters βi,j ∈ R, i = 1, ..., k, j = 0, ..., hi − 1 are
the components of the initial probability vector π′

0 expressed
in basis V:

π′
0 =

k∑
i=1

hi−1∑
j=0

βi,jv
(j)
i . (6)

Proof. The state probability vector π′(λ, tf ) can be com-
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puted thanks to the xL-equivalent LTPA G′ [9], [10]

π′(λ, tf ) =
π′

0 exp(QxL
tf )

||π′
0 exp(QxL

tf )||1
.

Using the notations introduced in Section II.B, for any
generalized left eigenvector v(j)i , j = 0, . . . , hi − 1, of QxL

,
it holds:

v
(j)
i exp(QxL

tf ) =

j∑
p=0

(tf )
p

p!
exp(ζit)v

(j−p)
i (7)

i.e., any evolution that starts from a generalized eigenvector
of the chain of rank j will contain (and only contain)
components along all the generalized eigenvectors of the
chain of rank j or lower, i.e., v(j)

i ,v
(j−1)
i , . . . ,v

(0)
i . Then,

replacing in π′
0 exp(QxL

tf ) the vector π′
0 by Eq. (6) and

using in addition Eq. (7), it holds,

π′
0exp(QxL

tf ) =
∑k

i=1

∑hi−1
j=0 βi,jv

(j)
i exp(QxL

tf )

=
∑k

i=1

∑hi−1
j=0 βi,j

(∑j
p=0

(tf )
p

p! exp(ζitf )v
(j−p)
i

)
.

Equation (5) results consequently.
In addition, matrix QxL

has interesting properties that are
summed up in Lemma 4.

Lemma 4: Matrix QxL
satisfies the following properties:

(a) QxL
has a real and non-positive eigenvalue ζF =

abs(QxL
), called Frobenius eigenvalue.

(b) For any other eigenvalue ζ ̸= ζF it holds that Re(ζ) <
ζF . Note however that ζF may have multiplicity greater
than one.

(c) The left and right eigenvectors associated to ζF can be
chosen non-negative.

(d) If QxL
is irreducible then ζF is a simple eigenvalue

and these eigenvectors can be chosen positive: they are
called dominant eigenvectors.

Proof. By construction, the generator QxL
of the xL-

equivalent LTPA is a diagonally dominant Metzler4 matrix
with non-positive diagonal elements. There exist a non-
negative matrix P and a real α ∈ R such that QxL

= P+αI .
This implies that the eigenstructures of QxL

and P are
closely related: v is an eigenvector of QxL

associated to
eigenvalue ζ if and only if v is an eigenvector of P associated
to eigenvalue ζ − α. Based on this observation, it is not
difficult to show that properties (a), (b), (c) and (d) follow
from Perron-Frobenius theorem [2], [20].

To determine the final probability vector as tf → ∞ we
need to identify the dominant terms in Eq. (5), which may
depend on the initial probability vector.

Let us introduce some notations.
Definition 8: Consider an xL-equivalent LTPA G′ whose

initial probability vector π′
0 is expressed as in Eq. (5). We

define the set

B(π′
0) = {(i, j) ∈ N2 | βi,j ̸= 0 ∧ ̸ ∃(i′, j′) ∈ N2

with βi′,j′ ̸= 0 and Re(ζi′) > Re(ζi)},
4A matrix is Metzler if all its non-diagonal elements are non-negative.

containing the indices of non-null coefficients β’s in Eq. (6)
associated with the dominant abscissa eigenvalues. We also
define

jsup = max {j ∈ N | (∃i ∈ N) (i, j) ∈ B(π′
0)},

the rank of generalized eigenvectors associated with a dom-
inant term in Eq. (5) and

I = {i ∈ N | (i, jsup) ∈ B(π′
0)},

the set of indices of chains associated with a dominant term
in Eq. (5). ▲

Note that in the previously defined set I , for all i ∈ I , it
holds that eigenvalues ζi have the same real part.

The following propositions provide sufficient conditions
for the existence of a final probability vector as tf → ∞.

Proposition 1: Assume there exists a coefficient βi,j > 0
with ζi = ζF in Eq. (6), i.e., the initial probability vector
has a non-null component along one of the generalized
eigenvectors associated to the Frobenius eigenvector. Then
for all i ∈ I it holds that ζi = ζF and

lim
tf→∞

π′(λ, tf ) =

∑
i∈I

βi,jsup
v
(0)
i∣∣∣∣∣

∣∣∣∣∣∑
i∈I

βi,jsup v
(0)
i

∣∣∣∣∣
∣∣∣∣∣
1

. (8)

where I and jsup are given in Definition 8.
Proof : The Frobenius eigenvalue is the unique abscissa

dominant eigenvalue and since by assumption there exists
i∗ ∈ I with ζi∗ = ζF , it holds that ζi = ζF for all i ∈ I .
Being ζF real, there are no dominant complex eigenvalues
in (5), hence its limit as tf → ∞ exists and is given by (8).

Proposition 2: Assume there exists a coefficient βi,j > 0
with ζi = ζF in Eq. (6). Assume eigenvector ζF has
geometric multiplicity νgeo = 1. Then it admits a unique5

left eigenvector vF and

lim
tf→∞

π′(λ, tf ) =
vF

||vF ||1
.

Proof : Follows from Eq. (8), because in this case |I| = 1.

Example 4: Consider again the LTPA G in Figure 1, its
logical observer in Figure 2 and the xL,1-equivalent LTPA
detailed in Figure 5. The generator matrix is

QxL
=

 −µa 0 0
0 −µ µ
0 0 −µ


with eigenvalues ζ1 = −µa and ζ2 = −µ. Eigenvalue ζ1 has
eigenvector v(0)

1 = [ 1 0 0 ]. A chain of length 2 is associated
with eigenvalue ζ2, with eigenvector v

(0)
2 = [ 0 0 1 ] and

generalized eigenvector v(1)
2 = [ 0 1 0 ].

Observer state xL,1 is only reachable from observer

5Modulo a multiplicative constant.
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x3 x4 x5

µ : εµa : a µ : b

Fig. 5. xL,1-equivalent LTPA for Example 1.

state xL,0 upon the occurrence of event a. Thus the xL,1-
equivalent LTPA has initial state π′

0 = [ π3,0 π4,0 π5,0 ] with
π3,0, π4,0 > 0 and π5,0 = 0, since Da(xL,0) = {x3, x4}.
This implies that

π′
0 = β1,0v

(0)
1 + β2,1v

(1)
2 (9)

with β1,0, β2,1 > 0. We need to discuss three possible cases.
• Case 1: µa < µ. This means ζF = ζ1, and this

eigenvalue has geometric multiplicity νgeo = 1 (only
one chain is associated with it). By Proposition 2, it
follows that

lim
tf→∞

π′(λ, tf ) =
v
(0)
1∣∣∣∣∣∣v(0)
1

∣∣∣∣∣∣
1

= v
(0)
1 .

• Case 2: µa > µ. This means ζF = ζ2, and again the
Frobenius eigenvalue has geometric multiplicity νgeo =
1 (only one chain). By Proposition 2, it follows that

lim
tf→∞

π′(λ, tf ) =
v
(0)
2∣∣∣∣∣∣v(0)
2

∣∣∣∣∣∣
1

= v
(0)
2 .

• Case 3: µa = µ. This means ζF = ζ1 = ζ2 and this
eigenvalue has geometric multiplicity νgeo = 2, thus
two chains are associated with it: {v(0)

1 ;v
(1)
2 −→ v

(0)
2 }.

From Eq. (9), we get B(π′
0) = {(1, 0), (2, 1)}, I = {2}

and jsup = 1. This means that the unique dominant
mode is t · exp(−µt). By Proposition 1, it follows that

lim
tf→∞

π′(λ, tf ) =
β2,1 v

(0)
2∣∣∣∣∣∣β2,1 v
(0)
2

∣∣∣∣∣∣
1

= v
(0)
2 .

These results are consistent with the state probability
evolution shown in Fig. 3, corresponding to rates µa =
µ = 1. After (a, 1) has been observed and before the
occurrence of observation (a, 4), the logical observer is
in state xL,1 = {x3, x4, x5}. Hence during the interval
t ∈ [1, 4), we expect that the probabilities of all states
x ̸∈ xL,1 be null, while according to Eq. (9) it holds that
π5(1) = 0. Fig. 3 also shows, as discussed in Case 3 above,
that when the silent closure increases, the probability vector
π′(λ, t) = [ π3(t) π4(t) π5(t) ] tends to v

(0)
2 = [ 0 0 1 ]. ⋄

In this example, the computation of the final probability
vector does not depend on the initial probability vector π′

0

and is fully determined by the eigenstructure of the xL-
equivalent LTPA.

V. CONCLUSIONS AND FUTURE WORK

This paper has discussed logical and probabilistic aspects
of state estimation for a class of labeled timed probabilistic
automata. In particular, some results have been proposed to
characterize the evolution of the conditional state probability

in two situations: immediately after an observation or when
no additional observation is collected in the long run.

In our further work, we will improve such conditions and
introduce timed detectability notions for timed probabilis-
tic automata. In particular, we are interested in conditions
which imply that the state probability vector reaches a non-
ambiguous stationary distribution at some observations or
tends to such a distribution when no observation occurs
during a sufficiently long duration.
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