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Abstract— We consider a UAV which acts as a mobile relay
and must plan a trajectory to enable data transfer between
multiple pairs of communication nodes. For each pair, suc-
cessful data transfer is only possible in non-convex regions
(relay regions) where a given quality of service requirement
may be satisfied for both nodes. Trajectories consist of 1)
locations where the UAV stops to relay (relay positions) and
2) a dynamic transition policy which determines the sequence
in which the pairs are serviced. We are interested in minimizing
the average time a bit waits at a source before being sent to a
destination and first pose a general, non-convex problem that
calls for optimization over both the relay positions and the
dynamic transition policy. To find approximate solutions, we
formulate an average cost semi-Markov decision process and
propose a deep-reinforcement-learning-based algorithm to solve
it. To validate our approach, we present the results of several
simulation experiments, which show our approach significantly
outperforms the state-of-the-art.

I. INTRODUCTION
The extraordinary development of robotics seen in recent

years has allowed for new paradigms in communication
system design. By data muling, relaying, or beam forming,
unmanned vehicles can create new communication links or
enhance existing networks. For efficient operation, the com-
munication and motion aspects of these systems require care-
ful joint planning, as studied in the field of communication-
aware robotics. See [1] for a recent review of this area.

This paper considers the operation of a UAV tasked with
servicing disparate communication links between several
source-destination pairs, as shown in Fig. 1, which models
scenarios such as the deployment of a UAV after a natural
disaster has taken permanent, terrestrial infrastructure offline.
At each destination, data arrives stochastically at a known av-
erage rate and must be sent to the corresponding destination,
but the distance between each source and destination is too
large for direct communication. The UAV’s objective is to
minimize the time the data waits at a source before being
sent to the corresponding destination.

Problems related to autonomous robots facilitating com-
munication systems that include spatially dispersed nodes
have received attention across a variety of fields [2]–[6].
Closely related are persistent monitoring problems, in which
an unmanned vehicle senses various locations in a workspace
and transfers the sensed data to a remote station [7],
and communication-aware variations of the vehicle routing
problem (VRP) [8], [9]. However, much of existing work
either uses a simplified model of the communication channel
or has the robot visit sites directly, forgoing any channel
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Fig. 1: At each source, bits accumulate in a queue and must be offloaded
to the corresponding destination via relay. The data transfer is performed
by a UAV, which moves to an optimum position within each relay region
to service the corresponding queue and visits the different regions in an
optimal sequence, dependent on stochastic arrival process of the data. See
the color PDF for better viewing.

modeling. Furthermore, many existing approaches plan static
trajectories which do not consider the current state of the
system or assume waypoints are provided a priori.

In this paper, we use recent advancements in reinforce-
ment learning to find dynamic trajectories that account for
realistic communication channels, the non-homogeneous data
accumulation rate, and the spatial distribution of the pairs.
As seen in Fig. 1, for each source-destination pair, there
is a non-convex and disjoint region, labeled Relay Region,
where the link qualities are good enough to allow the UAV
to successfully relay data from the source to the correspond-
ing destination. Trajectories then consist of a set of relay
positions drawn from the relay regions (one per region),
and a dynamic transition policy that determines which relay
position to visit next based on the current system state. This
planning is to be accomplished without full knowledge of the
relay regions (only sparse prior channel samples available)
and possibly with limited observability of the system’s state.

We next explicitly present our contributions.
1) As the problem of interest is highly non-convex and

intractable, we show how to decouple optimization of
the relay positions and dynamic transition policies (in
contrast to the static transition policies found in [5]). We
show the problem of finding optimal persistent, dynamic
transition policies given fixed relay positions can be
formulated as an average cost semi-Markov decision
process (SMDP), and to find relay positions, we pose
a mixed-integer second-order cone program (MISCOP).

2) To find near-optimal policies, we propose a deep rein-
forcement learning (DRL) based algorithm which extends
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recent work from [10] to handle SMDP’s and incorporate
relay position optimization. In contrast with recent uses of
reinforcement learning in the context of communication-
aware robotics which consider finite horizon, cumulative
costs (see, e.g., [11], [12]), our DRL approach optimizes
a long-run, i.e., infinite horizon, average cost criterion.

3) We empirically demonstrate that dynamic policies can
significantly reduce average wait time compared to ap-
proaches found in the literature.

4) Finally, we employ concepts from polling systems, in
which a single server services multiple queues, and in
fact, our robotic relay scenario may be viewed as a
generalization of these systems. Many open problems
remain in the optimization of polling systems [13], and
to our knowledge, this is the first paper to use DRL to
optimize the server’s operation.

II. SYSTEM MODELING

The section presents models for our UAV-aided relaying
system. While we discuss the modeling from a UAV per-
spective, it could apply for ground robots as well.

A. Communication and Channel Prediction Model
We first present our channel model. We assume the

UAV flies at a fixed height and consider a two-dimensional
workspace. At a location, x, in the workspace, the Signal-to-
Noise Ratio (SNR) is given by SNR(x)=ΓTϒ(x) where ΓT is
the transmit power and ϒ(x) is the Channel-to-Noise Ratio
(CNR), which varies over x due to path loss, shadowing,
and multipath fading effects. For a given minimum Bit Error
Rate (BER) or other Quality of Service (QoS) requirement,
reliable communication is only achieved if the SNR exceeds
a threshold, i.e., SNR(x) ≥ SNRth. We assume that the
transmission power is fixed, inducing a minimum required
CNR, ϒth, so the spatially varying channel determines where
communication can occur.

The UAV must assess the channel quality to successfully
relay data between a source-destination pair. In general, the
UAV will not know the CNR at every point in the workspace
but rather must rely on a few a priori readings to predict the
channel at unvisited locations. We predict the channel quality
using the stochastic approach developed in [14], which uses
a spatial stochastic process model to account for the effects
of path loss, shadowing, and multipath fading. The channel
is characterized by path loss intercept K0, path loss exponent,
nPL, shadowing power α2, shadowing decorrelation distance
β , and multipath fading power σ2. Given a few prior channel
measurements, the CNR (in dB) at an unvisited location x,
ϒdB(x), is modeled by a Gaussian random variable with mean
E[ϒdB(x)] and variance Σ(x). For brevity, we omit the details
of these calculations and refer the reader to [14].

With this Gaussian process model, we can find the prob-
ability that the CNR at a point exceeds the CNR threshold
imposed by the QoS. Specifically, at point x: P(ϒdB(x) ≥
ϒth, dB) = Q((ϒth, dB−E[ϒdB(x)])/

√
Σ(x)), where Q(·) rep-

resents the complementary cumulative distribution function
of the standard normal distribution.

For successful end-to-end communication, the CNR for
both the source-to-UAV and UAV-to-destination channels
must exceed the threshold ϒth,dB. We call the set of
points where this holds the true relay region: Rtrue

i = {x ∈
R2|ϒtrue

i,s,dB(x) ≥ ϒth,dB, ϒtrue
i,d,dB(x) ≥ ϒth,dB}, where ϒtrue

i,s,dB(x)
and ϒtrue

i,d,dB(x) are the true CNR in dB at location x of, respec-
tively, the source-to-UAV and UAV-to-destination channels
for the ith source-destination pair.

As Rtrue
i is unknown, the UAV predicts the relay regions

using the channel prediction framework discussed above.
For independent channels, the probability of successful com-
munication between the ith source-destination pair via the
mobile UAV at position x is

pi,sd(x) = P(ϒi,s,dB(x)≥ ϒth,dB) ·P(ϒi,d,dB(x)≥ ϒth,dB), (1)

where ϒi,s,dB(x) and ϒi,d,dB are the predicted CNR in dB at
location x of, respectively, the source-to-UAV and UAV-to-
destination channels for the ith source-destination pair. Then
given a threshold probability, pth, we may estimate Rtrue

i
with the set Ri = {x ∈ R2|pi,sd(x)≥ pth}, which we call the
predicted relay region.

All links are of bandwidth BHz, and both the source
and mobile relay transmit with a fixed spectral efficiency
ξ b/s/Hz. The source and the UAV may transmit simultane-
ously, so the service rate when the UAV relays is ξ Bbps.
The relay can only service a single link at a time.

B. Motion Model
We consider trajectories where, for each pair, the UAV

chooses a single relay position ri ∈Ri, as a waypoint at which
the UAV remains while relaying. The set of these point is
denoted as Xr = {r1, ...,rn}. We assume that when in motion,
the UAV moves at a constant velocity, v, and the switching
time si, j = ||ri− r j||/v is the duration of time between the
moment the UAV completes service for queue i and begins
service at queue j. If the UAV remains at the same queue it
has just serviced, it waits a short period, si,i, and if no new
data has arrived, it queries the transition policy again.

C. Data Arrival and Servicing
We model data arrival at each source as independent

Poisson processes with intensity λi bps. The service time,
ζ = 1/(ξ B), is the time required to remove a single bit of
data from a queue. The traffic for a single queue is denoted
by ρi = λiζ . System-level values are denoted with a subscript
“s”, so that λs = ∑

n
i=1 λi and ρs = ∑

n
i=1 ρi. We assume the

UAV will continue to service a queue until it is empty, as
this results in the smallest average wait time [15].

D. Transition Policies and Markov Chain Model
The transition policy determines the sequence in which the

UAV services source-destination pairs. Generally, a policy
may be deterministic (e.g., a cyclic policy) or stochastic (e.g.,
the policies studied in [5]). We consider a broad class of
dynamic, stochastic policies, µ : Ω→ ∆(N), where Ω is the
observation space, N = {1, ...,n} is the set of indices of the
source-destination pairs, and ∆(N) is the probability simplex
over N. The choice of Ω is discussed next.

We assume the UAV knows the current queue it is servic-
ing, qk, and the queue lengths at each destination are either
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fully observed (FO) or partially observed (PO). In the FO
case, ΩFO = N×Zn

≥0, where Z≥0 is the set of non-negative
integers. The PO case assumes that the UAV knows only the
time since it last serviced each pair, with observation space
ΩPO = N×Rn

≥0.
The policy is queried at each service completion instant,

i.e., upon emptying the current queue, and the duration of
the UAV’s operation may be decomposed into a sequence of
stages, with the kth stage beginning and ending at the kth and
(k+1)th service completion instants, respectively. Let Lk =
[L1,k, ...,Ln,k], Tk = [T1,k, ...,Tn,k], and qk ∈ {q1, ...,qn} denote
the queue lengths, times since last visit, and the source at
which service has just been completed, respectively, at the
kth service completion instant. Under a specific transition
policy, µ , the sequence of state variables Lµ := {ωk}k≥0
forms a Markov chain, with the state given by (qk, Lk) and
(qk, Tk) for the FO and PO observation spaces, respectively.
The policy is said to be stable if Lµ is positive recurrent.

The average wait time of the system is the average time
between the moment a bit enters the system and the moment
it begins to be relayed from the source to the destination. As
the system of multiple queues may alternatively be viewed
as a single queue (albeit not first-come-first-serve), Little’s
Law [16] applies to the overall system, and average wait time
W̄ may be expressed as

W̄ = lim
t→∞

∫ t

0
L(t)dt/(λst) , (2)

where L(t) is the total number of bits in the system at time
t. This limit is guaranteed to exist for all stable policies.
Relationship with Polling systems: The considered sce-
nario can be viewed as a generalization of a polling system,
in which a single server services multiple queues. In these
systems, optimization is performed over the transition policy
while switching times are considered fixed. In our problem,
we additionally optimize over switching times, though these
are constrained by the robot’s fixed velocity and the geometry
of the relay regions.
Relationship between Traffic and Energy Consumption:
We note that for any stable policy, the proportion of operation
time spent servicing and traveling is well approximated by ρs
and (1−ρs), respectively. A surprising consequence of this
fact is that energy consumption is approximately constant for
all stable policies when motion power and communication
power are constant [5]. Thus, we do not explicitly consider
energy consumption when optimizing trajectories.

III. PROBLEM FORMULATION
We are interested in finding the dynamic UAV relay policy,

consisting of relay locations Xr and transition policy µ ,
which together minimize the average wait time:

min
µ,Xr∈∏

n
i=1 Ri

W̄ (3)

While a closed form expression for W̄ in terms of system
parameters exists for certain transition policies (e.g., under a
cyclic policy), no analytic expression is available for general
policies of the kind considered here. Furthermore, the non-
convexity of the relay regions and the interplay of Xr with

the dynamic transition policy µ make solving the problem
directly intractable. Therefore, we decouple Xr and µ by
iteratively optimizing each independently while keeping the
other fixed. The rest of this section poses each decoupled op-
timization problem separately, and in Section IV we present
our approach for joint optimization.

A. Optimal Dynamic Routing Policies
Assuming fixed relay positions, we focus on finding a

dynamic transition policy which minimizes the average wait
time. We first show how the problem may be posed as
a staged decision problem before formulating a specific
SMDP for the FO and PO cases. As discussed in Section II,
the UAV’s operation may be decomposed into a sequence
of stages beginning and ending at the service completion
moments. Thus, using Eq. (2) and results from [17], our
optimization problem may be expressed as:

min
µ

lim
K→∞

1
λSE[tK ]

E

[
K

∑
k=1

∫ tk

tk−1

L(t)dt

]
. (4)

where tk is the kth service completion instant.
We next introduce average cost semi-Markov decision

processes and show how to formulate our problem of interest
as such. This allows us to use recent results from the
literature to solve our problem, as discussed in Section IV.

1) Average Cost Semi-Markov Decision Process: The
average cost semi-Markov decision process is an infinite
horizon SMDP specified by a state space Ω, an action set U ,
state transition probabilities P(ω ′|ω,u) with u ∈U , a stage
level cost function c(ω,u), and an average stage duration
d(ω,u). The distinguishing characteristic of these problems
is that the objective is to find a policy which minimizes the
long term average cost rather than cumulative cost, i.e.,

min
µ

lim
K→∞

1
E[tK ]

E
[
∑

K
k=1c(ωk,µ(ωk))

]
. (5)

Under certain technical assumptions, the Bellman equations
for these problems can be modified to account for this
difference, as shown below:

h(ω) = min
u∈U(ω)

[
c(ω,u)−ψ

∗d(ω,u)+∑
ω ′∈Ω

P(ω ′|ω,u)h(ω ′)

]
(6)

where ψ∗ is the optimal average cost. The solution to
these problems depends on the properties of the underlying
Markov chain induced by µ , e.g., the number and size of
recurrent classes. Further details on average cost SMDP’s are
found in [18]. We next show that our problem is an SMDP.

2) The Fully Observed Case - SMDP Formulation: For
the FO system, states consist of the queue which has just
been serviced and all queue lengths, i.e., ωk =(qk,Lk)∈ΩFO.
For a policy µ and state ωk, the probability of ωk+1 taking
on some value (q,L) given all previous observations is

P(ωk+1 = (q,L)|ωk, ...,ω0,µ)

= P(µ(ωk) = q)P(Lk+1 = L|ωk,q) .
(7)

The probability P(Lk+1 = L|ωk,q) can be found using the
properties of Poisson processes, but we omit the derivation
for brevity. Thus, the state transition process is Markovian.
The action set consists of N, the choice of which source-
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destination pair to visit next, though we reiterate that our
more generic policies give a probability distribution over N.

From Eq. (4), the stage cost is given by

c(ωk,qk+1) = E
[∫ tk

tk−1

L(t)dt
∣∣qk,Lk,qk+1

]
, (8)

and the average stage duration is given by

d(ωk,qk+1) = E[tk− tk−1|qk,Lk,qk+1] . (9)

Closed form expressions for (8) and (9) can be derived but
are omitted for brevity.

Although the state space is countably infinite, it can be
shown that all stable policies induce a positive recurrent
Markov chain so that the limit in (5) exists and, consequently,
the average-cost Bellman equations in (6) hold.

3) The Partially Observed Case: We now consider the
PO case, in which the UAV knows only the time since each
queue was last visited. A SMDP may be derived for this
case, but in practice, a PO policy may be constructed from a
FO policy1, µFO, by first finding the expected FO state given
the PO state, E[ωFO|ωPO] = (q, [λ1T1, ...,λnTn]), then passing
the expected state to µFO. In practice, these policies result in
wait times comparable to those achieved using FO policies
and avoid directly optimizing the partially observable SMDP,
which requires much more computation time than solving the
fully observed SMDP.

B. Relay Positions
The relationship between relay positions and average wait

time given a fixed transition policy is non-convex and does
not lend itself to existing algorithmic tools, so we propose
a heuristic method for selecting relay positions. Considering
again the entire system as a single queue, the switching times
can be seen as idling periods. We then choose Xr to minimize
average idling period, i.e., the average switching time:

min
Xr∈∏

n
i=1 Ri

∑
n
i=1 ∑ j ̸=iPi j||ri− r j||2 (10)

where Pi j is the percentage of transitions that occur from
pair i to pair j, which may be calculated by keeping track
of transitions while simulating the policy for a long period.

As shown in [5], this problem can be reformulated as a
MISOCP by decomposing each relay region Ri into a set
of convex, polygonal regions and introducing a number of
binary indicator variables. State-of-the-art solvers can pro-
vide solutions to this problem with guarantees of optimality
and finite time convergence. For brevity, we omit the full
formulation and refer the reader to [5] for details.

IV. FINDING OPTIMAL DYNAMIC POLICIES
In this section, we describe in detail our approach to jointly

find relay positions, Xr, and policies, µ , with particular focus
on solving the SMDP presented in Section III-A.

Average cost MDP’s with countably-infinite state spaces
are difficult to solve directly. A common approach approx-
imates the average cost problem by reformulating it as a
discounted cumulative cost problem. However, recent work

1While the robot may not know real-time queue lengths, it is reasonable
that data would be available when training the routing policy

Algorithm 1: A DRL-based algorithm for minimiz-
ing average cost in semi-Markov decision process,
based on [10]. Subscript φ p indicates the value is
calculated under the policy parameterized by φ p,
while Vφ c is the value function parameterized by φ c.

Input: Number of trajectories M, Trajectory length
K, Policy parameters φ p, Critic parameters φ c,
Relay position update frequency J.

for i← 1 to M do
Step 1: Generate K-stage trajectory
{ωk,qk+1, ĉ(ωk,qk+1),∆tk,ωk+1} with policy µφp .
Step 2: Estimate average cost as
ψφp = ∑

N
k=1 ĉ(ωk,qk+1)/∑

N
k=1 ∆tk.

Step 3: Estimate value function as
V target

k = ĉ(ωk,qk+1)−ψφp∆tk +Vφ c(ωk+1).
Step 4: Estimate advantage as
A(ωk,ak) =V target

k −Vφ c(ωk).
Step 5: Use value and advantage estimates to
update policy and critic parameters using
Proximal Policy Optimization (PPO) [19].
Step 6: Every J trajectories, re-estimate transition
probabilities P given current policy and solve
(10) to update S(Xr).

end

by Zhang and Ross [10] proposes a DRL method for solving
average costs MDP’s directly, and in the context of robotics,
they show that this can lead to significant improvement over
the discounted cumulative cost approximation. Our method,
presented in Algorithm 1, extends their method to (1) handle
SMDP’s and (2) account for relay position optimization.

The DRL method approximates the policy and a value
function using artificial neural networks (ANN’s) parame-
terized by a set of weights which we denote φ p and φ c,
respectively. The input of both the policy and value function
networks is the stacked state vector, with qk one-hot encoded.
The output layer of the policy network is an n-dimensional
softmax, while the output of the value approximator, the
critic, is a scalar value. For convenience, we define the
value of a state Vµ(ω) and both the action bias Q̄µ(ω,q)
and advantage Aµ(ω,n) of each state-action pair, which
play important roles in the algorithm. First, the average-cost
action bias function is given by

Q̄µ(ω,q) = E
µ,A

[
∑

∞
k=0ck−ψµ dk

∣∣ω0 = ω, q1 = q
]

(11)

where A is the Poisson arrival process over all queues, ψµ

is the average cost under policy µ , and ck and dk are the
cost and duration of stage k, respectively. The value and
advantage functions can then be respectively expressed as

Vµ(ω) = ∑
n
q=1P(µ(ω) = q)Q̄µ(ω,q)

Aµ(ω,q) = Q̄µ(ω,q)−Vµ(ω) .
(12)

The algorithm proceeds by generating a number, M, of
K-stage trajectories, with K sufficiently large so that the
number of visits to each state approximates the proportions
indicated by the stationary distribution on Lµ (Step 1). For
each trajectory, the samples and the critic network are used

7448



Fig. 2: Relay regions for three example systems with (a) n = 2, (b) n = 3, and (c) n = 4. Sources and destinations are labeled TX and RX, respectively.
The green squares indicate relay positions. The colored regions indicate the true relay regions, and the darker portions correspond to the predicted relay
regions with pth = 0.7. For n = 2, λ1 = 1.44Mb/s, λ2 = 0.16Mb/s. For n = 3, λ1 = 0.72Mb/s, λ2 = 0.72Mb/s, λ3 = 0.16Mb/s. For n = 4, λ1 = 0.72Mb/s,
λ2 = 0.72Mb/s, λ3 = 0.24Mb/, λ4 = 0.72Mb/s. See color PDF for better viewing.

to estimate the average cost ψµ (Step 2), the value of each
state (Step 3), and the advantage of each state-action pair
encountered during the trajectory (Step 4). The estimated
values and and advantages are then used to update the policy
and critic parameters as described in [19] (Step 5). During
training, we keep track of the transitions between regions and
use these to estimate the transition probabilities Pi j needed
to periodically update the relay positions by solving (10)
(Step 6). We have modified steps 1 through 5 from [10] to
account for the semi-Markov nature of our problem, and we
also add Step 6 to handle our particular problem of interest.
While updates to the relay positions will shift the underlying
cost structure the DRL algorithm tries to learn, the high-level
structure, i.e., the arrival rates and relative positioning of the
relay regions, remains unchanged, and in practice, we find
that Step 6 does not adversely affect the algorithm’s stability.

V. NUMERICAL RESULTS
In this section, we present numerical results for systems

simulated using real-world channel parameters. We first
illustrate policies found with Algorithm 1, then compare their
performance against other approaches found in the literature.

Our simulations consider the two-, three-, and four-pair
systems shown in Fig. 2. In all simulations, the data rate
is ξ = 8b/s/Hz and the channel bandwidth is 1Mhz, so
that ζ = 0.125s/Mb. The UAV and sources transmit with a
power of Γt = 100mW, the receiver noise power is −80dBm,
and the acceptable SNR threshold for all the channels is
set to 33dB. Given the transmit power, the SNR threshold
translates to a CNR threshold of ϒth, dB = 13dBm. We fix
the UAV velocity at v = 1m/s. The value of the channel
parameters introduced in Section II-A are chosen to be
consistent with empirical studies of air-to-ground channels
as reported in [20]: K0 = −15dB, nPL = 5.2, α2 = 16,
β = 2.09m, and σ2 = 1.5. For the four-pair system, the path
loss parameters are modified to K0 =−5dB, nPL = 4.5 with
all other parameters the same. The threshold probability of
connectivity used for relay region prediction is pth = 0.7. For
each system, we find relay positions and transition policies
using Algorithm 1. The structure of the policy and critic
networks for each system is given in Table I.

A. Near-Optimal Dynamic Policies
In this section, we find the relay positions and transition

policy using Algorithm 1 for all systems shown in Fig. 2

# Layers Layer Dim.
n = 2 4 8
n = 3 5 16
n = 4 8 32

TABLE I: Structure of the the policy and critic ANN’s. Each layer consists
of a fully connected linear layer followed by an Exponential Linear Unit
(ELU) activation. See Section IV for further details on network architecture.

and examine the resulting policies. Fig. 3 depicts the last 10
minutes of a two-hour operation period under these policies.
For the system shown in Fig. 2 (a), the UAV services data
at q1 until sufficient data (around 50Mb) accumulate at q2,
as illustrated in Fig. 3 (top). After servicing q2, the UAV
always immediately moves back to q1. Similarly, for the
system shown in Fig. 2 (b), the UAV moves between q2
and q1 until the queue length at q3 exceeds about 50Mb.
This is shown in Fig. 3 (middle).

For the four-queue system shown in Fig. 2 (c), Fig. 3
(bottom) shows that every time the UAV visits q2, it also
visits q3, since these two are close together, so that even
though λ2 is significantly smaller than the other arrival rates,
q2 is visited as frequently as q3 and q4. Furthermore, after
servicing q4, the UAV will always move to q1 as it lies in
the general direction of the other relay positions.

B. Comparison of Dynamic Policies to State-of-the-Art
We compare the fully observed (FO) dynamic UAV relay

policies found using Algorithm 1 to existing strategies in the
literature. We specifically consider (1) cyclic policies based
on the traveling salesperson with neighborhoods problem, (2)
stochastic policies, in which P(µ(ω) = i) = πi, ∀ω ∈Ω, and
(3) policies described by a deterministic sequence derived
from the stochastic policies using the golden ratio. Details
on the latter can be found in [5]. We also compare again
the partially observed (PO) policies described in Section III-
A.3. For each policy, we simulate twenty four-hour operation
periods, and average the wait time.

The FO dynamic policies significantly reduce average wait
time. For example, with n = 4, it gives an average wait
time of 141s, but for the cyclic, stochastic, and golden
ratio policies, the average wait times are 161s, 224s, and
176s, respectively. Fig. 4 shows the percent increase in
average wait time under the cyclic, stochastic, and golden
ratio policies compared to the FO dynamic policy. As can
be seen, static policies can result in an over 50% increase
in average wait time, and while one method may perform
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Fig. 3: Queue lengths, total queue length, and average total queue length
over 10 minutes of operation in the systems shown in Fig 2 under policies
found with Algorithm 1. Li(t) is the length of queue i at time t. See color
PDF for better viewing.

Fig. 4: Comparison of average wait times under cyclic, stochastic, golden
ratio, and partially observed dynamic policies as a percentage of wait time
under the fully observed dynamic policy. See color PDF for better viewing.

close to the dynamic policy in one scenario, in a different
scenario, it performs much worse. We also note that the
PO dynamic policies perform on par with the FO dynamic
policies, increasing average wait time by less than 1%.

While the cyclic, stochastic, and golden ratio policies
may be found quickly, our DRL-based approach requires the
simulation of many extended trajectories. To reduce training
time, we use transfer learning to intelligently initialize the
weights of the policy and critic networks. Further reducing
the computational cost of our DRL-based approach by opti-
mizing transfer learning is an important area for future work.

VI. CONCLUSIONS
This paper considered a UAV acting as a relay between

pairs of distant source and destination communication nodes.

We posed the problem of finding the optimal dynamic UAV
relay policy, consisting of relay positions and a dynamic tran-
sition policy. We found approximate solutions by decoupling
the choice of relay locations and policy and showing that
for fixed relay positions, the problem of finding an optimal
transition policy can be formulated as a average cost SMDP.
Using a DRL-based approach, we proposed an algorithm to
find approximate solutions to the SMDP. Through simulation
in realistic channel environments, we empirically showed that
dynamic policies can significantly reduce average wait times.
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