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Abstract—This paper is concerned with the stabilization
problem of unstable systems with mixed gain and phase
perturbations, thence elaborating on the exact computation of
optimal robustness margins. We focus on non-minimum phase
plants that are stabilized by proportional and proportional-
integral (PI) controllers. Specifically, for such systems with
mixed perturbations, we first show that the computation of
optimal gain margin constitutes a constrained optimization
problem. It is proved that the maximum gain margin is attained
at zero integral gain, and the boundary value of proportional
gain can be determined exactly. Via the Bilherz criterion,
we next demonstrate that the maximal phase margin of non-
minimum phase systems subject to mixed perturbations is also
achieved at zero integral gain. It turns out that the calculation
of optimal phase margin amounts to solving a concave opti-
mization problem. Finally, we find that proportional-integral
control and proportional control promise the same expressions
of optimum robustness margins. Our explicit results clearly
characterize the well-established dependence of the maximum
robustness margins and/or the optimal controller coefficients
on the system’s unstable pole, nonminimum phase zero as well
as uncertain perturbations.

I. INTRODUCTION

Two classical stability margins, gain and phase margins,
have been extensively utilized as robustness metrics for
the analysis of control systems over the past few decades,
which characterize the ability of a control system to preserve
stability in the absence of perturbations (see, e.g., [1]–
[3]).The study on robustness and stability margins primarily
concerns single-agent systems, which consist of single-input-
single-output (SISO) systems and multiple-input-multiple-
output (MIMO) systems. With a SISO system, phase and
gain margins have been determined by using the scalar
Nyquist methodology and the Bode analysis method (see the
literature in [1], [4]). In terms of their unequivocal physical
properties, the well-established results of the SISO phase
and gain margins both furnish meaningful insight into the
robustness of control systems. Furthermore, many efforts
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have been devoted to extrapolating robustness analysis from
SISO systems to MIMO systems since the 1970s (see [2],
[5], [6]). Among them, it is typical that for continuous time
feedback systems, linear quadratic state feedback regulators
provide desirable stability margins in [2]. Whilst in the
work of [5], it has been shown that an extension of the
typical Bode analysis method and Nyquist technique to
MIMO systems was implemented from the perspective of
the transfer function matrix of the feedback system.

Perturbations are constantly experienced in almost all
engineered control systems, which have a deleterious impact
on the performance of the system and even lead to instability
(see, e.g., [7]–[10]).Treatments of the inevitable uncertain-
ties affecting the plant model have long been a central
interest in the design of feedback control systems. It is
apparently crucial to characterize under what circumstances
the closed-loop system remains stable or can be stabilized
in the presence of perturbations. In [11], an approach to
stabilize a category of linear systems subject to unknown
but bounded uncertain parameters was proposed, whose
stabilizing controller amounts to dealing with some algebraic
Riccati equations. However, it is worth mentioning that this
solution is appropriate for particular classes of uncertain
systems and requires new considerations for other multiple
types of uncertain systems in practice. Afterwards, it has
been shown that a robust stability situation was provided
in [12] for uncertain discrete-time systems associated with
convex polytopic uncertainty, where it is possible to exam-
ine the stability condition by utilizing parameter-dependent
Lyapunov functions.

Whereas these response- and model-based designs deliver
promising performance alluded to above, the plant’s unstable
pole, non-minimum phase zero, and perturbations impose
adverse effects on the robust performance and stability
margin of the closed-loop system, which in turn limits the
performance of these design approaches. Recently, special
attention has been dedicated to the analytical aspects and
computation analysis of PID controllers, bringing about
tangible perspectives and refined results, wherein the topics
range from uncertain SISO systems [13], [14], time-delay
systems [15], robot systems [16], to nonlinear systems [17],
[18], and multi-agent systems [19], [20].

We have studied the maximal gain and phase margins
achieved by PID controllers in previous works for lower-
order unstable systems with merely single uncertainty vari-
ation [14], [21]. It has been recognized that the PID is the
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most popular controller with high-frequency usage in indus-
trial processes, whereas the majority of industrial systems
are modeled by first- and second-order plants. Nevertheless,
such exact robust optimization against mixed gain and phase
perturbations as well as the analytical results, even for first-
order unstable systems, have not been available by far. For
this reason, one primary motivation underlying this paper
is to characterize the stabilization and robustness problems
of unstable systems with respect to mixed perturbations.
This consideration stems also partly from the fact that in
reality, it is much more prevalent to experience unstable
systems afflicted by mixed perturbed variations [22], [23].
Our work in this article proceeds in-depth for the unstable
systems suffering from mixed gain and phase perturbations,
thereby yielding explicit results of the robustness margins
that shall facilitate the understanding and insight of the PID
methodology and eventually form an interpretable theory.

We are interested in non-minimum-phase systems. It is
important to be aware, however, that in the circumstance of
stabilizing a non-minimum phase unstable system robustly,
the derivative control will lead to an improper system.
Accordingly, in this article, we attempt to give a treatment
of the exact computation of optimal robustness margins for
first-order unstable plants under proportional controllers and
proportional-integral controllers. Such essential measures as
PI control and the robust margins against mixed gain and
phase perturbations are still of engineering relevance and
mathematical importance at present and remain in necessity
for in-depth investigations. Furthermore, it is noted that the
introduction of integral gain considerably enlarges the order
of degree and sophistication of the stabilization problem.
Specifically, we perform the stability analysis from the
perspective of the frequency domain in two scenarios. One
condition is to determine the achievable gain margin under
mixed perturbations, and the other is to find the achievable
phase margin under mixed perturbations. In other words,
we extend the definitions of the gain and phase margins to a
more practical circumstance and attempt to rigorously derive
explicit expressions of optimal robustness margins, which
thus clearly specify the system’s robust performance from a
computational standpoint. Further to this, our explicit results
help us to understand how the proportional and integral
controller parameters can be constructed to stabilize unstable
systems suffering from mixed perturbations and achieve
optimal robustness margins.

Due to space constraints, throughout this paper, we omit
all the technical proofs.

II. PRELIMINARIES AND PROBLEM DESCRIPTIONS

In this section, we first go to tell the characterizations
of robustness margins under mixed perturbations. Several
mathematical tools are also provided herein to facilitate the
analysis throughout this work.

A. The Robustness Margin Problem

We consider the target plant P (s) depicted in Fig. 1,
wherein the unstable system P (s) suffers from mixed per-
turbations ∆ = αe−jϑ, with α being the uncertain gain
variation and ϑ being the uncertain phase variation. Given
such P (s), we introduce a finite-dimensional LTI controller
denoted by K(s) to stabilize this system. We first study the

P(s)K(s)
—

r(t) y(t)


Fig. 1: Feedback system including perturbations.

family of plants

Pϑ0
µ = {αe−jϑ0P (s) : 1 ≤ α < µ }, (1)

where ϑ0 denotes a certain phase perturbation. For a given
plant P (s), the maximal gain margin under the certain phase
perturbation is defined by

κM

ϑ0
= sup{µ : There exists some K (s) stabilizing

αe−jϑ0P (s) , ∀α ∈ [1, µ)}.

We next consider the family of plants

Qα0
ν = {e−jϑα0P (s) : ϑ ∈ (−ν, ν) }, (2)

where α0 represents a certain gain perturbation. The corre-
sponding maximal phase margin for P (s), analogously, is
specified as

ϑM
α0

= sup{ν : There exists some K (s) stabilizing
e−jϑα0P (s) , ∀ϑ ∈ (−ν, ν)}.

κM

ϑ0
and ϑM

α0
delineates, respectively, the largest possible

collections Pϑ0
µ and Qα0

ν that can be stabilized by a same
LTI controller. Particularly, our central curiosity in the article
seeks to search for the optimal values of robustness margins
under more structured LTI controllers, that is, P controller
and PI controller

KP (s) = kp, KPI (s) = kp +
ki
s
. (3)

Note, however, that with the stabilization of first-order non-
minimum phase unstable systems, the derivative action in a
PID controller shall result in an improper system. Hence, we
are concerned with P and PI controllers in our subsequent de-
velopments. It follows similarly that the optimal robustness
margins under mixed perturbations achieved by P control
and PI control become

κPI

ϑ0
= sup{µ : There exists a KPI (s) stabilizing

αe−jϑ0P (s) ∀α ∈ [1, µ)},

and

ϑPI
α0

= sup{ν : There exists a KPI (s) stabilizing
e−jϑα0P (s) ∀ϑ ∈ (−ν, ν)}.
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κPI

ϑ0
and ϑPI

α0
alluded to above concretely quantitate the

maximal allowable ranges of gain and phase values such
that a single PI controller can be found to stabilize all the
plants of Pϑ0

µ and Qα0
ν undergoing the mixed gain and

phase perturbations over the whole scopes of perturbation
variations. Likewise, we utilize the notations κP

ϑ0
and ϑP

α0

to denote the robustness margins attained by proportional
controllers (i.e., ki = 0) for comparison in the sequel.

B. Mathematical Backgrounds

Before proceeding, we gather the following results from
the theory of algebraic geometry, which are helpful in the
subsequent analysis and shall be utilized repeatedly.

Lemma 2.1 ( [24], [25]): Consider the complex polyno-
mial

(a0+jb0)s
n+(a1+jb1)s

n−1+· · ·+(an+jbn), a0+jb0 ̸= 0.
(4)

Define the associated (2i−1)×(2i−1) Bilherz submatrices

∆i =



a1 a3 · · · a2i−1 −b2 −b4 · · · −b2i−2

a0 a2 · · · a2i−2 −b1 −b3 · · · −b2i−3

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · ai 0 0 · · · −bi−1

0 b2 · · · b2i−2 a1 a3 · · · a2i−3

0 b1 · · · b2i−3 a0 a2 · · · a2i−4

· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · bi 0 0 · · · ai−1


.

Then, the polynomial (4) is stable if and only if det(∆i) are
positive for all i = 1, 2, · · · , n.

Lemma 2.2 ( [26]): Consider the complex polynomial
(4). If the polynomial (4) is strictly Hurwitz, then aiai+1 +
bibi+1 > 0, i = 0, 1, ..., n− 1.

III. OPTIMAL GAIN MARGIN UNDER MIXED
PERTURBATIONS

In this section, we seek to find the explicit computation of
the optimal gain margin for first-order unstable plants with
respect to a certain phase perturbation. We shall consider the
nonminimum-phase systems stabilized by P and PI control,
for which the characterization of this maximum gain margin
can be determined exactly in the perturbed systems.

We focus on the unstable plant specifically stated by

P (s) =
s− z

s− p
, (5)

where p > 0 denotes the unstable pole, and z > 0 the
nonminimum-phase zero. This deliberation emanates princi-
pally from the fact that a number of industrial systems can
be suitably modeled as lower-order unstable plants, while
indeed, the majority may be regarded as first-order unstable
plants. Pursuant to the unstable systems (5) in [14], [21], it
follows that the single gain or phase perturbations α0, ϑ0

pertain to the bounded intervals, which are featured by the
assumptions as follows.

Assumption 3.1: The phase perturbation ϑ0 falls into
the interval 0 ≤ |ϑ0| ≤ ϑ̄, where

ϑ̄ = cos−1 2
√
pz

p+ z
.

Assumption 3.2: The gain perturbation α0 falls into the
interval 1 ≤ α0 ≤ ᾱ, where

ᾱ = max

{
z

p
,
p

z

}
.

1) Achieved by P control: Under Assumption 3.1, we first
seek to search for the maximal gain margin of the system
(5) associated with a certain phase perturbation achieved
by a proportional controller. Toward this end, we begin by
defining the indexes

L =
−(p+ z) cosϑ0 −

√
(p+ z)

2
cos2ϑ0 − 4pz

2z
, (6)

and

U =
−(p+ z) cosϑ0 +

√
(p+ z)

2
cos2ϑ0 − 4pz

2z
. (7)

We present the following result by tackling the constrained
optimization problem explicitly.

Theorem 3.1: Let P (s) be given by (5). Under Assump-
tion 3.1, the following statements are correct.

(i) The feasible proportional coefficient kp ∈ (L, U).
(ii) The optimum gain margin under certain phase per-

turbation attained by P controllers ϑ0 is exactly given by

κP

ϑ0
=

cosϑ0 +

√∣∣∣∣p− z

p+ z

∣∣∣∣2 + cos2ϑ0 − 1

cosϑ0 −

√∣∣∣∣p− z

p+ z

∣∣∣∣2 + cos2ϑ0 − 1

, (8)

where the optimal proportional coefficient k∗p = U .
(iii) The gain margin κP

ϑ0
is monotonically decreasing

with ϑ0 for 0 ≤ ϑ0 ≤ ϑ̄ and increasing with ϑ0 for
−ϑ̄ ≤ ϑ0 < 0.

(iv)
κP

±ϑ̄ ≤ κP

ϑ0
≤ κP

0 (9)

with

κP

±ϑ̄ = 1, κP

0 =

1 +

∣∣∣∣p− z

p+ z

∣∣∣∣
1−

∣∣∣∣p− z

p+ z

∣∣∣∣ . (10)

Remark 3.1: Theorem 3.1 reveals that as a function of
phase perturbation ϑ0, the gain margin κP

ϑ0
is monotonically

decreasing with |ϑ0|. This points to the observation that
the maximal gain margin of the unstable system (5) is
intrinsically curtailed by the phase perturbation ϑ0. In the
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scenario of ϑ0 = 0, the gain margin is reduced to κP
0 in

(10), or alternatively

κP

0 = ᾱ = max

{
z

p
,
p

z

}
.

which is exactly the gain margin implemented by P or PI
controllers in [14], [21].

Remark 3.2: A further inspection of Theorem 3.1 leads
us to the fact that the gain margin κP

ϑ0
increases gradually

with |p− z|, i.e., the relative distance of the unstable pole p
and nonminimum phase zero z. In a limiting case of p = z,
the gain margin κP

0 = 1 since it follows from Assumption
3.1 that ϑ0 = 0. Moreover, in view of (8), we note that to
render the radical expression feasible in (8), it suffices to∣∣∣∣p− z

p+ z

∣∣∣∣2 + cos2ϑ0 − 1 ≥ 0.

By solving the equality above, it follows that

ϑ0 ≤ cos−1 2
√
pz

p+ z
,

which in turn shows that this explicit upper bound is the
same as ϑ̄ in Assumption 3.1. The determination of this exact
upper bound ϑ̄ herein furnishes a fresh insight to explore the
properties of phases margin in [14], [21].

2) Achieved by PI control: Also of interest in this work is
to explore the gain margin achieved by PI controllers under
certain phase perturbations. The computation of optimal
gain margin in this scenario, however, brings about a more
intricate question due to the increasing order generated by
the integral control action than its counterpart. We ultimately
arrive at the explicit description of the maximum gain margin
in the following theorem.

Theorem 3.2: Let P (s) be given by (5). Under Assump-
tion 3.1, the following statements are correct.

(i) The optimal integral coefficient for maximizing gain
margin lies in k∗i = 0.

(ii) The exact gain margin under certain phase perturba-
tion ϑ0 is found as

κPI

ϑ0
= κP

ϑ0
=

cosϑ0 +

√∣∣∣∣p− z

p+ z

∣∣∣∣2 + cos2ϑ0 − 1

cosϑ0 −

√∣∣∣∣p− z

p+ z

∣∣∣∣2 + cos2ϑ0 − 1

, (11)

and the optimal proportional coefficient achieving optimal
gain margin is k∗p = U .

Remark 3.3: It is noted that the intervention of integral
control action increases the order of the closed-loop control
system, thereby bringing more intricate challenges than
Theorem 3.1. Towards this end, built on the Bilherz criterion
(Lemma 2.1) and necessary stability condition (Lemma 2.2),
the gain margin optimization problem under certain phase
perturbation can be then determined by solving a constrained
optimization problem over a fixed feasible set of the propor-
tional and integral control parameters. With the analysis of

the monotonicity and concavity of this optimization problem
as well as several mathematical operation techniques, we
arrive at the exactly computable expression of optimal gain
margin (11) associated with phase perturbation.

Remark 3.4: From Theorem 3.2, we are further availed
to a couple of salutary insights. First, in accordance with the
above design of the PI coefficients, it is clear that only the
proportional gain contributes to robust stability performance,
thus indicating that integral gain does not exert any active
power in enlarging the gain margin. In view of the proof in
Theorem 3.2, actually, we note that the gain margin tends to
be lessened provided that the integral parameter is nonzero.
Second, we find that the gain margin κPI

ϑ0
decrease with |ϑ0|.

Similar to that in Theorem 3.1, this insight displays that the
similar property in (10) also suitable to (11), that is

κPI

±ϑ̄ ≤ κPI

ϑ0
≤ κPI

0

with κPI

±ϑ̄
= κP

±ϑ̄
and κPI

0 = κP

0 .
In what follows, we shall examine a few special cases in

depth to show our observations.
Corollary 3.1: Let P (s) be given by (5).
(i) If cosϑ0 = 2 cos ϑ̄, then

κPI

ϑ0
= κP

ϑ0
=

2 +
√
3

2−
√
3
. (12)

(ii) If cosϑ0 =
√
2 cos ϑ̄, then

κPI

ϑ0
= κP

ϑ0
=

√
2 + 1√
2− 1

. (13)

The statements (i) and (ii) follow immediately from The-
orems 3.1 and 3.2. In turn, Corollary 3.1 exhibits clearly
that the relatively larger the value of phase perturbation, the
tighter the resultant gain margin is achieved. ■

IV. OPTIMAL PHASE MARGIN UNDER MIXED
PERTURBATIONS

This section is devoted to studying the optimal phase
margin of the unstable plant in the presence of certain
gain perturbation. In other words, we also attempt to find
a computationally analytical result of the maximal phase
variation, which specifies the robust stability performance
for a type of perturbed system.

We dedicate ourselves to examining the unstable systems
including nonminimum phase zero. To proceed, we define
the sets

Ω+ = {(kp, ki) : −1/α0 < kp < (α0ki−p)/(α0z), ki < 0},

Ω− = {(kp, ki) : (α0ki−p)/(α0z) < kp < −1/α0, ki > 0},

and
Ω0

+ = {kp : − 1/α0 < kp < −p/(α0z)},

Ω0
− = {kp : − p/(α0z) < kp < −1/α0}.

Denote the function Ψα0
(kp) by

Ψα0
(kp) =

zα2
0k

2
p + p

−(p+ z)α0kp
. (14)

7335



Our main results are stated in the following theorem.
Theorem 4.1: Let P (s) be given by (5). Under Assump-

tion 3.2, the following statements are correct.
(i) The feasible PI coefficients (kp, ki) ∈ Ω , where

Ω = Ω+ ∪ Ω−.

(ii) The optimal integral coefficient for maximizing phase
margin lies in k∗i = 0.

(iii) The exact computation of the optimal phase margin
is characterized by

ϑPI

α0
= ϑP

α0
= sup

{
ϑ : ϑ = cos−1Ψα0

(kp),
∣∣kp ∈ Ω0

}
,

(15)
with Ω0 = Ω0

+ ∪ Ω0
−.

(iv) The phase function ϑ = cos−1Ψα0
(kp) is concave

over the interval kp ∈ Ω0.
(v) The optimal phase margin under certain gain pertur-

bation is found as

ϑPI

α0
= ϑP

α0
= cos−1

√
1−

∣∣∣∣p− z

p+ z

∣∣∣∣2. (16)

The optimal proportional coefficient is k∗p = −
√
p/z/α0.

Remark 4.1: It is also observed from Theorem 4.1 that
the phase margin engendered by PI controllers is the same
as that by P controllers. This fact thus confirms the fact
that integral control action does not contribute to raising the
phase margin, while the proportional control gain undertakes
a preponderant position in robust stabilization. Similar to
Theorem 3.2, the proof in Theorem 4.1 also shows that a
nonzero integral parameter generally elicits a diminution of
the phase margin. Additionally, once the optimal integral
gain k∗i = 0, it is seen that the phase maximization matter
over fixed feasible control parameters amounts to solving a
concave optimization problem, which is actually unimodal
over its feasible proportional interval.

Remark 4.2: On account of the statement (v), we note that
ϑPI
α0

, ϑP
α0

are both monotonically increasing with the relative
distance of the unstable pole and nonminimum phase zero.
It thus follows that ϑPI

α0
= ϑP

α0
= 0 in the extreme condition

p = z, which implies that the system is not stabilizable under
this circumstance. Furthermore, in contrast to Theorems 3.1
and 3.2 where the phase perturbation imposes a restriction
on enlarging the gain margin, the gain perturbation does not
commit a restriction on phase margin improvement. Indeed,
it can be seen from our proof and results that the gain
perturbation performs a similar behavior as the proportional
control operation, which impacts the selection of the optimal
proportional coefficient.

V. ILLUSTRATIVE EXAMPLES

We now use the numerical examples to show our results.
Example 5.1 Consider the unstable plant (5). We first let

the unstable pole p = 2, and allow the nonminimum phase
zero z to vary in the interval [4, 12]. For the purpose of
comparison, the phase perturbation ϑ0 is selected as −6,

10, 15 and 15 deg, respectively. This example is intended
to show how the nonminimum phase zero as well as the
different phase perturbation may impinge on the achievable
gain margin. As depicted in Fig. 2, it can be seen clearly
that the gain margin κPI

ϑ0
(drawn as 20 log10 κ

PI

ϑ0
in dB) is

progressively increasing as the nonminimum phase zero z
steps away from the unstable pole p.

4 5 6 7 8 9 10 11 12
2

4

6

8

10

12

14

16

Fig. 2: Nonminimum zero effect on gain margin κPI

ϑ0
.

-30 -20 -10 0 10 20 30
0

2

4

6

8

10

12

14

Fig. 3: Gain margin κPI

ϑ0
w.r.t the perturbation ϑ0.

We next set the pole p = 2, zero z = 8 and allow ϑ0 vary
in the interval [−ϑ̄, ϑ̄] with ϑ̄ = 36.8699 deg. Fig 3 plots the
property of the gain margin κPI

ϑ0
along with the perturbation

ϑ0. Fig 3 then confirms the concavity of the gain margin κPI

ϑ0
,

where more specifically, κPI

ϑ0
decreases monotonically with

positive ϑ0 and increases with negative ϑ0, whose maximum
and minimum are exactly attained at ϑ0 = 0 and ϑ0 = ±ϑ̄
respectively. This observation is consistent with Theorems
3.1 and 3.2. Indeed, Fig. 2 also exhibits the same property
for the gain margin κPI

ϑ0
.

VI. CONCLUSIONS

In this paper, we have investigated the stabilization prob-
lems and derived the optimal robustness margins for first-
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order unstable systems subject to mixed gain/phase perturba-
tions, both under P and PI control actions. For non-minimum
phase plants, the optimum gain margin under phase pertur-
bation was obtained with an exact expression at first, then
showing the intrinsic limit required for achieving robust
stability. We next proved that the maximal phase margin
under gain perturbation constitutes a concave optimization
problem, whose unique expression can be determined ex-
actly. All the analytical results derived in this paper reveal
that the integral gain serves no role in robust stability im-
provement. Additionally, the explicit expressions of optimal
robustness margins provide clear metrics, which is helpful
for us to recognize how the unstable pole, the non-minimum
phase zero of the plants, and the extra perturbations jointly
determine the achievable robustness margins and the optimal
controller parameters.
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