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Abstract— In this paper we address the challenging problem
of designing globally convergent estimators for the parameters
of nonlinear systems containing a non-separable exponential
nonlinearity. This class of terms appears in many practical ap-
plications, and none of the existing parameter estimators is able
to deal with them in an efficient way. The proposed estimation
procedure is illustrated with two modern applications: fuel cells
and human musculoskeletal dynamics. The procedure does not
assume that the parameters live in known compact sets, that
the nonlinearities satisfy some Lipschitzian properties, nor rely
on injection of high-gain or the use of complex, computationally
demanding methodologies. Instead, we propose to design a
classical on-line estimator whose dynamics is described by an
ordinary differential equation given in a compact precise form.
A further contribution of the paper is the proof that parameter
convergence is guaranteed with the extremely weak interval
excitation requirement.

I. INTRODUCTION

To comply with the stringent monitoring and control
requirements in modern applications an accurate model of the
system is vital. It is well-known that nonlinear parameteri-
zations (NLP) are inevitable in any realistic dynamic model
of practical problems with complex dynamics. Constitutive
relations and conservation equations used to characterize
physical variables always involve NLP. Classical examples
are friction dynamics [1], biochemical processes [2] and
in more recent technological developments we can mention
fuel cells [3], photovoltaic arrays [4], windmill generators
[5] and biomechanics [6]. However, one of the assumptions
that pervades almost all results in adaptive estimation and
control is linearity in the unknown parameters and there are
very few results available for NLP systems. Quite often, in
practical problems, there are only few physical parameters
that are uncertain and occur nonlinearly in the underlying
dynamic model. In some cases, it is possible to use suitable
transformations so as to convert it into a problem where
the unknown parameters occur linearly, usually involving
overparameterizations. This procedure, however, suffers from
serious drawbacks including the enlarging of dimension of
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the parameter space, with the subsequent increase in the exci-
tation requirements needed to ensure parameter convergence.
The reader is referred to [7] for a thorough discussion on the
drawbacks of overparameterization.

Some results for gradient estimators have been reported
in the literature for convexly parameterized systems. It was
first reported in [8] (see also [9]) that convexity is enough to
ensure that the gradient search “goes in the right direction” in
a certain region of the estimated parameter space. The idea
is then to apply a standard adaptive scheme in this region,
while in the “bad” region either the adaptation is frozen and
a robust constant parameter controller is switched-on [10]
or, as proposed in [11], the adaptation is running all the
time and stability is ensured with a high-gain mechanism
which is suitably adjusted incorporating prior knowledge on
the parameters. In [12] reparametrization to convexify an
otherwise non-convexly parameterized system is proposed.
See also [13], [14] for some interesting results along these
lines, where the controller and the estimator switch between
over/underbounding convex/concave functions. Some calcu-
lations invoking computationally demanding set membership
principles—similar to fuzzy systems—have recently been
reported in [15].

Using the Immersion and Invariance adaptation laws pro-
posed in [16], stronger results were obtained in [17], [18]
invoking the property of monotonicity, see also [13], [14] for
related results. The main advantage of using monotonicity,
instead of convexity, is that in the former case the param-
eter search “goes in the right direction” in all regions of
the estimated parameter space—this is in contrast to the
convexity-based designs where, as pointed out above, this
only happens in some regions of this space. See the recent
work [19] where these results relying on monotonicity have
been significantly extended. The reader is referred to [7], [19]
for recent reviews of the literature on parameter estimation
and adaptive control of NLP systems. Unfortunately, the
monotonicity property can be exploited only for the case of
separable NLP. That is for the case where we can factor the
parameter dependent terms as hi(u, y, θ) = h̄i(u, y)ψi(θi),
where u and y are measurable and θi is the unknown param-
eter. However, there are many practical application models
where this factorization is not possible, we refer to this
case as non-separable NLP. Two often encountered cases are
cos(θi ·hi(u, y)) or eθi·hi(u,y). In particular, the last example
appears in many physical processes including Arrenhius laws
[20], biochemical reactors [2], friction models [1], windmill
systems [21], fuel cell systems [22], photovoltaic arrays [23]
and models of elastic moments [24], [25], [26]. This paper is
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devoted to the development of a systematic methodology for
the parameter identification of systems containing this kind
of exponential terms. More precisely, we consider systems
of the form

ẋ = Fx(u, y, θ), y = Hx(u, y, θ)
with u and y measurable and θ a vector of unknown param-
eters, with some of its elements entering into the functions
Fx and/or Hx via exponential terms of the form eθi·hi(u,y).
The objective is to design an on-line estimator

χ̇ = Fχ(χ, u, y), θ̂ = Hχ(χ, u, y)
with χ(t) ∈ Rnχ such that we ensure global exponential
convergence (GEC) of the estimated parameters. That is,
for all x(0) ∈ Rn, χ(0) ∈ Rnχ and all continuous u that
generates a bounded state trajectory x we ensure

lim
t→∞

|θ̃(t)| = 0, (exp), (1)

where θ̃ := θ̂ − θ is the parameter estimation error, with all
signals remaining bounded.

Notice that, in contrast with the existing approaches for
non-separable NLP systems, we do not assume that the
parameters live in known compact sets, that the nonlin-
earities satisfy some Lipschitzian properties, nor rely on
injection of high-gain to dominate the nonlinearities or the
use of complex, computationally demanding methodologies
like min-max optimizations, parameter projections or set
membership techniques. Instead, we propose to design a
classical on-line estimator whose dynamics is described by
an ordinary differential equation given in a compact precise
form.

We identify in the paper two classes of systems for which
the problem formulated above can be solved. The design pro-
cedure consists of the construction—from the non-separable
NLP containing an exponential term—a new NLP regression
equation (NLPRE) of the form Y (u, y) = ϕ⊤(u, y)G(θ),
where the functions Y (u, y) and ϕ(u, y) are known and G(θ)
is a nonlinear mapping. To estimate the parameters θ from
the NLPRE we invoke the recent result of [19], where a least-
squares plus dynamic regression equation and mixing [27]
(LS+DREM) estimator applicable for this kind of NLPRE is
reported. A key feature of the LS+DREM estimator is that it
ensures GEC imposing an extremely weak interval excitation
(IE) assumption [28], [29] of the regressor ϕ. On the other
hand, this estimator requires that the mapping of the NLPRE
satisfies a rather weak monotonizability property—that is
captured by the verifiability of a linear matrix inequality
(LMI) imposed on G(θ). We give two practical examples
of the application of the proposed estimation method and
illustrate their performance with some simulations.
Notation. In is the n×n identity matrix and 0s×r is an s×r
matrix of zeros. R+ and Z+ denote the positive real and
integer numbers, respectively. For q ∈ Z+ we define the set
q̄ := {1, 2, . . . , q}. For a ∈ Rn, we denote |a|2 := a⊤a, and
for any matrix A its induced norm is ∥A∥. All functions and
mappings are assumed smooth and all dynamical systems are
assumed to be forward complete. Given a function h : Rn×
Rm → R we define its transposed gradient via the differential

operator ∇(·)h(x, u) :=
[
∂h
∂(·) (x, u)

]⊤
. For a mapping G :

Rnη → Rpη we denote its Jacobian by ∇G(η) := ∂G
∂η (η).

To simplify the notation, the arguments of all functions and
mappings are written only when they are first defined and
are omitted in the sequel.

II. FIRST CLASS OF SYSTEMS
In this section we consider NLP systems of the form
ẋ = f1 (x, u) + f2 (x, u)G(η) (2a)

y =

[
y1
x

]
=

[
h1 (x, u) + h2 (x, u) θ2 + h3 (x, u) eh4(x)θ1

x

]
(2b)

with x(t) ∈ Rn, y(t) ∈ Rn+1 and u(t) ∈ Rm the systems
state, output and control, respectively. The functions fi, i =
1, 2, and hi, i = 1, . . . , 4, are known nonlinear functions,
G : Rnη 7→ Rpη , pη > nη , is a known mapping of the
unknown parameters η ∈ Rnη , and θi ∈ R, i = 1, 2 are also
unknown parameters. Hence, the overall vector of unknown
parameters, which needs to be estimated on-line, consists of
θ := col(θ1, θ2, η) ∈ RℓI , where ℓI := 2 + nη .

We make the important observation that, in view of the
presence of the exponential term in the signal y1, the param-
eterization of the system is nonlinear and non-separable. As
discussed in the Introduction none of the existing parameter
estimators can deal with this difficult—but often encountered
in practice—scenario.

A. Assumptions

We make the following assumptions on the system.
A1 [Sign definiteness] The scalar function h3 is bounded

away from zero. That is |h3| > 0.
A2 [Monotonicity] There exists a matrix TG ∈ Rnη×pη

such that the mapping G(η) satisfies the LMI
TG∇G(η) + [∇G(η)]⊤T⊤

G ≥ ρGInη , (3)
for some ρG> 0.

Discussion on the assumptions: D1 In [7, Proposition 1]
it is shown that (7) ensures the mapping TηG(η) is strictly
monotonic [30]. That is, it satisfies
(a− b)⊤ [TηG(a)− TηG(b)] ≥ ρη |a− b|2, ∀a, b ∈ Rnη , a ̸= b. (4)
This is the fundamental property that is required by the

LS+DREM estimator used in the next section.
D2 The assumption that the state trajectories of (2) are
bounded is standard in parameter estimation theory [31],
[32]. Similarly, the assumption that the dimension nη of the
unknown parameters vector η is smaller than pη is reason-
able, otherwise we could redefine a new vector of unknown
parameters η̄ := G(η) ∈ Rnη without overparameterization
and get a LRE.

B. Regression Equation for Parameter Estimation

In this section we derive the regression equation that will
be used to estimate the unknown parameters θ. As expected,
this regressor equation is nonlinearly parameterized, which
hampers the application of standard estimation techniques.
Therefore, we are compelled to appeal—in Section IV—to
the LS+DREM parameter estimator recently reported in [19],
[33].

Lemma 1: Consider the system (2) verifying Assump-
tions A1, A2. There exist measurable, scalar signals
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YI(x, u, y), ϕI,i(x, u, y), i = 1, . . . , sI , sI := 3 + 2pη,
such that the following NLPRE holds:

YI(x, u, y) = ϕ⊤I (x, u, y)WI(θ), (5)
where we defined the mapping WI : RℓI → RsI

WI(θ) :=
[
θ1 θ2 θ1θ2 θ1G⊤(η) θ1θ2G⊤(η)

]⊤
. (6)

Discussion on the regressor equation: D3 It is possible
to construct another NLPRE proceeding as follows. First,
exploiting the monotonicity property of Assumption A2 and
using the LS+DREM algorithm estimate the parameters η
filtering (2a). Then, use this estimate in the (approximate)
calculation of ḣ4, yielding

˙̂
h4 = ∇⊤h4[f1 + f2G(η̂)].

Applying the certainty equivalent principle, and replacing
this expression in the chain of implications of the proof of
Lemma 1 in the full paper version [34] would then yield
a simpler NLPRE where only the terms (θ1, θ2, θ1θ2) will
appear. Of course, the drawback of this approach is that we
rely on the fast convergence of η̃ := η̂ − η to zero.
D4 In the system (2) the function h4 appearing in the
exponential does not depend on u. It is possible to adapt
the result of Lemma 1 to consider that case in the following
way. The expression for ḣ4 given in (??) would need to be
replaced by

ḣ4 = ∇⊤
x h4[f1 + f2G(η)] +∇⊤

u h4u̇.
To construct the NPLRE as in Lemma 1 for this case it is
clearly necessary to know u̇. However, in many practical
applications the control law contains an integral action—
e.g., in PID control—therefore this signal is available for
measurement.

C. Construction of a Strictly Monotonic Mapping

To estimate the parameters θ from the NLPRE (5) we
invoke the recent result of [19], where the LS+DREM
estimator proposed in [33], which is applicable for linear
regression equations, was extended to deal with NLPRE.
However, this estimator requires that the mapping of the
NLPRE satisfies a monotonicity property, which is not ver-
ified by WI(θ) given in (6). Therefore, in this section we
construct a new mapping verifying the required monotonicity
condition.

Lemma 2: Consider the mapping W(θ) given in (6) with
G(η) verifying Assumption A2. There exists a constant αm >
0 such that for all α ≥ αm the mapping WI(θ) satisfies the
LMI

TWI
∇WI(θ) + [∇WI(θ)]

⊤T⊤
WI

≥ ρWI
IℓI , (7)

for some ρWI
> 0, with the matrix

TWI
:=

α 0 0 01×pη 01×pη

0 α 0 01×pη
01×pη

0nη×3 sign(θ1)TG 0nη×pη

 ∈ RℓI×sI .

Discussion on the mapping: D5 Notice that the only prior
knowledge needed to construct the matrix TWI

is sign(θ1).
On the other hand, to select the value of α some prior
knowledge on the parameters θ is required. Specifically, as
shown in the proof of Lemma 2 in the full paper version
[34], it is necessary to know an upper bound on ∥TGG(η)∥.

III. SECOND CLASS OF SYSTEMS

In this section we consider second-order systems of the
form

ẍ = f1(x) + f⊤2 (x, ẋ)G(η) + h3(x)e
θ1h4(x) + u (8a)

y =

[
x
ẋ

]
(8b)

with x(t) ∈ R and u(t) ∈ R. The functions fi, i =
1, 2, and hi, i = 1, 3, are known nonlinear functions,
G : Rnη 7→ Rpη , pη > nη , is a known mapping of the
unknown parameters η ∈ Rnη , and θ1 ∈ R is also an
unknown parameter. Hence, the overall vector of unknown
parameters, which needs to be estimated on-line, consists of
θ := col(θ1, η) ∈ RℓII , where ℓII := 1 + nη .

Notice that, in contrast to system (2), in this case the
dynamics is second order and the nasty exponential term
enters into the state equation instead of the readout map.
Moreover, note that the control signal is scalar and enters
linearly in the state equation. In particular, observe that the
function h3 appearing in the exponential does not depend on
u now.1

To simplify the calculations, in the model (8) we do not
include unknown parameters multiplying the function h3 or
the control u. As explained in Discussion D7 below, this can
be easily added redefining h3(x) := θ2h̄3(x) and u := θ3ū,
where the functions h̄3 and ū are known but θ2 and θ3 are
unknown parameters.

A. Assumptions

We make on the system (8) Assumptions A1, A2 together
with the following.

A3 [Separability] The function f2(x, ẋ) verifies
∇ẋf2(x, ẋ) = ψa(x)ψb(ẋ),

for some functions ψa(x) and ψb(ẋ).
Discussion on Assumption A3: D6 As shown in the proof

of Lemma 3 given in the full paper version [34], Assumption
A3 is needed to be able to generate—via LTI filtering—a
measurable regressor in the NLPRE. We observe that the
function ∇ẋf2 ∈ Rpη hence, for pη > 1, this is a vector
function. However, there is no restriction on the dimensions
of the functions ψa and ψb, as long as they comply with
the dimensionality requirement ψaψb ∈ Rpη . This degree of
freedom relaxes the condition of the assumption.

B. Regression Equation for Parameter Estimation

As in Subsection II-B we derive here the NLPRE that will
be used to estimate the unknown parameters θ.

Lemma 3: Consider the system (8) verifying Assump-
tions A1-A3. There exist measurable, scalar signals
YII(x, u, y), ϕII,i(x, u, y), i = 1, . . . , sII , sII := 1 + 2pη,
such that the following NLPRE holds:

YII(x, u, y) = ϕ⊤II(x, u, y)WII(θ), (9)
where we defined the mapping WII : RℓII → RsII

WII(θ) :=
[
θ1 G⊤(η) θ1G⊤(η)

]⊤
. (10)

1To simplify the presentation, but with an obvious abuse of notation, we
keep the same symbol for both functions.
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Discussion on regression equation: D7 To include an
unknown multiplicative parameter in the function h3 or the
control u we proceed as follows. Define h3(x) = θ2h̄3(x)
and u = θ3ū, where the functions h̄3 and ū are known but
θ2 and θ3 are unknown parameters. Tracing back the proof
of Lemma 3 given in the full paper version [34], in the first
step where we divide the model equation by h3 we divide
instead by h̄3. Then, the parameter θ2 appears multiplying
the exponential in the term in parenthesis and it is removed
in the next line. That is, the first three lines of the proof
become

1

h̄3
ẍ = θ2e

h4θ1 + f̄3 + f̄⊤4 G(η) + θ3
ū

h̄3

d
dt=⇒ −

˙̄h3
h̄23
ẍ+

1

h̄3

d3x

dt3
= θ1ḣ4

(
θ2e

h4θ1
)
+ ˙̄f3 +

˙̄f⊤4 G(η)−

θ3

( ˙̄h3
h̄23
ū−

˙̄u

h̄3

)
⇐⇒ −

˙̄h3
h̄23
ẍ+

1

h̄3

d3x

dt3
= θ1ḣ4

( 1

h̄3
ẍ− f̄3 − f̄⊤4 G(η)− θ3

ū

h̄3

)
+ ˙̄f3 +

˙̄f⊤4 G(η)− θ3

( ˙̄h3
h̄23
ū−

˙̄u

h̄3

)
,

with the new definitions

f̄3 :=
f1
h̄3
, f̄4 :=

1

h̄3
f2.

The remaining part of the proof remains unchanged leading
to a NLPRE similar to (9), with the new (̄·) terms and adding
to the parameter vector θ3 and θ1θ3. As proven in Proposition
1, from this NLPRE we can estimate exponentially fast
(θ1, θ3, η). Therefore, we can replace their estimates in the
model (8) leading to the system

z̈ = f1(z) + f⊤2 (z, ż)G(η̂) + θ2h̄3(z)e
θ̂1h4(z) + θ̂3ū,

which is a classical linearly parameterized system from
which we can estimate θ2 with standard filtering plus gradi-
ent descent techniques.

C. Construction of a Strictly Monotonic Mapping

Similarly to the calculations presented in Subsection II-C
we present here the matrix TWII

∈ RLII×sII that defines the
new monotonic mapping. The proof of this lemma is trivial,
therefore it is omitted for brevity.

Lemma 4: Consider the mapping WII(θ) given in (10)
with G(η) verifying Assumption A2. The mapping WII(θ)
satisfies the LMI

TWII
∇WII(θ) + [∇WII(θ)]

⊤T⊤
WII

≥ ρWII
IℓII , (11)

with the matrix

TWII
:=

[
1 01×pη 01×pη

0nη×1 TG 0nη×pη

]
∈ RℓII×sII .

Discussion on the mapping: D8 Notice that, in contrast
with the construction of Subsection II-C, here there is no
requirement of prior knowledge on the parameter θ1. This
stems from the fact that, as seen in (10), the mapping G(η)
appears once without multiplying this parameter—compare
with (6). Therefore, Assumption A2 is sufficient to construct
the new monotonic mapping.

IV. A GLOBALLY EXPONENTIALLY
CONVERGENT ESTIMATOR OF θ

In this section we present the main result of the paper, that
is, an estimator of the parameters θ that achieves GEC of the
parameter error. We proceed from the NLPREs constructed
in Lemmata 1 and 3 and, as explained in Subsection II-
C, we propose to use the LS+DREM estimator recently
reported in [19]. Towards this end, we use the new mappings
identified in Lemmata 2 and 4 that verify the monotonicty
conditions required by the LS+DREM estimator. To simplify
the notation we avoid the subindices (·)I and (·)II of the
various terms appearing in previous sections and present a
single proposition applicable to both classes of systems.

Therefore, we consider a general scalar NLPRE of the
form

Y (t) = ϕ⊤(t)W(θ) (12)

with W : Rℓ → Rs. The main feature of the LS+DREM
estimator is that it ensures GEC imposing the following
extremely weak IE assumption [28], [29] of the regressor ϕ.

A4 [Excitation] The regressor vector ϕ is IE. That is, there
exist constants Cc > 0 and tc > 0 such that∫ tc

0

ϕ(s)ϕ⊤(s)ds ≥ CcIs.

The proof of the proposition below is given in [19, Proposi-
tion 1], therefore it is omitted here.

Proposition 1: Consider the NLPRE (12) with ϕ verifying
Assumption A4 and W satisfying the LMI

TW∇W(θ) + [∇W(θ)]⊤T⊤
W ≥ ρWIℓ

for some matrix TW ∈ Rℓ×s and ρW > 0. Define the
LS+DREM interlaced estimator

˙̂W = γWFϕ(Y − ϕ⊤Ŵ), Ŵ(0) = W0 ∈ Rs

Ḟ = −γWFϕϕ⊤F, F (0) =
1

f0
Is

˙̂
θ = ∆ΓTW [Y −∆W(θ̂)], θ̂(0) = θ0 ∈ Rℓ,

with tuning gains the scalars γW > 0, f0 > 0 and the
positive definite matrix Γ ∈ Rℓ×ℓ, and we defined the signals

∆ := det{Is − f0F},Y := adj{Is − f0F}(Ŵ − f0FW0),
where adj{·} denotes the adjugate matrix. For all initial
conditions W0 ∈ Rs and θ0 ∈ Rℓ. The estimation errors
of the parameters θ̃ verify (1) with all signals bounded.

V. TWO PRACTICAL EXAMPLES

A. Proton Exchange Membrane Fuel Cell

Parameter estimation is vital for modeling and control of
fuel cell systems. However, an accurate description of the
fuel cell dynamics implies the use of models with nonlinear
parameterizations [3]. The interested reader is refered to [22]
where a detailed review of the literature is reported.
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Verification of the conditions from the general result: A
widely accepted mathematical model of a Proton Exchange
Membrane Fuel Cell (PEMFC) is given in [22, Section II.B].
It can be shown that this model can be written in the form
(2) with n = m = nη = pη = 1 and the scalar linear map
G(η) = η.

We make the observation that function h3 is bounded away
from zero, hence verifying Assumption A1.

Since G = θ3 the mapping WI : R3 → R5 defined in (6)
is simpler and given as

WI(θ) :=
[
θ1 θ2 θ1θ2 θ1θ3 θ1θ2θ3

]⊤
.

Some simple calculations give us terms YI and ϕ⊤I for the
NLPRE (5). And the matrix TWI

of Lemma 2 is given as

TWI
:=

α 0 0 0 0
0 α 0 0 0
0 0 0 sign(θ1) 0

 ,
and the minimum value for α is αm =

θ2
3

|θ1| .

B. Human Shank Dynamics

Neuromuscular electrical stimulation is an active research
area that aims at restoring functionality to human limbs
with motor neuron disorders. Control of these systems is a
challenging problem because the musculoskeletal dynamics
are nonlinear and highly uncertain [6]. In this subsection
we are interested in the mechanical dynamics of the human
shank motion where the input is the joint torque produced
by electrode stimulation of the shank muscles. We consider
the scenario described in detail in [26], see also [24], [25]
and concentrate our attention on the problem of estimating
the parameters of a widely accepted mathematical model of
this system. Namely, the system described by equations (11)
to (14) of [26], that we repeat here for ease of reference

Jẍ+ b1q̇ + b2sign(ẋ) + k1e
−k2x(x− q0) +mgℓ sin(x) = u, (13)

where (x, ẋ) are assumed measurable and all the param-
eters are assumed unknown. The reader is referred to this
reference for further details on the model, in particular, the
physical interpretation of the different terms in the model,
and the overall formulation of the neuromuscular electrical
stimulation problem.

Verification of the conditions from the general result:
The following clarifications regarding our formulation of the
parameter estimation problem are in order.
C1 As indicated in [26], the term sign(ẋ) of our model

(13) is replaced in equation (12) of [26] by the function
tanh(b3ẋ), with a large value for b3 > 0, which
is a smooth approximation of the sign function. This
approximation is made for mathematical convenience of
their calculations that rely on a smoothness assumption,
but is not required in our approach that can deal with
discontinuous nonlinearities.

C2 In this paper we assume that the term q0, which is the
constant resting knee angle, and the constant inertia
J are known. Therefore the uncertain parameters in
our case are col(b1, b2, k1, k2,mℓ). The assumption of

known J is not too restrictive because the inertia can
be predicted from the subject’s anthropometric data [6].

C3 In [26] there is an additional, bounded, unstructured,
additive term in (13) that is omitted here for brevity.
As shown in Proposition 1 we achieve GEC of the
parameter estimates, therefore this term could be eas-
ily accommodated in our analysis to ensure practical
stability.

The dynamics (13) belongs to the second class of systems
given by (8) with nη = pη = 3, and the following definitions
for the functions

f1(x) = 0, f2(x, ẋ) =
1

J
col(−ẋ,−sign(ẋ), g sin(x)),

h3(x) = k1h̄3(x) := k1
1

J
(x− q0), h4(x) = −x,

and the parameters
θ1 = k2, G(η) = η = col(b1, b2,mℓ), θ := col(θ1, η⊤).

We bring to the readers attention the fact that the model
(13) has a parameter k1 multiplying the exponential term.
Therefore, it is necessary to invoke the two-stage certainty-
equivalent based procedure described in Discussion D7.
That is, we estimate with the NLPRE (9) the parameters
(k2, b1, b2,mℓ) and then estimate, e.g., with some filtering
and a standard gradient, the remaining parameter k1.

To comply with Assumption A1, we assume that |x−q0| >
0.2 Clearly, since G(η) = η, Assumption A2 is satisfied with
TG = ρG

2 I3, with any ρG > 0. Finally Assumption A3 is
satisfied with the functions

ψa(x) :=

−1 0 0
0 −1 0
0 0 g sin(x)

 , ψb(ẋ) :=

 ẋ
sign(ẋ)

1

 .
The mapping WII : R4 → R7 is given as

WII(θ) :=
[
k2 b1 b2 mℓ k2b1 k2b2 k2mℓ

]⊤
.

Some simple calculations give us terms YII and ϕ⊤II for
the NLPRE (9).

Finally, the matrix TWII
∈ R4×7 of Lemma 4 is given as

TWII
:=


1 0 0 0 0 0 0
0 ρG

2 0 0 0 0 0
0 0 ρG

2 0 0 0 0
0 0 0 ρG

2 0 0 0

 .
VI. SIMULATION RESULTS

Simulation results you can find in the full paper version
[34].

VII. CONCLUSIONS

We have presented in this paper a constructive proce-
dure to design GEC estimators for the parameters of two
classes of nonlinear, NLP systems containing nonseparable
nonlinearities of the form eθihi(u,y). Although this class of
nonlinearities seems to be very particular, as discussed in
the Introduction, it appears in many practical applications,
including the two thoroughly studied in the paper, and is

2Adding a simple logic and a discontinuous function we can easily avoid
the singularity points and replace this assumption by the knowledge of a
set such that q0 ∈ [qm0 , qM0 ].

2157



not amenable for the application of the existing parameter
estimation techniques. The design procedure consists of the
construction—from the non-separable NLP containing the
exponential term—a new separable NLPRE, for which we
can apply the LS+DREM estimator of [19]. It is important
to underscore that, to the best of our knowledge, only this
estimator is capable of dealing with this kind of NLPREs.
Moreover, the excitation requirement needed to ensure GEC
is the very weak condition of IE defined in Assumption A4.

We would like to bring to the readers attention that tech-
niques similar to the ones proposed here have been recently
applied by the authors to solve two currently very relevant
practical applications. Indeed, in [21] we solve the problem
of estimation of the parameters of the power coefficient of
windmill generators in off-grid operation. The mathematical
model of this system is of the form

ẏ = −y3(θ1y − θ2)e
−θ3y,

with θ ∈ R3 unknown parameters. Also, in [23] we proposed
a GEC parameter estimator for photo-voltaic arrays, whose
dynamic model is of the form

ẋ = −θ1x− θ2e
bx + θ3 − θ4u, y = x− θ5u,

with θ ∈ R5 unknown parameters, and the state x(t) ∈ R
unmeasurable. Notice that none of these applications fits into
the class of systems considered in the paper.
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