
New formal descriptions for timed coloured Petri nets using formal
series

Louis Bal dit Sollier1, Alain Ourghanlian2 and Saı̈d Amari3

Abstract— This paper proposes to introduce a dioid of
coloured formal series for the description of Timed Coloured
Petri Nets (TCPN). These formal series allow us to express
TCPN time/event shiftings. As coloured Petri nets can reach a
high level of complexity, we first present the coloured formal
series for linear systems. Nonetheless, we extend our work to
the time and event shiftings in a conflict situation. This example
shows the powerful expressiveness of these series and that we
can build configurable models for which the transfer function
computation can be automated via predictability assumptions.

I. INTRODUCTION

The autors of [1] have presented an important work on
Timed Event Graphs (TEGs) and their description using trop-
ical algebra. The use of such framework allows to assess the
temporal performances of a large-scaled TEG, without facing
combinatory explosions. Besides, these authors explicit a
formal series dioid Max

in Jγ, δK. This dioid allows handling
simultaneously daters and counters representations for TEGs
through dual formal series. Two-dimensional models have
many advantages over one-dimensional representations only
with (max, +) or only (min, +). They are compactly and
powerfully expressing time and event shiftings between
transitions. In that sense, [1] and [2] state that this dioid
gives greater algebraic representations than (max, +) algebra
with compact two-dimensional equations of events and times
in TEGs. In the field of control theory, these representations
are already used to resolve various problems: [3], [4], [5] and
[6]. However, the Max

in Jγ, δK only works on linear models,
ensured by the structure of a TEG, and can not handle
common situations as conflicts or choices.

On the other hand, [7] presents Coloured Petri Nets (CPN),
a specific class of Petri nets in which tokens are coloured.
Colours are data vectors defining a particular behaviour
when fired by a transition. It allows, for example, to model
a shared resource and, more extensively, choices. Likewise,
CPNs are a hierarchical and highly compact formalism rel-
evant to model parallelism. Colours having almost no limits
to representations and manipulations, CPNs have therefore
a high power of expression. In [9] and [10], authors use a
natural definition for coloured (max, +) daters to compute
temporal performances of a CPN model. However, as we
have seen in [8], this definition limits expressiveness, mainly
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Paris-Nord, Paris, France samari@ens-paris-saclay.fr

because it is only based on one dimension (no bi-dimensional
formal series were used). The (max, +) equations do not
naturally integrate conflicts - or choices - resolutions. CPN
models are often nonlinear in the (max,+) algebra, and
currently, no work exists on dual representations using formal
series in the literature.

This paper proposes to introduce the colour notion inside
tropical algebra and formal series. Our motivation lies in
the possibility to temporally assess large-scaled and com-
pact linear timed CPN, when a conflict or a choice can
occur. This will allow to benefit from the compactness of
coloured models and their ability to model choices. Section
II recalls the basics of tropical linear theories presented in
[1]. Section III presents TCPNs and what restrictions we use
on this formalism in this paper. Section IV introduces the
dioid EJΓ, δK. In section V, we present linear applications.
Finally, we express in section VI the time/event shiftings
in a conflict example (allowing delay computations between
inputs and outputs). It shows that coloured formal series
can be manipulated to integrate the resolution of a conflict
situation.

II. FORMAL SERIES DIOID FOR DATERS AND COUNTER

A set D is a dioid (or idempotent semiring) for an
additive law ⊕ and a multiplicative law ⊗, if ⊕ is asso-
ciative, commutative, and idempotent, ⊗ is associative and
distributes over ⊕, and if it exists ε and e ∈ D respectively
the neutral elements of ⊕ and ⊗ - with ε absorbing for
⊗. Moreover, the additive law defines an order relation ≼
between elements such that a⊕ b = b ⇐⇒ a ≼ b ⇐⇒ ∃c ∈
D, a ⊕ c = b. This relation is compatible with ⊕ and ⊗.
If ∀a, b ∈ D, a ≼ b or b ≼ a, then the dioid is said to be
totally ordered. Example: (N ∪ {−∞},max,+), Zmax =
(Z ∪ {−∞},max,+) and Zmin = (Z ∪ {+∞},min,+)
are examples of dioids. A set endowed with ⊕ and ⊗ but
without a neutral element for multiplication e is called a
hemiring ([11]). The Dorroh extension of an idempotent
hemiring (H,⊕,⊗) by the Boolean dioid (B = {0, 1},⊕,⊗)
is defined by (S,+, ⋆) with S : H × B, and where
∀(h, b), (h′, b′) ∈ S, (h, b) + (h′, b′) = (h ⊕ h′, b ⊕ b′) and
(h, b) ⋆ (h′, b′) = (h⊗ b′ ⊕ h′ ⊗ b⊕ h⊗ h′, b⊗ b′). (S,+, ⋆)
is a dioid having (εH, 0) for additive neutral element and
(εH, 1) for multiplicative neutral element.
(D,⊕,⊗) is said to be complete if it is closed on infinite

sum and if ⊗ distributes over such sums. In a complete dioid,
the Kleene star on an element a is an operator defined by
a∗ =

⊕
n≥0 a

n, with a0 = e and a+ =
⊕

n≥1 a
n. Authors

of [1] have shown a fundamental theorem: in a complete
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dioid, the equation x = ax ⊕ b admits x = a∗b as least
solution. The dioid Zmax = (Z ∪ {−∞,+∞},max,+) is
complete (and its dual Zmin too).

TEGs are a specific class of Petri nets in which places
can only have one upstream and one downstream arc. Figure
1 shows an example. In a TEG, we can associate to each
transition a dater d (resp. a counter c) function, d(k) yielding
the date of the kth firing (resp. c(t) the number of firings
at time t). Let {d(k)}k∈Z be a sequence over Zmax. Its γ-
transform is a formal power series in γ with coefficients
in Zmax and exponents in Z: d(γ) =

⊕
k∈Z d(k)γ

k. For a
sequence {c(t)}t∈Z over Zmin, it also exists its δ-transform
with coefficients in Zmin and exponents in Z: c(δ) =⊕

t∈Z c(t)δ
t. γ and δ are called ”shifting operators”. For

example d(γ)⊗ γ1 =
⊕

k∈Z d(k)γ
k+1 =

⊕
k∈Z d(k− 1)γk.

We denote by ZmaxJγK the complete dioid, endowed with ⊕
and ⊗, of formal power series on γ with coefficients in Zmax

and exponents in Z ; and by ZminJδK on δ with coefficients
in Zmin and exponents in Z. γ∗ZmaxJγK and (δ−1)∗ZminJδK
are dioids respectively for daters and counters.

BJγ, δK is a complete dioid formed by the set of for-
mal series with two commutative variables γ and δ with
Boolean coefficients in {ε, e} and exponents in Z. The
neutral elements are ε(γ, δ) =

⊕
k,t∈Z εγ

kδt and e(γ, δ) =

γ0δ0. Considering this dioid modulo the relation γ∗(δ−1)∗

gives a quotient dioid named Max
in Jγ, δK, in which ∀x, y ∈

BJγ, δK, x = y ⇔ xγ∗(δ−1)∗ = yγ∗(δ−1)∗. This relation
creates equivalence classes [s]γ∗(δ−1)∗ regrouping elements
of BJγ, δK modulo γ∗(δ−1)∗. For sake of clarity, we denote
after equivalence classes [s]γ∗(δ−1)∗ of Max

in Jγ, δK only by s.
Finally, the following properties stand for any k, k′, t, t′ ∈ Z:
γkδt ⊕ γkδt

′
= γkδmax(t,t′), γkδt ⊕ γk′

δt = γmin(k,k′)δt

and γkδt ⊗ γk′
δt

′
= γk+k′

δt+t′ . The neutral elements
are ε = γ+∞δ−∞ and e = γ0δ0. The complete dioid
Max

in Jγ, δK gives compact and powerful series (in terms of
simplifications and, by extension, computationally - see [2])
to simultaneously describe the dater and counter functions
of a TEG. In these series, a monomial γkδt means : ”the
(k + 1)th event occurrence happens at earliest at time t”
(firings begin at index 0). A trajectory is a series expressing
n successive firings of a transition and having the form
γ0δt0 ⊕ γ1δt1 ⊕ ... ⊕ γn−1δtn−1 ⊕ γnδ+∞ - the (n + 1)th

event never occurs.
TEGs structure ensures a linear model when express-

ing the corresponding daters/counters with formal series in
Max

in Jγ, δK. Their behaviour can be expressed using x =

 
  

 

 
   

 
  

Fig. 1. Example of a simple TEG

Ax ⊕ Bu, and y = Cx, with A ∈ Max
in Jγ, δKm×m, B ∈

Max
in Jγ, δKm×p and C ∈ Max

in Jγ, δKq×m, m, p and q being
respectively the size of the vectors x (system), u (input) and y
(output). The least solution theorem gives: y = CA∗Bu and
we call transfer function H = CA∗B the matrix expressing
the relationship between inputs and outputs. The following
equations represent the temporal and event behaviours for
the TEG in Figure 1: x1(γ, δ) = γ1δt2x2(γ, δ)⊕ γ1δ0u(γ, δ)

x2(γ, δ) = γ0δt1x1(γ, δ)
y(γ, δ) = γ0δ0x2(γ, δ)

(1)

Its transfer function is then: H = γ0δt1(γ1δt1+t2)∗. One
can see that transfer functions allow to represent the tem-
poral behaviour of events in a TEG through a single linear
function, hence their ”computational power”. Using the same
approach, the algebraic representation of any TEG behaviour
through formal series is possible, even with multiple inputs
and/or outputs. We refer the reader to [1] for a complete
introduction to the link between TEGs and formal series.

III. TIMED COLOURED PETRI NETS

In [7], the authors give a formal definition of coloured Petri
nets. Notably, the bag concept describes a marking across a
CPN, and how markings change over firing transitions. They
are also helpful to implicitly use multiplicities (or weights)
in a Petri nets.

Definition 3.1: A multi-set of a set E is a function Ω :
E 7→ N, with Ω(e) the number of times e is contained in the
set built by the function (the image of E by Ω). Bag(E) is
the set of the multi-sets of E.
Example: Let E = {a, b, c} be a set of 3 elements, and ΩE

a multi-set of E. If ΩE is defined by a → 3, b → 1, c → 2,
the set built is: {a, a, a, b, c, c}. ΩE is formally represented
by:

∑
e∈E ΩE(e)‘e = 3‘a+ 1‘b+ 2‘c.

Definition 3.2: Let (P, T , C,W−,W+,Θ,Φ) be a
TCPN: P is a nonempty set of places, T a nonempty set of
transitions and C is a function from P ∪ T to a finite set
of colours. W− and W+ are respectively firing and filing
functions which associate each (P, T ) ∈ P × T to a colour
function from C(T ) to Bag(C(P )). Θ is a time function
from P ∪ T to N, which associates a time delay to a place
or a transition. Finally, Φ associates each transition to a
Boolean guard.
C associates each transition and each place with its own
colours set. As we will not address WTEGs in this first
work, we suppose that W− always yields a multi-set W
having for associated function ΩW : W 7→ {0, 1} (the
consumption when a transition fires) and W+ a multi-set
composed of a unique token (the production after a firing).
After having fired, a transition can still drop different tokens
in several places, as long as there is only one token added
in each place. A coloured marking M is a function which
associates each P ∈ P to an element of Bag(C(P )). M
describes a distribution of coloured token across a CPN. A
transition T fires for cT ∈ C(T ) and a coloured marking
M as soon as ∀P ∈ P , W−(P, T )(cT ) ≤ M(P ). Hence,
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W− can also be seen as the condition to fire a transition
in terms of resource distribution. When a transition fires,
the marking is updated according to its W− and W+. The
function Θ corresponds to delays on transitions and places,
and the guard Φ(T ) must be true to allow T to fire. In [7],
the time aspect in CPNs is based on timestamps given to
each token. Here we give a new definition based on a time
consistent with the classical (max,+) description of TEGs.
The TCPN in Figure 2 presents a simple jobshop with two
types of pieces ⟨a⟩ and ⟨b⟩. Delay t1 is a first processing.
There are two machines: ⟨m1⟩ and ⟨m2⟩. The transition
T1 can fire colours ⟨m1, a⟩ or ⟨m2, b⟩, standing for a job
beginning with machine mi, of duration t2. Transition T2

stands for the end of the job. Place P3 corresponds to the
minimum delay t3 between one machine two successive
jobs. Delay t4 is the assembling time of two processed
pieces. As help to understand TCPNs dynamics, here are
some of the W functions: W−(P1, T1)(⟨m1, a⟩) = 1‘⟨a⟩,
W+(P3, T1)(⟨m1, a⟩) = 1‘⟨m1⟩ and W−(P4, y)(⟨c⟩) =
1‘⟨m1, a⟩+ 1‘⟨m2, b⟩.

IV. TROPICAL ALGEBRA FOR COLOURS

A. Dioid of Colours

Let E be a set of colours. As colours are data vectors and
have no predefined structure, we consider here and for the
rest of the paper E = {⟨∅⟩, ⟨1⟩, ⟨2⟩, ...} ; with ⟨∅⟩ ∈ E the
colour standing for the absence of colour. Hereafter, ⟨.⟩ ∈
E stands for a generic notation of one colour. One main
difficulty to be solved for colours in tropical algebra is the
nonexistence of a natural definition for addition and product.
We assume the following order for E elements:

Definition 4.1 (Order in E): Let ≼ be an order relation
such that: ∀⟨.⟩ ∈ E, ⟨.⟩ ≼ ⟨∅⟩
The relation ≼ partially orders E. A possible law ⊕ is then
associated to this order relation and defined in E by:

∀⟨i⟩, ⟨j⟩ ∈ E, ⟨i⟩ ⊕ ⟨j⟩ =

{
⟨i⟩ if ⟨i⟩ = ⟨j⟩
⟨∅⟩ otherwise

(2)

This rule reads: the maximum (according to the order ≼)
between two colours naturally leads to a colour absence, and
⊕ is idempotent. The neutral element is an added colour ⟨o⟩
defined by: ∀⟨.⟩ ∈ E, ⟨o⟩ ⊕ ⟨.⟩ = ⟨.⟩ ⊕ ⟨o⟩ = ⟨.⟩.

With respect to the multiplication ⊗, as we aim to ex-
press in our equations how colours evolve in a model, the

 
 

 
 

 
 
    

 

 
 

 
 

 
 
    

 

       

 
 
    

 

 
 
    

 

   

   

  
 
   

 
 

  
 
   

  
 
   

  
 
   

  
 
   

Fig. 2. Example of a TCPN modeling a jobshop

multiplication ⊗ is given by:

∀⟨i⟩, ⟨j⟩ ∈ E, ⟨i⟩ ⊗ ⟨j⟩ =

{
⟨o⟩ if ⟨i⟩ = ⟨o⟩ or ⟨j⟩ = ⟨o⟩
⟨i⟩ otherwise

(3)
As it stands, the algebraic structure (E∪ {⟨o⟩},⊕,⊗) is not
a dioid (because it does not have a neutral element for ⊗)
but only an additively-idempotent hemiring.

Remark 1: As colours are abstract objects, we could de-
fine a neutral element e for ⊗. However, (E∪{⟨o⟩, e},⊕,⊗)
would not be a dioid since ∀⟨.⟩ ∈ E, (e ⊕ ⟨.⟩) ⊗ ⟨.⟩ ≠
e⊗ ⟨.⟩ ⊕ ⟨.⟩ ⊗ ⟨.⟩.
In [11], the author proposes the Dorroh extension to build a
dioid structure from an idempotent hemiring. We denote by
Ĕ : E∪{⟨o⟩}×B the set of pairs (⟨.⟩, b), where b ∈ {0, 1}. As
(B,⊕,⊗) is the dioid of Booleans, we recall that 1⊕ 1 = 1
in it (by idempotency of ⊕). In addition, we specify that
⟨.⟩ ⊗ 0 = ⟨o⟩ and ⟨.⟩ ⊗ 1 = ⟨.⟩.

Proposition 4.1: The set Ĕ : E∪{⟨o⟩}×B, endowed with
⊕ and ⊗, is a complete dioid, having for neutral elements
ε = (⟨o⟩, 0) and e = (⟨o⟩, 1). In this dioid, the addition and
the multiplication of two elements belonging to E∪{⟨o⟩} are
respectively given by (2) and (3). Lastly, (⟨i⟩, b)⊕(⟨j⟩, b′) =
(⟨i⟩ ⊕ ⟨j⟩, b ⊕ b′) and (⟨i⟩, b) ⊗ (⟨j⟩, b′) = (⟨i⟩b′ ⊕ ⟨j⟩b ⊕
⟨i⟩ ⊗ ⟨j⟩, b⊗ b′).

Proof: Ĕ verifies the dioid properties. Particularly, ⊗
distributes over ⊕: (⟨i⟩, b)⊗((⟨j⟩, b′)⊕(⟨k⟩, b′′)) = (⟨i⟩, b)⊗
(⟨j⟩, b′) ⊕ (⟨i⟩, b) ⊗ (⟨k⟩, b′′) and ((⟨j⟩, b′) ⊕ (⟨k⟩, b′′)) ⊗
(⟨i⟩, b) = (⟨j⟩, b′)⊗ (⟨i⟩, b)⊕ (⟨k⟩, b′′)⊗ (⟨i⟩, b).

Lemma 4.2: Let E ⊂ Ĕ such that E = {(⟨.⟩, 0) | ⟨.⟩ ∈
E∪{⟨o⟩}}. Then, ∀a1, a2 ∈ E, a1⊗a2 = a1, and a1⊕a2 ∈ E.
In addition, ∀a ∈ E, a⊕ e /∈ E, but a⊗ e ∈ E.

The subset of colours E allows us to use the ⊗ law as
define in (3) to model the manipulation of colours in a
TCPN while keeping a structure of dioid - for example when
computing the Kleene Star of matrix A. Lastly, we use the
notation e = ⟨1⟩ = (⟨o⟩, 1) /∈ E to avoid any ambiguity later
on. As ∀a ∈ E, ⟨1⟩ ⊕ a /∈ E, the ⊕ operation involving ⟨1⟩
will be forbidden. If not, we could not ensure the colours
absorption on left when computing some A∗.

B. Coloured Daters

Let E be the colour set of a specific TCPN. Each TCPN
model can have a different set E associated, but at least equal
to {⟨o⟩, ⟨∅⟩}. We define hereby mono-coloured daters in the
dioid theory:

Definition 4.2: A mono-coloured dater x is a dater en-
dowed with a colour ⟨.⟩, defining a new function x : (Z ×
{⟨.⟩}) 7→ Zmax. We note it x(k, ⟨.⟩).
Following this definition, a classical TEG dater x(k) is
equivalent to a mono-coloured dater x(k, ⟨∅⟩). A pair (transi-
tion, colour) defines a unique mono-coloured dater function.
This definition fits well for linear model, as each dater
has one unique colour associated. It reads ”the date of the
(k + 1)th firing of the transition x with the colour ⟨.⟩”.
The dioid Zmax,⟨.⟩ is the dioid of daters coloured by ⟨.⟩,
and is equivalent to Zmax as in a TEG we can colour
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each dater with one unique colour without changing the
model. All the Zmax,⟨.⟩ are mono-coloured dioids. A dater
x(k, ⟨.⟩) having the value +∞ means ”the (k+1)th x-firing
with the colour ⟨.⟩ never occurs”. Hence, over infinity, we
assume that colours do not matter: if x(k, ⟨.⟩) = +∞, then
x(k, ⟨.⟩) ≡ x(k, ⟨∅⟩),∀⟨.⟩ ∈ E.

What follows is to define the relation existing between
two daters. For all ⟨i⟩, ⟨j⟩, ⟨a⟩ in E, a shifting of k0 firings
between two daters x1 and x2 gives:

x1(k, ⟨i⟩) = x2(k − k0, ⟨j⟩) (4)

and the synchronisation between two daters yields:

x3(k, ⟨a⟩) = x1(k, ⟨i⟩)⊕ x2(k, ⟨j⟩) (5)

As the index is shifted by k0 in (4), the change of colours
in (4) and (5) state the necessary existence of an operation to
shift them. This operations is implicitly given when defining
a dater - for example in (4) the colour ⟨j⟩ is shifted to ⟨i⟩.
For the convolution, if a dater x3 is given by the convolution
x1(k, ⟨i⟩)⊗x2(k, ⟨j⟩) =

⊕
i∈Z x1(i, ⟨i⟩)⊗x2(k−i, ⟨j⟩), then

its colour is ⟨i⟩⊗⟨j⟩. These manipulations are, from a TCPN
point of view, carried out by the functions W−(P, T )(cT )
and W+(P, T )(cT ). As it stands for mono-coloured dater,
these functions are not represented and, as we attempt to ex-
press the behaviour of a TCPN with nonlinear operations on
time and event based on colours, the inherent representations
power of bi-dimensional formal series will be useful.

C. Coloured Formal Series

For any (⟨.⟩, b) ∈ Ĕ, we define the undetermined operator
γ(⟨.⟩,b) and the transformation on it for a formal series s with
exponents in Zmax as:

s(γ(⟨.⟩,b)) =
⊕
k∈Z

s(k, (⟨.⟩, b))γk
(⟨.⟩,b) (6)

with s(k, (⟨.⟩, b)) a mono-coloured dater. Let ĔJγ(⟨.⟩,b)K be
the set of all formal series on γ(⟨.⟩,b): (ĔJγ(⟨.⟩,b)K,⊕,⊗) is
a complete dioid - the laws (⊕,⊗) being the same as in
the dioid ZmaxJγK. Let Γ = {γa | a ∈ Ĕ} be the set of all
undetermined operator coloured by a pair of Ĕ. We define
the operations ⊕ and ⊗ on two elements of Γ as γk

a1
⊕γk

a2
=

γk
a1⊕a2

and γk
a1

⊗ γk′

a2
= γk+k′

a1⊗a2
.

Remark 2: The set ĔJγ(⟨.⟩,b)K of formal series mono-
coloured by (⟨.⟩, b) is a dioid completely analogous and
isomorphic to ZmaxJγK, and ĔJγ⟨1⟩K ≡ ZmaxJγK.

Proposition 4.3: The set ĔJΓK of all formal series
coloured by a pair of Ĕ endowed with ⊕ and ⊗, is a complete
dioid. Its neutral elements are ε(γ(⟨o⟩,0)) =

⊕
k∈Z εγ

k
(⟨o⟩,0)

and e(γ⟨1⟩) = eγ0
⟨1⟩, with ε = −∞, e = 0 the classical

neutral elements of Zmax.
Because daters are monotonous, their formal series need to

be filtered. The exact dioid corresponding to formal series for
daters (i.e., in which the series are well-ordered) is therefore
γ∗
⟨1⟩ĔJΓK. This filtering is equivalent to the one existing in

γ∗ZmaxJγK.

As in the lemma 4.2, we reduce the use of colours for
daters to E elements. From here, we denote (⟨.⟩, 0) by ⟨.⟩.
This reduction enables the representations of mono-coloured
daters through formal series equations, knowing that these
equations evolve in a dioid structure. The transformation on
γ⟨.⟩, for a mono-coloured dater x, is:

x(γ⟨.⟩) =
⊕
k∈Z

x(k, ⟨.⟩)γk
⟨.⟩ (7)

The operator γ⟨∅⟩ = γ is used for non coloured series. The
undetermined operator bears two data: the index of firing
and the event colour. We denote by EJΓK ⊂ (γ∗

⟨1⟩ĔJΓK) the
set of all formal series representing mono-coloured daters.
In consistency with the defined algebraic laws, the following
properties hold :

γk
⟨i⟩ ⊕ γk′

⟨j⟩ = γ
min(k,k′)
⟨i⟩⊕⟨j⟩ and γk

⟨i⟩ ⊗ γk′

⟨j⟩ = γk+k′

⟨i⟩⊗⟨j⟩

Also, it yields γk
⟨i⟩ = γk

⟨i⟩⊗⟨j⟩ = γ0
⟨i⟩ ⊗ γk

⟨j⟩, on the
understanding that ⟨j⟩ ≠ ⟨o⟩. Elements of EJΓK can describe
linear TCPNs. For two mono-coloured daters such that
x1(k, ⟨i⟩) = x2(k−k0, ⟨j⟩), switching to formal series gives:

x1(γ⟨i⟩) =
⊕
k∈Z

x1(k, ⟨j⟩)γk
⟨i⟩

=
⊕
k∈Z

x2(k − k0, ⟨j⟩)γk0

⟨i⟩γ
k−k0

⟨j⟩

= γk0

⟨i⟩x2(γ⟨j⟩)

(8)

If x3 is defined by x3(k, ⟨a⟩) = x1(k, ⟨i⟩)⊕x2(k, ⟨j⟩), then:

x3(γ⟨a⟩) =
⊕
k∈Z

[x1(k, ⟨i⟩)⊕ x2(k, ⟨j⟩)]γk
⟨a⟩

=
⊕
k∈Z

x1(k, ⟨i⟩)γ0
⟨a⟩γ

k
⟨i⟩ ⊕

⊕
k∈Z

x2(k, ⟨j⟩)γ0
⟨a⟩γ

k
⟨j⟩

= γ0
⟨a⟩x1(γ⟨i⟩)⊕ γ0

⟨a⟩x2(γ⟨j⟩)
(9)

Remark 3: Note that γk
⟨.⟩ is commutative with the dater

functions, but not with other operators γ.

The operator γk0

⟨i⟩ stands simultaneously for event shifting
and colour shifting. This notion of shifting colours as event or
time are being shifted is fundamental. In the tropical algebra,
daters are meant to link event with time, like counters are
meant to link time with event. Coloured formal series allow
us to integrate W−(P, T )(cT ) and W+(P, T )(cT ) functions
to tropical equations. For a mono-coloured dater, it exists
its dual as a coloured counter c⟨.⟩(t) : Z 7→ Zmin, which
associates to a timing t a number of firings n. For a transition,
n is the number of firing at time t with the colour ⟨.⟩.

Let BJγ, δK be the complete dioid of mono-coloured
formal series with Boolean coefficients in {ε, e} and expo-
nents in Z. BJγ, δK elements are the series s(γ(⟨.⟩,b), δ) =⊕

k,t∈Z s(k, t, (⟨.⟩, b))γk
(⟨.⟩,b)δ

t, with s(k, t, (⟨.⟩, b)) ∈ {ε, e}
a Boolean. In the same way that Max

in Jγ, δK is built in the
tropical algebra, the complete dioid BJγ, δK modulo the rela-
tion γ∗

⟨1⟩(δ
−1)∗ gives a quotient dioid named ĔJΓ, δK. This

dioid gives new algebraic bi-dimensional representations.
Like previously, we reduce our use of ĔJΓ, δK elements to a
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subset EJΓ, δK with the following properties holding in it:

γk
⟨i⟩δ

t ⊗ γk′

⟨j⟩δ
t′ = γk+k′

⟨i⟩ δt+t′ , γk
⟨i⟩δ

t ⊕ γk′

⟨j⟩δ
t = γ

min(k,k′)
⟨i⟩⊕⟨j⟩ δt

γk
⟨i⟩δ

t ⊕ γk
⟨j⟩δ

t′ = γk
⟨i⟩⊕⟨j⟩δ

max(t,t′) (10)

From now on, ε and e respectively refer to γ−∞
⟨o⟩ δ+∞ and

γ0
⟨1⟩δ

0, the ĔJΓ, δK neutral elements.
Remark 4: It must be noted that in EJΓ, δK, (γk

⟨.⟩δ
t)∗ ̸=

γ0
⟨.⟩δ

0 ⊕ (γk
⟨.⟩δ

t)+ but (γk
⟨.⟩δ

t)∗ = e⊕ (γk
⟨.⟩δ

t)+ = γ0
⟨1⟩δ

0 ⊕
(γk

⟨.⟩δ
t)+. Therefore, in consistency with the fact that ⟨1⟩ /∈

E, a t-periodic series s is expressed by : s = γ0
⟨.⟩δ

0 ⊕
(γk

⟨.⟩δ
t)+

V. APPLICATION ON PARALLELED TASKS

Figure 3 shows an example of a TCPN with n paral-
leled tasks. Each task has a different processing duration:
t1 ̸= t2 ̸= ... ̸= tn. Let us consider a colour per task,
that is n colours. The colour set of this TCPN is E =
{⟨∅⟩, ⟨1⟩ ..., ⟨n⟩} ∪ {⟨o⟩}. The transitions u, x0, x1, and y
each define n daters, one for each colour. This TCPN can be
represented with the following linear system of equations:

x0(γ⟨i⟩, δ) = γ0
⟨i⟩δ

0u(γ⟨i⟩, δ)

x1(γ⟨i⟩, δ) = γ0
⟨i⟩δ

tix0(γ⟨i⟩, δ)

y(γ⟨i⟩, δ) = γ0
⟨i⟩δ

0x1(γ⟨i⟩, δ)

(11)

Each colour ⟨i⟩ defines a linear TCPN, with A⟨i⟩ =(
ε ε

γ0
⟨i⟩δ

ti ε

)
, B⟨i⟩ =

(
γ0
⟨i⟩δ

0

ε

)
and C⟨i⟩ =

(
ε γ0

⟨i⟩δ
0
)

.

These systems give n transfer function : H⟨i⟩ =

C⟨i⟩A
∗
⟨i⟩B⟨i⟩ =

(
γ0
⟨i⟩δ

ti
)

and y(γ⟨i⟩, δ) = H⟨i⟩u(γ⟨i⟩, δ) =

γ0
⟨i⟩δ

tiu(γ⟨i⟩, δ). The compactness aspect can still be im-
proved by considering a hierarchical model. Hierarchy is a
concept that already exists in the CPN theory. By replacing
a time delay in a place Pi by the transfer function of a linear
Single-Input Single-Output (SISO) TEG, we can express a
hierarchical model (for example, the one presented in Figure
1). The daters of a classical TEG are expressed using the
dioid EJγ⟨.⟩K (cf Remark 2). Each SISO TEG has a transfer
function Hi expressing a linear time/event shifting, with
H1 ̸= ... ̸= Hn. That said, we could obviously replace them
by TCPNs having a linear transfer function. This time/event
shiftings of our new TCPN are given by the following

  
  
   

 

               

   

 
 

 

 
 

  
 
    

 

 

   

   

  
  
   

 

   

   

Fig. 3. Example of a TCPN with n paralleled tasks

equations:
x0(γ⟨i⟩, δ) = γ0

⟨i⟩δ
0u(γ⟨i⟩, δ)

x1(γ⟨i⟩, δ) = γ0
⟨i⟩δ

0 ⊗Hi ⊗ x0(γ⟨i⟩, δ)

y(γ⟨i⟩, δ) = γ0
⟨i⟩δ

0x1(γ⟨i⟩, δ)

(12)

Computing the new matrices gives finally a transfer function
H⟨i⟩ defined by: H⟨i⟩ = C⟨i⟩A

∗
⟨i⟩B⟨i⟩ =

(
γ0
⟨i⟩δ

0Hi

)
and

y(γ⟨i⟩, δ) = Hi ⊗ u(γ⟨i⟩, δ). The A∗
⟨i⟩ computation follows

from results given in ([1]). These equations shows that mono-
coloured formal series can handle parallel tasks in a TCPN,
and a fortiori, can also express the behaviour of any linear
TCPN in the tropical algebra since we know how to shift
colours. Hence, the expressive power of formal series (that
is the reduction of a linear system to a single transfer
function) can be applied on TCPNs. It is now possible
to describe a compact linear TCPN model using formal
series, without using TEGs. Nonetheless, coloured nets also
model operations that can not be represented in the classical
tropical algebra. We aim to present a study case where
the given representations of coloured formal series express
more complex behaviours. For instance, one can define laws
conditioning the times and events on the value of the colours.

VI. APPLICATION ON SHARED RESOURCE

Conflict resolution relies on a choice mechanism, naturally
expressed through colours. It is one of the main advantages of
CPNs. We present hereafter a model with a shared resource.
This example proves that our new coloured formal series
offers greater algebraic expressions, allowing us to handle
a mechanism we could not express with linear tropical
algebra before. Figure 4 shows a conflict situation between
the x0(k, ⟨1⟩) and the x1(k, ⟨2⟩) firings. They both need
a ⟨o⟩ coloured token in P3 to fire, corresponding to the
shared resource. The firing functions are W−(P3, x0)(⟨1⟩) =
1‘⟨1⟩+1‘⟨o⟩ and W−(P3, x1)(⟨2⟩) = 1‘⟨2⟩+1‘⟨o⟩. In Figure
4, the token in place P3 stands for the presence at time
t = 0 of a resource ⟨o⟩. The transition u1 generates the
three types of tokens : ⟨1⟩, ⟨2⟩ and ⟨o⟩. Their arrival dates are
differentiated using three distinguished mono-coloured daters
(one for each colour), all three associated to u1 and denoted
u⟨1⟩, u⟨2⟩ and u⟨o⟩. In this TCPN, the conflict resolution
relies on the following hypothesis: the tokens in place P3

are processed with a FIFO order. However, if two tokens
of different colour arrive at P3 at the same date, the colour
⟨1⟩ has priority over ⟨2⟩. This hypothesis is modeled in the
TCPN by the guard Φ(x1) = ”The place P3 contains no
⟨1⟩ tokens”. Thus, the priority between colours applies on
tokens arrival date, and not when firing x1 or x2. Also, we
suppose that tokens ⟨o⟩ arrive with a periodicity of t3 time
units, i.e., u⟨o⟩(Γ, δ) = γ0

⟨o⟩δ
0 ⊕ (γ0

⟨o⟩δ
t3)+. However, we

could also choose to express the resource ⟨o⟩ availability
through a configurable trajectory, i.e., through arrival dates
chosen before the computation but not necessarily periodic.
To handle this situation, suppose that it exists a relation order
≺p different from the E natural order ≼ (associated to ⊕).
This new order relation ≺p defines a choice rule between
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two colours. If ⟨i⟩ ≺p ⟨j⟩, we can associate two laws ⊞
and ⊟ defined by: ⟨i⟩ ⊞ ⟨j⟩ = ⟨j⟩ and ⟨i⟩ ⊟ ⟨j⟩ = ⟨i⟩.
⊟ (resp. ⊞) implies the FIFO-choice of the highest priority
(resp. the lowest) and to keep the associated date and index
in a trajectory. For ⟨1⟩ ≺p ⟨2⟩, it yields:

γk
⟨1⟩δ

t ⊞ γk
⟨2⟩δ

t′ =

{
γk
⟨1⟩δ

t if t > t′

γk
⟨2⟩δ

t′ if t ≤ t′
(13)

and

γk
⟨1⟩δ

t ⊟ γk′

⟨2⟩δ
t′ =

{
γk+k′

⟨1⟩ δt if t ≤ t′

γk+k′

⟨2⟩ δt
′

if t > t′
(14)

Between two trajectories s1, s2 ∈ EJΓ, δK, respectively
mono-coloured by ⟨1⟩ and ⟨2⟩, the operation ⊞ is undefined,
whereas ⊟ defines a new convolution (in the same way as
⊗):

s1 ⊟ s2 =
⊕
k∈Z i∈Z

γi
⟨1⟩δ

t ⊟ γk−i
⟨2⟩ δt

′
(15)

It means that the (k + 1)th firing date is equal to the
lowest dates for x1 and x2 firings, knowing that the k lowest
dates of x1 and x2 firings have already been sorted by
the convolution. The priority hypothesis between ⟨1⟩ and
⟨2⟩ solves the equality case in (15), that is if two tokens
arrive simultaneously. Moreover, such a convolution between
two trajectories yields a trajectory having events coloured
differently. We define now daters yielding more than one
colour:

Definition 6.1: Let ω : Zmax 7→ E be a colouration func-
tion. A multi-coloured dater x(k, ω(k)) is a dater endowed
with a colouration function, ω(k) being the colour of the
(k + 1)th firing.

Using coloured formal series, if x3 is computed by x1⊟x2:

x3(γω3
) =

⊕
k∈Z

[
i∈Z

[x1(i, ⟨1⟩)⊟ x2(k − i, ⟨2⟩)]

]
γk
ω3(k)

(16)
ω3(k) being the colour resulting from (13) and (14). This
operation orders the firings of x1 and x2 by creating a third
dater, multi-coloured. The law ⊟ can be seen as the conflict
resolution rule defined as a parameter in the description of
the TCPN model.

Example: Let x1(γ⟨1⟩, δ) = γ0
⟨1⟩δ

4⊕γ1
⟨1⟩δ

5⊕γ2
⟨1⟩δ

+∞ and
x2(γ⟨2⟩, δ) = γ0

⟨2⟩δ
3 ⊕ γ1

⟨2⟩δ
5 ⊕ γ2

⟨2⟩δ
+∞ be two coloured

  
  
   

 

       

   

 
 

 
 

  
  
   

 

   
  

  

   

 

 
 

 
 

Fig. 4. A conflict for two tasks with different processing duration.

trajectories. Operating with ⊟ gives:

x3(γω3
, δ) = γ0

⟨2⟩δ
3 ⊕ γ1

⟨1⟩δ
4 ⊕ γ2

⟨1⟩δ
5 ⊕ γ3

⟨2⟩δ
5 ⊕ γ4

⟨∅⟩δ
+∞

We also define a law � conditioned on colours and yielding
a mono-coloured trajectory from a multi-coloured one :

⟨i⟩ � x(Γ, δ) = x(γ⟨i⟩, δ) (17)

� returns ε if there is no event coloured with ⟨i⟩ in x(Γ, δ)
and a well-ordered mono-coloured trajectory otherwise. If
x(Γ, δ) = γ0

⟨1⟩δ
1 ⊕ γ1

⟨2⟩δ
3 ⊕ γ2

⟨1⟩δ
4 ⊕ γ3δ+∞ is a multi-

coloured dater, ⟨1⟩ � x(Γ, δ) = γ0
⟨1⟩δ

1 ⊕ γ1
⟨1⟩δ

4 ⊕ γ2δ+∞.
This law allows us to return to mono-coloured trajectories
after a convolution ⊟. We can now express the time/event
shiftings of the system presented in Figure 4. As x0 and x1

are in conflicts, we note x̃ the multi-coloured dater coming
from their composition.

x̃(Γ, δ) = γ0
⟨1⟩δ

0[u⟨1⟩(Γ, δ)⊟ u⟨2⟩(Γ, δ)]⊕ u⟨o⟩(Γ, δ)

x2(Γ, δ) = [γ0
⟨1⟩δ

t1(⟨1⟩ � x̃(Γ, δ))]⊟
[γ0

⟨2⟩δ
t2(⟨2⟩ � x̃(Γ, δ))]

y(Γ, δ) = γ0
⟨1⟩δ

0x2(Γ, δ)
(18)

For outputs y, we ultimately have:

y(Γ, δ) = [γ0
⟨1⟩δ

t1(⟨1⟩ � x̃(Γ, δ))]⊟ [γ0
⟨2⟩δ

t2(⟨2⟩ � x̃(Γ, δ))]

y(Γ, δ) yields the output trajectory where ⟨1⟩ and ⟨2⟩ events
are well-sorted, taking account of the delays induced by the
arriving of resources from u2(Γ, δ).

To tackle the complexity problem of non-linear models, we
propose, as a method, to divide a TCPN model into linear
and non-linear parts. The temporal behaviour of linear parts
can then be represented using the transfer functions given by
a mono-coloured description. This allows to keep the com-
putational power of tropical formal series. The possibility to
easily transform a transfer function into a n-sized trajectory
ensures the calculus consistency. For example, if we replaced
the time delays at P1 and P2 by two transfer functions H1

and H2, respectively only coloured by ⟨1⟩ and ⟨2⟩, the output
trajectory would be:

y(Γ, δ) = [[H1(⟨1⟩ � x̃(Γ, δ))]⊟ [H2(⟨2⟩ � x̃(Γ, δ))]]

Hence, it is possible to handle the temporal assessment of
large-scaled TCPNs by separating the linear parts from the
conflict mechanisms.

VII. CONCLUSION

This paper introduced new formal series and algebraic
laws to express colour manipulations, conflict resolution, and
choices. One can see that these results are extendable to n
tasks with different processing duration or n hierarchical sub-
models, like the models in section V. As limits, it remains to
analyze the computation complexity of the proposed method
on a large-scaled TCPN, built from a real system. In addition,
we must consolidate our approach to bypass the assumptions
made on the TCPN modelling formalism.

Working with mono-coloured daters is more natural and
less complex. However, it reduces the advantage of TCPN
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to compact parallel and linear models. On the other hand,
multi-coloured daters are much more interesting, even if they
quickly lead to nonlinear descriptions.

In any case, coloured formal series are representations
that increase expressiveness. We can now integrate colour
shiftings into our tropical equations and express nonlinear
mechanisms. In the same way that ⊕ gives linearity to the
operation max between two elements, �, ⊞ and ⊟ have
corresponding operations in natural algebra. However, they
could be delicate to define. The resulting equations allow
us to automate time delay computation through configurable
models. It is a valuable feature in control theory.

Adding a third dimension to daters/counters dual repre-
sentations opens many possibilities. The conflict resolution
law used in this paper is only one of many. We can apply
our generic approach to represent TCPN with nonlinear
behaviours in transport, logistic or control network areas,
where classical tropical representations are limited.
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