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Abstract

This paper presents a backstepping control design
method of stabilization unstable 1D reaction-diffusion
system, where the input is a 1D function on an edge of
a rectangle, the distal system is a 1D reaction-diffusion
PDE on the opposite edge of the rectangle, and the ac-
tuator dynamics in between are a 2D heat PDE on the
rectangle between the opposite edges. A novel invert-
ible integral transformation is introduced and the re-
sulting controller with feedback of both PDEs’ states
(the distal 1D and the interior 2D states). We define
a new Lyapunov function that contains cosine coeffi-
cients to prove the exponential stability in H2 norm of
the closed-loop system. Finally, the theoretical result is
illustrated by simulations on a numerical example.

1. INTRODUCTION

The ability to manipulate infinite-dimensional ac-
tuator and sensor has also become a question of ma-
jor technological importance, in which convection gov-
erned by hyperbolic partial differential equation (PDE)
[1] and/or diffusion governed by parabolic PDE oc-
cur [2]. Research on compensating infinite-dimensional
actuator dynamics has attracted increasing attention re-
cently. For unstable ODE systems with actuator and
sensor dynamics governed by PDEs, controllers have
been designed to stabilize the ODE systems by applying
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the backstepping method, such as the diffusion type ac-
tuator in [3] and the string type actuators [4]. [5] extends
the work [4] to a general nonlinear ODE with wave ac-
tuator dynamics and applies the result to the stabiliza-
tion of off-shore oil drill. The authors solve the problem
of stabilizing a linear ODE having a system of linearly
coupled hyperbolic PDEs in the actuating path [1]. For
a general nonlinear ODE, a method for stabilization of
the PDE-ODE system with quasilinear first-order hy-
perbolic PDEs actuator dynamics is presented in [6],
where a PDE predictor-feedback control law is intro-
duced to compensate the transport actuator dynamics.
In [7], a robust output-feedback stabilization controller
is designed for linear ODEs with a transport PDE ac-
tuator and a heat PDE actuator, respectively. Combin-
ing the slide model control with the backstepping ap-
proach, [8] proposes a boundary control matched exter-
nal disturbances to stabilize a cascade PDE-ODE sys-
tem with Dirichlet/Neumann interconnection.

Input-delay systems can be regarding a particular
case of the systems with PDE actuator dynamics, as
delays are represented by simple first-order (transport)
PDEs [9–11]. Based on [12], [9] uses a first-order hy-
perbolic equation to describe delay and get an ODE-
PDE coupled system. Similarly, the approach is also
applied in [10] to reformulate the delay for an ODE sys-
tem and [11] to capture the delay effect for a reaction-
diffusion system. To deal with the distributed delayed
input in PDEs, 2-D transport PDEs are introduced in
[13–15] for the delay-compensator design.

We advance the efforts on stabilizing infinite-
dimensional cascades, where one past example is a 1D
heat PDE-ODE cascade [16], to two dimensions, on a
rectangle. Rather than the input being a vector and the
distal system being an ODE, we consider the problem
where the input is a 1D function on the one edge of a
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rectangle, the distal system is a 1D reaction-diffusion
PDE on the opposite edge of the rectangle, and the
actuator dynamics in between are a heat PDE on the
rectangle between the opposite edges. The backstep-
ping transformation and its inverse present challenges,
as they are in a 2D domain. We resolve the challenge
with explicit kernels and derive a controller with feed-
back of both PDEs’ states (the distal 1D state and the
interior 2D state). We show the closed-loop system to
be exponentially stable in H2 norm, which is necessary
for having continuity of the state variables in 2D space.
To prove the H2 norm stability of the target system, we
introduce a novel Lyapunov function containing cosine
coefficients, which is equivalent to the H2 norm.

This paper is organized as follows. Section 2
presents the problem. Section 3 designs the backstep-
ping control law. Section 4 proves exponential stability
in H2 norm of the closed-loop system, and the numer-
ical simulations are presented in Section 5. The paper
ends with concluding remarks in Section 6.

Notation. For functions f (x) ∈ H2[0,1] and g(x,y) ∈
H2([0,1]× [0,1]), the L2 norms are defined respectively
as

‖ f‖2
L2

1
=
∫ 1

0
f 2(x)dx,

‖g‖2
L2

2
=
∫ 1

0

∫ 1

0
g2(x,y)dxdy.

The Sobolev norms ‖ · ‖H1
1

and ‖ · ‖H1
2

are defined as

‖ f‖2
H1

1
= ‖ f‖2

L2
1
+‖ fx‖2

L2
1
,

‖g(x,y)‖2
H1

2
= ‖g‖2

L2
2
+‖gx‖2

L2
2
+‖gy‖2

L2
2
.

The Sobolev norms ‖ · ‖H2
1

and ‖ · ‖H2
2

are defined as

‖ f‖2
H2

1
= ‖ f‖2

H1
1
+‖ fxx‖2

L2
1
,

‖g(x,y)‖2
H2

2
= ‖g‖2

H1
2
+‖gxx‖2

L2
2
+2‖gxy‖2

L2
2
+‖gyy‖2

L2
2
.

2. Problem Statement

Consider the following reaction-diffusion PDE
with diffusive actuator dynamics governed by a 2D heat
equation:

ut(x, t) = uxx(x, t)+λu(x, t)+ v(x,0, t), (1)
ux(0, t) = 0, u(1, t) = 0, (2)
u(x,0) = u0(x), (3)

vt(x,y, t) = vxx(x,y, t)+ vyy(x,y, t), (4)
vx(0,y, t) = 0, v(1,y, t) = 0, (5)
vy(x,0, t) = 0, (6)
v(x,1, t) =U(x, t), (7)
v(x,y,0) = v0(x,y), (8)

where state u and v evolve in {(x, t)|x∈ [0,1], t > 0} and
in {(x,y, t)|x, y∈ [0,1], t > 0}, respectively. The system
(1)–(3) is unstable as the reaction coefficient λ > π2.
U(x, t) is the control input actuated at the boundary of
the 2D heat equation (4)–(8). Extended domain (x,y) is
shown in Fig 1, where the distal system is a 1D reaction-
diffusion PDE on the opposite edge of the rectangle, and
the actuator dynamics in between are a heat PDE on the
rectangle.

Figure 1: Domain (x,y) of heat equation v(x,y, t).

In the following section, we will apply the PDE
backstepping method to design a controller actuating on
the boundary of the 2D PDE which stabilizes the unsta-
ble 1D reaction-diffusion PDE through v(x,0, t) trans-
verse the 1D domain.

3. Control design

3.1. Backstepping transformation

We introduce the following backstepping transfor-
mation:

β (x,y, t) =v(x,y, t)−
∫ 1

0
K(s,x,y)u(s, t)ds

−
∫ 1

0

∫ y

0
G(s,x,y− r)v(s,r, t)drds, (9)

where the kernel functions K(s,x,y) and G(s,x,y− r)
are defined on T1 = {(s,x,y)|s,x,y ∈ [0,1]} and T2 =
{(s,x,y−r)|s,x,y∈ [0,1],0≤ r≤ y}, respectively. This
transformation maps the original system (1)–(8) into the
following stable target system

ut(x, t) = uxx(x, t)− cu(x, t)+β (x,0, t), (10)
ux(0, t) = 0, u(1, t) = 0, (11)
u(x,0) = u0(x), (12)

βt(x,y, t) = βxx(x,y, t)+βyy(x,y, t), (13)
βx(0,y, t) = 0, β (1,y, t) = 0, (14)
βy(x,0, t) = 0, (15)
β (x,1, t) = 0, (16)
β (x,y,0) = β0(x,y), (17)
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where c > 0 is the adjustable converge rate. Accord-
ing to the equivalence between the original system (1)–
(8) and the target system (10)–(17), we find the kernel
equation of K(s,x,y) :

Kss(s,x,y) = Kxx(s,x,y)+Kyy(s,x,y)−λK(s,x,y),
(18)

Ks(0,x,y) = 0, K(1,x,y) = 0, (19)
Kx(s,0,y) = 0, K(s,1,y) = 0, (20)
Ky(s,x,0) = 0, (21)
K(s,x,0) =−(λ + c)δ (x− s); (22)

and G(s,x,y)
Gss(s,x,y− r) = Gxx(s,x,y− r), (23)
Gx(s,0,y− r) = 0, G(s,1,y− r) = 0, (24)
G(1,x,y− r) = 0, Gs(0,x,y− r) = 0, (25)

G(s,x,0) = 0, Gy(s,x,y) = K(s,x,y). (26)
Applying the method of separation of variables yields

K(s,x,y) =−2(λ + c)cosh(
√

λy)· (27)
∞

∑
k=0

cos
[(

kπ +
π

2

)
s
]

cos
[(

kπ +
π

2

)
x
]
,

G(s,x,y− r) =−2
(λ + c)√

λ
sinh(

√
λ (y− r))· (28)

∞

∑
k=0

cos
[(

kπ +
π

2

)
s
]

cos
[(

kπ +
π

2

)
x
]
.

It is known that the Dirac Delta function can be ex-
pressed by the Fourier series as δ (x− s) = 2∑

∞
k=0 cos[(

kπ + π

2

)
s
]

cos
[(

kπ + π

2

)
x
]
, which verifies the initial

condition (22) by letting y = 0 in (27). As a result, we
have

K(x,y,s) =−(λ + c)cosh(
√

λy)δ (x− s), (29)

G(x,s,y− r) =− (λ + c)√
λ

sinh(
√

λ (y− r))δ (x− s).

(30)
Substituting (29) and (30) into (9), one can rewrite the
transformation (9) as

β (x,y, t) = v(x,y, t)+(λ + c)cosh(
√

λy)u(x, t)

+
(λ + c)√

λ

∫ y

0
sinh(

√
λ (y− r))v(x,r, t)dr, (31)

and let (16) hold, the controller should satisfy

U(x, t) =− (λ + c)√
λ

∫ 1

0
sinh(

√
λ (1− r))v(x,r, t)dr

− (λ + c)cosh(
√

λ )u(x, t). (32)

3.2. Inverse transformation

The transformation (31) is proved to be invertible,
that is, the inverse transformation exists and maps (u,β )

back to (u,v). The inverse transformation is given by
v(x,y, t) =β (x,y, t)− (λ + c)cos(

√
cy)u(x, t) (33)

− (λ + c)√
c

∫ y

0
sin(
√

c(y− r))β (x,r, t)dr,

from which we can get β (x,0, t) = v(x,0, t) + (λ +
c)u(x, t). In addition, it is easy to prove that the transfor-
mation (33) can transform the target system (10)–(17)
into the original system (1)–(8).

4. Stability Analysis

In this section, we present the main result of the pa-
per which states that system (1)–(8) under the boundary
control (32) is exponentially stable in H2 norm.

Theorem 1. Consider the original system (1)–(8) with
the controller (32). If the initial conditions u0(x) ∈
H2

1 [0,1], v0(x,y) ∈ H2
2 ([0,1] × [0,1]) are compatible

such that u0x(0) = u0(1) = 0, v0x(0,y) = v0(1,y) =
v0y(x,0) = 0, v0(x,1) =U(x,0), then the system admits
a unique solution and it is exponentially stable at the
zero-equilibrium, i.e., there exist positive constants α1
and β1, such that

V1(t)≤ α1e−β1tV1(0), (34)
where

V1(t) = ‖u‖2
H2

1
+‖v‖2

H2
2
. (35)

The proof of stability consists of two prior proposi-
tions. First, we prove the exponential stability of the tar-
get system (10)–(17) in H2 sense which is necessary for
having continuous state variables in 2D space. Second,
we establish the norm equivalence between the original
system (1)–(8) and the target system (10)–(17) through
the invertible transformation (31).

Proposition 1. Consider the system (10)–(17) with the
initial conditions u0(x)∈H2

1 [0,1], β0(x,y)∈H2
2 ([0,1]×

[0,1]) being compatible such that u0x(0) = u0(1) = 0,
β0x(0,y) = β0(1,y) = β0y(x,0) = β0(x,1) = 0, then the
system has a unique solution and it is exponentially sta-
ble, i.e., there exist positive constants α2 and β2, such
that

V2 ≤ α2e−β2tV2(0), (36)
where

V2(t) = ‖u‖2
H2

1
+‖β‖2

H2
2
. (37)

Proof. The well-posedness result is standard because
(13)–(17) is a heat equation which can be solved explic-
itly. Once function β (x,y, t) is known, (10)–(12) can
also be determined. To analyze the stability, we define
a new Lyapunov function as follows:

V3(t) =
1
2

∫ 1

0
u2(x, t)dx+

1
2

∫ 1

0
u2

x(x, t)dx
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(a) (b) (c)

Figure 2: The dynamics of the state u(x, t): (a) open-loop system, (b) closed-loop system. (c) The controller effort
U(x, t).

+
1
2

∫ 1

0
u2

xx(x, t)dx+
a
2

∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2dydx

+
1
2

∫ 1

0

∫ 1

0
(β 2

x +β
2
y )dydx+

∫ 1

0

∫ 1

0
(β 2

yy +
1
2

β
2
xy)dydx

+
b
2

∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2
xxdydx, (38)

where a > 0, b > 0. It is easy to know that V3 is equiva-
lent to V2, i.e., there exist positive constants α3 and β3,
such that

α3V2 ≤V3 ≤ β3V2. (39)
Taking derivative first two terms of (38) with re-

spect to t, we get,
1
2

d
dt

(∫ 1

0
u2dx+

∫ 1

0
u2

xdx
)
=−

∫ 1

0
(u2

x + cu2)dx

−
∫ 1

0
(u2

xx + cu2
x)dx+

∫ 1

0
(u−uxx)β (x,0, t)dx.

(40)
Recalling (10), (11) and (14), we infer uxx(1, t) =
uxxx(0, t) = 0. Therefore, it gets

1
2

d
dt

∫ 1

0
u2

xxdx =−
∫ 1

0
u2

xxxdx− c
∫ 1

0
u2

xxdx

+
∫ 1

0
uxxβxx(x,0, t)dx. (41)

Next, take the time derivative of the fourth term of (38),
which yields

d
dt

a
2

∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2dydx

=−a
∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
(β 2

x +β
2
y )dydx

− π2a
32

∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2dxdy

− πa
8

sin
π

8

∫ 1

0
β

2(x,0, t)dx. (42)

Similarly,
1
2

d
dt

∫ 1

0

∫ 1

0
(β 2

x +β
2
y )dydx =−

∫ 1

0

∫ 1

0
(βxx +βyy)

2dxdy.

(43)

Applying (13)–(16), it infers that βxx(1,y, t) =
βxxx(0,y, t) = βyy(x,1, t) = βyyy(x,0, t) = 0, so

d
dt

b
2

∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2
xxdydx

=−b
∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2
xxxdydx

−b
∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2
xxydydx

− π2b
32

∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2
xxdydx

− πb
8

sin
π

8

∫ 1

0
β

2
xx(x,0, t)dx, (44)

and
d
dt

∫ 1

0

∫ 1

0
(β 2

yy +
1
2

β
2
xy)dydx (45)

=−
∫ 1

0

∫ 1

0
β

2
yyydydx

−
∫ 1

0

∫ 1

0
βyyyβxxydydx−

∫ 1

0

∫ 1

0
(βyyy +βxxy)

2dydx.

Then, combining (40)–(45), and utilizing the Cauchy-
Schwarz inequality and Poincare’s inequality, we finally
obtain

V̇3(t)≤−
(

c− γ1

2

)∫ 1

0
u2dx− (1+ c)

∫ 1

0
u2

xdx

−
(

5
4
+ c− γ2

2
− γ3

2

)∫ 1

0
u2

xxdx

− π2a
32

∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2dydx

−a
∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
(β 2

x +β
2
y )dydx

−
(

b
4
+

π2b
32

)∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2
xxdydx

−
(

b− 1
2γ4

)∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2
xxydydx

−
(

1− γ4

2

)∫ 1

0

∫ 1

0
cos
(

π

4
(y+

1
2
)

)
β

2
yyydydx

6190



−
(

πa
8

sin
π

8
− 1

2γ1
− 1

2γ2

)∫ 1

0
β

2(x,0, t)dx

−
(

πb
8

sin
π

8
− 1

2γ3

)∫ 1

0
β

2
xx(x,0, t)dx

−
∫ 1

0

∫ 1

0
(βxx +βyy)

2dydx−
∫ 1

0

∫ 1

0
(βxxy +βyyy)

2dydx.

Let 0 < γ1 < 2c, 4c
acπ sin π

8−2 < γ2 < 5
2 + 2c −

4
πbsin π

8
, 4

πbsin π
8
< γ3, 1

2b < γ4 < 2, which requires
8

(5+4c)π sin π
8
< b, 2

cπ sin π
8
< a, so we can choose

α4 = min
{

2(c− γ1

2
),2(1+ c),

5
2
+2c− γ2− γ3,

1
2
+

π2

16
,

2acos
3π

8
,

1
2
(b− 1

2γ4
)cos

3π

8
,

1
4
(1− γ4

2
)cos

3π

8

}
,

such that V̇3≤−α4V3(t). Recalling V3 and V2 are equiv-
alent, there exists a positive constant α2, such that (36)
holds, this proposition gets proven.

The following proposition states that the original
system (1)–(8) is equivalent to the target system (10)–
(17) in the sense of norm.

Proposition 2. There exist positive constants α5 and
β5, such that

α5(‖u‖2
H2

1
+‖v‖2

H2
2
)≤ ‖u‖2

H2
1
+‖β‖2

H2
2

(46)

≤ β5(‖u‖2
H2

1
+‖v‖2

H2
2
).

Proof. According to the transformation (31), using the
Cauchy-Schwarz inequality, we can get

‖β‖2
L2

2
≤3‖v‖2

L2
2
+3

∫ 1

0

∫ 1

0

(
(λ + c)cosh(

√
λy)u(x, t)

)2

dxdy+3
∫ 1

0

∫ 1

0

(
λ + c√

λ

∫ y

0
sinh(

√
λ (y− r))

v(x,r, t)dr)2 dxdy

≤3A1‖u‖2
L2

1
+3A2‖v‖2

L2
2
, (47)

where A1 =
(λ+c)2(e2

√
λ+2
√

λ )

4
√

λ
, A2 =

(
1+ (λ+c)2e2

√
λ

λ

)
.

Applying a similar approach, we get
‖βx‖2

L2
2
≤3A1‖ux‖2

L2
1
+3A2‖vx‖2

L2
2
, (48)

‖βxx‖2
L2

2
≤3A1‖uxx‖2

L2
1
+3A2‖vxx‖2

L2
2
. (49)

With respect to y, using the Cauchy-Schwarz again, one
gets

‖βy‖2
L2

2
≤3‖vy‖2

L2
2
+3(λ + c)2

λe2
√

λ‖u‖2
L2

1

+3(λ + c)2e2
√

λ‖v‖2
L2

2

≤3‖vy‖2
L2

2
+3A3‖u‖2

L2
1
+3A4‖v‖2

L2
2
, (50)

where A3 = (λ + c)2λe2
√

λ , A4 = (λ + c)2e2
√

λ , and
‖βxy‖2

L2
2
≤3‖vxy‖2

L2
2
+3A3‖ux‖2

L2
1
+3A4‖vx‖2

L2
2
, (51)

‖βyy‖2
L2

2
≤4‖vyy‖2

L2
2
+4λ

2A1‖u‖2
L2

1

+4((λ + c)2 +A3)‖v‖2
L2

2
. (52)

Utilizing the inequalities (47)–(52) and the definitions
of the norms in H2

1 and H2
2 space, we get that

‖u‖2
H2

1
+‖β‖2

H2
2
≤(1+3A1 +3A3 +4λ

2A1)‖u‖2
L2

1
+(1+

3A1 +6A3)‖ux‖2
L2

1
+(1+3A1)‖uxx‖2

L2
1

+(3A2 +3A4 +4((λ + c)2 +A3))·
‖v‖2

L2
2
+(3A2 +6A4)‖vx‖2

L2
2
+3‖vy‖2

L2
2

+3A2‖vxx‖2
L2

2
+6‖vxy‖2

L2
2
+4‖vyy‖2

L2
2

≤β5(‖u‖2
H2

1
+‖v‖2

H2
2
), (53)

where β5 = max{1 + 3A1 + 3A3 + 4λ 2A1,1 + 3A1 +
6A3,3A2 + 3A4 + 4((λ + c)2 +A3),3A2 + 6A4,6}. The
right part of the inequality (46) gets proven. Using a
similar approach and combining the inverse transforma-
tion (33), we can prove the left part of the inequality
(46).

Combining Proposition 1 and Proposition 2, one
can prove Theorem 1.

(a) (b)

Figure 3: The dynamics of state (a) ||v(x, ·, t)||L2 , (b)
||v(·,y, t)||L2 .

5. Simulation

In this section, we provide an example to demon-
strate the theoretical results. The parameters are
set as λ = 20 and c = 1. The initial conditions
are selected as u0(x) = sin(π

2 (x + 1)) and v0(x,y) =
cos(π

2 x)(cos(π

2 y) + 1), respectively. We use the finite
difference method to numerically simulate the system
(1)–(8) by discretizing x,y ∈ [0,1] into Mx×My subre-
gions and choose Mx = My = 101. The three-point cen-
tral difference approximation and the Crank-Nicolson
method are employed in the simulation. For the bound-
ary control, we use the Simpson’s integration rule which
needs Mx and My being odd numbers. The step size for
discretization of time is set as ∆t = 0.001s.

The dynamics for open-loop and closed-loop sys-
tems are shown in Fig.2 (a) and (b), respectively, which
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(a) (b)

(c) (d)

Figure 4: The snapshots of state v(x,y, t) at (a) t = 0.1s,
(b) t = 0.2s, (c) t = 0.5s and (d) t = 1.5s.

illustrate that the open-loop system is unstable and the
state of the closed-loop 1D PDE system converges to
zero after about 2s. The boundary control effort is
shown in Fig.2 (c), which indicates that more control
effort is required through diffusion actuator dynamics
than through direct boundary control acting on the plant
(see p. 40 in [17]). The dynamics of the 2D heat PDE
are also shown in Fig. 3. It can be observed from Fig. 3
(b) that the control effort from the y = 1 diffusing to the
distal boundary y = 0 is attenuated greatly. Fig. 4 de-
picts the snapshot of the 2D heat PDE’s state at different
times.

6. Conclusion

This paper proposes a control design approach for
the unstable reaction-diffusion system whose actuator
states are governed by a 2D heat equation. To get the
controller, we construct a new backstepping transfor-
mation with explicit kernels. Since this heat equation is
defined in 2D, we design a new Lyapunov function that
includes cosine coefficients to prove the stability of this
PDE-PDE coupled system. Future works will consider
the observer design to obtain the state feedback for this
coupled system.
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