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Abstract— Electric vehicle charging stations are expected to
become key players in the future sustainable power system.
We propose a framework for using them to provide balancing
services to the grid, by implementing charging price control
laws that ensure they are able to deliver their committed
balancing capacity. The control laws are based on a simplified
linearization of the Coupled Traffic, Energy, and Charging
(CTEC) model, incorporating electric vehicle routing and
charging decisions based on the charging price and EV state of
charge. Charging stations compete with each other and must
ensure a certain number of charging vehicles to maintain their
role as frequency containment reserves. The results demonstrate
the effectiveness of the proposed pricing control scheme in
maximizing charging station profits, without violating their
balancing reserve capacity commitments.

I. INTRODUCTION

The increasing prevalence of electric vehicles (EVs),
encouraged by governmental policies for incentivizing EV
adoption and charging infrastructure development [1], will
have a substantial effect on the power system, as well as
the transportation system operation. At the same time, the
surge of intermittent renewable energy sources, such as wind
and solar, will require an increase in balancing services to
maintain grid stability [2]. Therein, battery energy storage
systems are essential for providing Frequency Containment
Reserves (FCR) due to their quick response time [3]. There
is hope that the anticipated large EV fleet could, with
appropriate charging coordination, provide these services
without significantly altering their everyday routines.

Various approaches for utilizing EV charging stations for
this role have been proposed, e.g. considering them as energy
storage to be used for balancing the grid [4] and reducing
renewable energy curtailment [5], or assimilating them into
prosumers interacting with the distribution system operator
in a game-theoretic context [6]. These approaches highlight
the importance of considering EV charging stations as active
participants in the energy system, rather than merely as
passive infrastructure. Crucially, their charging prices can
be used as a control input to maximize their profits [7], or
respond to the balancing market [8]. Predicting the behaviour
of the EVs in response to e.g. different charging price
levels, is essential for charging station coordination, and the
multinomial logit model [9] provides a good framework for
that. This includes predicting which routes individuals will
take [10], as well as when EVs decide to enter and exit a
charging station [11].
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In this work, we propose a framework for utilizing
charging stations to provide balancing services. First, in
Section II, we describe the considered electromobility system
and outline how charging stations are controlled to achieve
our goals, using their charging prices as a control input to
ensure that they can provide the contracted reserve capacity.
Next, in Section III, we recall the original Coupled Traffic,
Energy, and Charging (CTEC) model [12], which describes
the EV traffic flows and charging dynamics. One contribution
of this work is in extending the model to a general road
network structure, as well as in incorporating the EV routing
and charging decisions considering their State of Charge
(SoC) and charging prices. Then, in Section IV, we analyse
the model and design charging station pricing control laws,
which is another contribution of this work. We propose a
simple linear control law, and an optimization-based control
law that maximizes charging station profits while ensuring
that they respect their reserve capacity commitments. Finally,
in Section V, the proposed control laws are tested and
compared in simulations, demonstrating good performance.
We conclude the paper in Section VI by summarizing its
results and discussing directions for future work.

II. ELECTROMOBILITY BALANCING SERVICES

The outline of the studied electromobility system used to
provide balancing services is shown in Fig. 1. We extend
the CTEC model [12] to capture the effect of EV routing
and charging decisions, based on their SoC and the charging
prices at all charging stations in the road network. The
control is executed in a decentralized manner, with each
charging station choosing its price without knowing how
the other charging stations’ prices will change. The ability
of charging stations to change their power consumption and
provide FCR depends directly on the number of EVs present,
causing them to compete on charging price in order to attract
enough EVs to be able to satisfy the FCR requests.

Fig. 1: Sketch of the studied electromobility system. EVs make
decisions when they approach interchanges (dashed red) and
charging stations (dashed orange) based on their SoC (warmer
colours mean higher SoC), traffic conditions, and charging prices.
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The system we study consists of three routes with road
links in both directions, connecting two interchanges. At
the interchanges, a portion of EVs leave the system, and
constant flows of new EVs enter the system. The EVs at the
interchanges then decide which of the three outwards links to
take, based on the traffic conditions and charging prices, and
then continue driving. At the middle of each route, there is a
public charging station which EVs on the links of that route
may decide to enter, based on their SoC and the charging
price. After charging, the EVs continue their trips in the
same direction, returning to the appropriate road link.

For each charging station ζ ∈Z , the charging price uζ(t)
changes with the time step of T =1 h, equal to the time
steps of the electricity price π(t) and FCR commitments
for downward (P↓

ζ(t)≥0) and upward regulation (P↑
ζ(t)≥0),

uζ(t)=uζ(kT ), kT≤t<(k+1)T. Each charging station is
required to change its power consumption Pζ(t) from its
nominal power P̃ζ(t) to its prescribed regulation profile P ∗

ζ (t),

P ∗
ζ (t)= P̃ζ(t) +

{
R

↕
ζ(t)P

↓
ζ (t), R

↕
ζ(t) ≥ 0,

R
↕
ζ(t)P

↑
ζ (t), R

↕
ζ(t) < 0,

(1)

where −1≤R
↕
ζ(t)≤1 shapes the downward (↓) and upward

(↑) balancing actions. For downward regulation, we have
R

↕
ζ(t)P

↓
ζ (t)≥0, i.e., the charging station needs to be able to

increase Pζ(t) (equivalent to decreasing power generation)
by up to P↓

ζ (t) when requested, and in case of upward
regulation it must be able to decrease Pζ(t), potentially even
returning energy to the grid. If the charging station is unable
to achieve Pζ(t)=P ∗

ζ (t), it violates its FCR commitments
which would incur large penalties, so the control laws must
be designed in a way that makes these events rare.

III. MODEL

In this section we introduce the extended CTEC model
used in this work. We first present the traffic density and SoC
model on links and junctions of the network, then introduce
the charging station model, and finally complete the model
by discussing the decisions of the EVs.

A. Combined traffic and energy model
Consider a road network described by a directed graph

(J,L), where J is the set of road junctions (nodes) and L
the set of road links (edges). The EV traffic state on road
link l∈L, consisting of the traffic density ρl(x, t) and SoC
εl(x, t)∈ [0, 1], evolves in space x and time t according to

∂ρl(x, t)

∂t
+
∂(vl(x, t)ρl(x, t))

∂x
=0,

∂εl(x, t)

∂t
+vl(x, t)

∂εl(x, t)

∂x
=D(vl(x, t)),

for 0<x<Xl, where Xl is the length of link l, given
boundary conditions at x=0 and x=Xl. Here, vl(x, t)
denotes the traffic speed which directly depends on the
traffic density, vl(x, t)=V(ρl(x, t)), and D(v) is the battery
discharge function, describing the rate of change of the SoC
of an EV given its speed v.

For each junction j∈J , we denote the set of links
entering and exiting it by L−

j and L+
j , respectively. Since

neither vehicles nor energy can accumulate at any of the

junctions, the inflow and outflow of both are equal,∑
l∈L−

j

ql(Xl, t)−qoffj (t)=
∑
l∈L+

j

ql(0, t)− qonl (t), j ∈ J ,∑
l∈L−

j

ql(Xl, t)εl(Xl, t)−qoffl (t)εoffl (t)= . . .

=
∑
l∈L+

j

ql(0, t)εl(0, t)−qonl (t)εonl (t), j ∈ J .

The entrance of EVs into the road network via junction j,
entering links l ∈ L+

j , is described exogenously, through its
on-ramp flow qonl (t) and SoC εonl (t). Conversely, the exit of
EVs from the road network via junction j, is defined by its
off-ramp flow qoffl (t) and SoC εoffl (t), l ∈ L−

j , which are a
function of the EV traffic state at the downstream boundary
of their respective links l, ρ(Xl, t) and ε(Xl, t).

In this work, we consider two types of junctions:
interchanges and junctions connected to charging stations.
At interchanges, we have multiple links entering and exiting
the junction, and on- and off- ramps connecting the system
with the outside world. A portion of the flow reaching the
interchange junction on each link l− ∈ L−

j , defined by the
constant splitting ratio βj , exits the system via the off-ramp,

qoffl− (t) = βjql−(Xl− , t), εoffl− (t) = εl−(Xl− , t),

and the remainder is distributed to links l+∈L+
j ,

ql+(0, t) = (1− βj)
∑
i∈L−

j

qi(Xi, t)λ
l+

i (t),

ql+(0, t)εl+(0, t) = (1− βj)
∑
i∈L−

j

qi(Xi, t)εi(Xi, t)λ
l+

i (t).

Splitting ratios λl+

i (t) are the result of the EV routing
decisions which will be discussed at the end of this section.

At junctions connected to charging stations, we have a
single link entering and a single link leaving, and the on-
and off-ramp flows connect the road network to a charging
station, serving as a link between the two parts of the CTEC
model. These flows, as well as other EV decisions related to
charging stations, will be discussed next.
B. Charging station model

The state of each charging station ζ ∈ Z is defined by
the concentration of EVs present at different levels of SoC
ηζ(ε, t). The evolution of ηζ(ε, t) is given by

∂ηζ(ε, t)

∂t
+

∂(cζ(ε, t)ηζ(ε, t))

∂ε
= µin

ζ (ε, t)− µout
ζ (ε, t),

where cζ(ε, t) denotes the rate at which the EVs are charging,
µin
ζ (ε, t) denotes the flow of EVs entering the charging

station, and µout
ζ (ε, t) the flow of EVs exiting it. These flows

are defined as a function of the on- and off-ramp flows of
the junction ζ connected to the charging station ζ,

µin
ζ (ε, t) =

∑
l∈L−

ζ

δ(ε− εoffl (t))qoffl (t),

where δ(x) is the Dirac delta function, and we have

qonζ (t) =

∫ 1

0

µout
ζ (ε, t)dε, qonζ (t)εonζ =

∫ 1

0

εµout
ζ (ε, t)dε.

The power consumption of charging station ζ is defined as

Pζ(t) =

∫ 1

0

cζ(ε, t)ηζ(ε, t)Edε,

where E denotes the average capacity of EV batteries.
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For each charging station ζ ∈Z , we define the minimum,
nominal, and maximum charging rate Cζ , C̃ζ , and Cζ ,
respectively, Cζ≤0≤C̃ζ≤Cζ . In order to make the charging
station more appealing to the EVs, we guarantee that they
will be charged at least at the nominal rate C̃ζ until they
reach some limit SoC ε̃. To this end, we split the vehicles
present at charging station ζ into those with low SoC (ε < ε̃),
and those with high SoC (ε ≥ ε̃). The numbers of EVs of
these two groups are

ηloζ (t)=

∫ ε̃

0

ηζ(ε, t)dε, ηhiζ (t)=

∫ 1

ε̃

ηζ(ε, t)dε,

respectively, jointly written as Nζ(t)=
[
ηloζ (t) ηhiζ (t)

]⊤
. The

charging rates are thus given by

cζ(ε, t) =


max

{
0, cloζ (t)

}
, ε = 0,

cloζ (t), 0 < ε < ε̃,

chiζ (t), ε̃ ≤ ε < 1,

min
{
0, chiζ (t)

}
, ε = 1.

Group charging rates take values in C̃ζ≤cloζ (t)≤Cζ and
Cζ ≤ chiζ (t) ≤ Cζ , and are given by a heuristic similar to
the one in [5], prioritizing charging the low SoC vehicles,

cloζ (t)=

C̃ζ , P ∗
ζ (t)<P̃ζ(t),

max

{
C̃ζ ,min

{
P∗

ζ(t)−ηhi
ζ (t)C̃ζE

ηlo
ζ (t)E

,Cζ

}}
, P ∗

ζ (t)≥P̃ζ(t),

chiζ (t)=


max

{
Cζ ,min

{
P∗

ζ(t)−ηlo
ζ (t)C̃ζE

ηhi
ζ (t)E

,C̃ζ

}}
, P ∗

ζ (t)<P̃ζ(t),

min

{
Cζ ,max

{
P∗

ζ(t)−ηlo
ζ (t)CζE

ηhi
ζ (t)E

,C̃ζ

}}
, P ∗

ζ (t)≥P̃ζ(t),

where P ∗
ζ(t) is the reference power (1) provided by the

grid operator to the charging station ζ. Using thus defined
cζ(ε, t) and assuming ηζ(1, t)=0, the minimum, nominal,
and maximum charging station power are defined as

P ζ(t) = E
[
C̃ζ Cζ

]
Nζ(t), (2)

P̃ζ(t) = EC̃ζ1
⊤Nζ(t), (3)

P ζ(t) = ECζ1
⊤Nζ(t), (4)

respectively, where 1 is a column vector of all 1-s
of appropriate dimension. It can be verified that for
P ∗
ζ(t)= P̃ζ(t) we have cloζ (t)= chiζ (t)= C̃. However, if

R
↕
ζ(t) ̸=0, it is possible that the charging station ζ violates

its FCR commitments when P ∗
ζ(t)<P ζ(t) or P ∗

ζ(t)>P ζ(t),
due to the limitations on cloζ (t) and chiζ (t).
C. EV decisions model

The model is completed by describing the aggregate
influence of the EVs’ decisions on when to enter the
charging station, and which route to take, through defining
the relevant splitting ratios based on the current EVs’ SoC,
traffic conditions, and price of charging of different charging
stations. We adopt three modelling assumptions:

• Lower SoC makes the EVs more likely to enter the
charging station.

• Higher charging price makes the EVs less likely to enter
the charging station.

• EVs with a low SoC are more likely to go to the
charging station with a lower price if given a choice.

(a) Splitting ratio towards the
charging station with price uζ .

(b) Splitting ratio towards the
route with charging price uζ

assuming the only other route has
charging price u0.

Fig. 2: Influence of charging price uζ on the splitting ratios.

Since human behaviour is notoriously difficult to model, in
this work we propose and use simple behavioural heuristic,
which enable us to analyse the system while still respecting
the three stated assumptions. The dependence of the relevant
splitting ratios on the charging price is illustrated in Fig. 2.

As EVs reach the charging station ζ on link l∈L−
ζ , they

have to make a decision on whether to enter it and charge, or
continue driving and defer charging. We assume this decision
depends only on their current SoC εl(Xl, t) and the current
charging price uζ(t). The outcome is modelled through the
splitting ratio towards the charging station

βζ(εl(Xl, t), uζ(t))=1−

(
1+e

−
εl(Xl,t)−(U0+U1uζ(t))

γζ

)−1

,

where γζ is a scaling constant, U0 + U1uζ(t) is the threshold
SoC indicating the level below which vehicles are more
likely than not to enter the charging station, and U0 and
U1 are constant parameters. Since the number of vehicles
entering the charging station is expected to decrease as the
charging price increases, we have U1 < 0. For simplicity,
we assume EVs decide to leave the charging station as soon
as they are fully charged,

µout
ζ (ε, t) = δ(ε− (1−))cζ(ε, t)ηζ(ε, t),

where 1− indicates a point arbitrarily close to 1 from the
left, yielding qonζ (t) = chiζ (t)ηζ(1−, t) and εonζ (t) = 1.

Finally, EVs need to decide what route to take when they
reach an interchange. We associate a score

Λl+

l−(t) = wθθl+(t) + wu(1− εl−(Xl− , t))uζl+
(t),

with each link l+∈L+
j exiting the interchange, indicating its

overall desirability to EVs approaching from link l−∈L−
j ,

which is used to determine their splitting ratio towards it.
Here, θl+(t) denotes the travel time of link l+ at time t,
uζl+

(t) is the charging price of charging station ζl+ connected
to link l+, and wθ < 0 and wu < 0 are the constant weights
of the two terms. Therefore, following [9], the splitting ratio
of EVs arriving via link l− towards link l+ is given by

λl+

l−(t) =
eΛ

l+

l− (t)∑
i∈L+

j

eΛ
i
l−

(t)
. (5)

IV. CONTROL DESIGN
In this section we propose control laws for charging station

ζ using the charging price uζ(t) to maximize its profit, while
respecting its FCR commitments

P̃ζ(t)− P ζ(t) ≥ P↑
ζ (t), (6)

P ζ(t)− P̃ζ(t) ≥ P↓
ζ (t). (7)

We first linearize the model, then give a simple control
law based on satisfying the FCR commitments, and finally
introduce a prediction-based optimal pricing control law.
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A. Model linearization
Due to the high complexity of the model, as well as

the inherent uncertainty related to the decisions of the
EVs and other charging stations, it is hard to find the
required predictions of Nζ(t) for kT<t≤ (k + 1)T. Instead,
a simplified linearized model is used for control design.

Considering the charging station model presented in
Section III-B, the evolution of Nζ(t) are approximated as

Ṅζ(t) ≈ ANζ(t) +Bµ̂in
ζ (t),

A =

[
− C̃

ε̃−ε̂ 0
C̃

ε̃−ε̂ − C̃
1−ε̃

]
, B =

[
1
0

]
,

where ε̂ is the average SoC of the EVs entering the charging
station. The EV inflow to charging station ζ can be written

µ̂in
ζ (t) = ∆ζ(t) +Mζ(t)uζ(t), (8)

where uζ(t) is the charging price, and ∆ζ(t)>0 contains
the disturbance originating from model linearization errors
and uncertainty about the traffic conditions. We represent
the influence that an increase in price uζ(t) has on the
inflow of EVs to the charging station, depending on the
situation in the rest of the system, by Mζ(t)≤0. Due to the
nature of the system, and piecewise-constant uζ(t)=uζ(kT ),
kT <t≤ (k+1)T , it is enough to predict Nζ(t) at the end
of the control interval, Nζ((k+1)T ), which approximates to
Nζ((k+1)T )≈eATNζ(kT )+ÂTB

(
∆ζ(k)+Mζ(k)uζ(kT )

)
,(9)

where ∆ζ(k)=
1
T

∫ (k+1)T

kT
∆ζ(t)dt, Mζ(k)=

1
T

∫ (k+1)T

kT
Mζ(t)dt,

and ÂT =
∫ T

0
eAtdt = A−1(eAT − I

)
.

Finally, we need to determine the parameters of the inflow
of EVs to each charging station ζ ∈ Z , ∆ζ(k) and Mζ(k).
The total EV flow entering charging station ζ, (8), is written
µ̂in
ζ (kT+τ)=

∑
l∈L−

ζ

ql(Xl, kT+τ)βζ(εl(Xl, kT+τ),uζ(kT )),

for 0≤ τ <T, where L−
ζ is the set of all links from which EVs

enter charging station ζ. This expression can be simplified
in steady state, where we assume the EVs traverse these
links at a constant speed, vl(x, t)= Xl

θl(t)
, that the total traffic

flow circulating in the network is approximately constant,∑
ζ∈Z
∑

l∈L−
ζ
ql(0, t)≈ q̂, and that the SoC of EVs arriving at

the charging stations is approximately constant, εl(Xl, t)≈ ε̂.
In this case, we may approximate the total number of EVs
that enters charging station ζ during kT ≤ t< (k + 1)T as

µ̂in

ζ
(k)≈βζ(̂ε, uζ(kT ))

(
(T− θ̂ζ(k))λ̂ζ(k)+ θ̂ζ(k)λ̂ζ(k−1)

)
q̂, (10)

where θ̂ζ(k) is the average travel time from the interchanges
to the charging station ζ at time t = kT , and λ̂ζ(k) is

λ̂ζ(k) =
ewθ θ̂ζ(k)+wu(1−ε̂)uζ(kT )∑

i∈Z
ewθ θ̂i(k)+wu(1−ε̂)ui(kT )

,

which is a special case of the routing decision model (5).
Note that µ̂in

ζ
(k) therefore depends not only on uζ(kT ), but

also on the charging price of other charging stations. Finally,
we linearize (10) around uζ(kT )≈ûζ(k), ζ∈Z , yielding

M(k)=

(
∂µ̂in

ζ
(k)

∂uζ(kT )

)∣∣∣∣∣
uζ(kT )=ûζ(k),ζ∈Z ,

∆(k)=
(
µ̂in

ζ
(k)−M(k)uζ(kT )

)∣∣∣
uζ(kT )=ûζ(k),ζ∈Z .

The choice of the linearization prices ûζ(k) has a significant
impact on the quality of inflow prediction. Since charging
station ζ does not know what the next charging price of
other charging stations will be, we linearize µ̂in

ζ
(k) around

ûζ(k) = αuuζ((k−1)T ), ζ ∈ Z,

where 0<αu<1. We improve robustness by selecting a
lower αu, adopt the pessimistic assumption that the charging
stations will reduce their price for the coming hour, thus
making it harder for charging station ζ to attract EVs.

B. Commitment-satisfaction control
Having linearized the model, we are now able to propose

a simple control law which uses feedforward to satisfy
constraints (6) and (7), and feedback to suppress the effect
of variations in the aggregate disturbance ∆(t). Substituting
(2), (3), (4), and (9) into (6) and (7), and assuming ∆(t) = 0,
these constraints can be approximated to(

C̃ζ−Cζ

)
E
[
0 1

](
eATNζ(kT )+ÂTBµ̂in

ζ (kT )
)
≥P↑

ζ(k),(
Cζ − C̃ζ

)
E1⊤

(
eATNζ(kT )+ÂTBµ̂in

ζ (kT )
)
≥P↓

ζ(k).

Here, P↑
ζ(k) and P↓

ζ(k) are the more stringent constraints
between those at kT and (k + 1)T ,

P↑
ζ(k) = αP min

{
P↑
ζ (kT ),P

↑
ζ ((k + 1)T )

}
,

P↓
ζ(k) = αP max

{
P↓
ζ (kT ),P

↓
ζ ((k + 1)T )

}
,

multiplied by some constant αP > 1 to improve robustness
to disturbance by tightening the constraints.

Both of these constraints are satisfied if uζ(kT ) is chosen
such that µ̂in

ζ (kT ) ≥ µ̂in↕
ζ

(k), where

µ̂in↕
ζ

(k) = max
{
µ̂in↑
ζ

(k), µ̂in↓
ζ

(k)
}
, (11)

and µ̂in↑
ζ

(k) and µ̂in↓
ζ

(k) are the minimum inflows to
charging station ζ that will cause constraints (6) and (7) to
be satisfied, respectively

µ̂in↑
ζ

(k) =

P↑
ζ(k)

(Cζ−C̃ζ)E
−
[
0 1

]
eATNζ(kT )[

0 1
]
ÂTB

,

µ̂in↓
ζ

(k) =

P↓
ζ(k)

(Cζ−C̃ζ)E
− 1⊤eATNζ(kT )

1⊤ÂTB
.

Finally, the commitment-satisfaction control law is given by

uζ(kT ) =
1

Mζ(k)

(
µ̂in↕
ζ
(k)−∆ζ(k)

)
.

C. Optimal pricing control
At every time t = kT , the optimal pricing control law aims

to calculate the updated charging price for the next interval,
uζ(kT ), so that the profit of charging station is maximized
and so that it respects its FCR commitments. This is achieved
by solving the maximization problem

max
uζ(kT )

Jζ(k)

s.t. model dynamics
FCR capacity commitments
1⊤Nζ(t) ≤ Nζ (12)
kT < t ≤ (k + 1)T
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with Jζ(k) reflecting the hourly profit of charging station ζ,

Jζ(k) = (uζ(kT )− π(k))

∫ (k+1)T

kT

P̃ζ(t)dt, (13)

where π(k) is the price of electricity for kT ≤ t < (k+1)T .
Following the discussion from the previous section,

constraints (6) and (7) can be rewritten as constraints on
the charging price uζ(kT )

uζ(kT ) ≤
1

Mζ(k)

(
µ̂in↕
ζ

(k)−∆ζ(k)
)
,

where µ̂in↕
ζ

(k) is the more restrictive minimum inflow (11).
Similarly, constraint (12) can be rewritten as

1⊤
(
eATNζ(kT )+ÂTB(∆ζ(k)+Mζ(k)uζ(kT ))

)
≤Nζ .

Since the nominal power P̃ζ(t) depends directly on Nζ(t)
according to (3), considering (9) we have∫ (k+1)T

kT

Nζ(t)dt≈ÂTNζ(kT )+A
−1
(
ÂT−TI

)
B(∆ζ(k)+Mζ(k)uζ(kT )),

and therefore cost function (13) can be approximated by
J ′
ζ(k) = α2(k)u

2
ζ(kT ) + α1(k)uζ(kT ) ≈ Jζ(k),

where the current coefficients α1(k) and α2(k) are

α1(k)=1
⊤
(
ÂTNζ(kT )+A

−1
(
ÂT−TI

)
B(∆ζ(k)−Mζ(k)π(k))

)
,

α2(k)=1
⊤A−1
(
ÂT −TI

)
BMζ(k).

The optimization problem can thus be approximated by
max
uζ(kT )

α2(k)u
2
ζ(kT ) + α1(k)uζ(kT )

s.t. uζ(kT ) ≤
1

M(k)

(
min{µ̂in↑

ζ
(k), µ̂in↓

ζ
(k)} −∆(k)

)
uζ(kT ) ≥

1

M(k)

(
Nζ − 1⊤eATNζ(kT )

1⊤ÂTB
−∆(k)

)
It can be shown that α2(k)<0, yielding a convex problem.

V. SIMULATION RESULTS

Finally, we test the proposed charging station pricing
control laws for providing balancing services, in simulations
of the set-up outlined in Section II and Figure 1. The main
simulation parameters are given in Table I.

The considered road network consists of 8 junctions, of
which 2 interchanges and 6 charging station off-ramps, with
3 routes connecting the 2 interchanges (j1 and j2) in both
directions, formed of 12 links (4 links per route, j1→ζi,
ζi→j2, j2→ζi, and ζi→j1). Formally, there are 6 charging
stations, but the pairs of virtual charging stations associated
to each route are considered jointly as one charging station.

The simulation model is initialized with uniformly
distributed initial traffic density ρl(x, 0)∈ [6, 13.5] veh/km,
uniformly distributed initial SoC εl(x, 0)∈ [0.4, 0.6], and

Symbol Value Unit Symbol Value Unit

Xl 25 km U0 0.4 1
T 1 h U1 −0.0125 1/EUR
E 60 kWh wθ −36 1/h
Cζ −0.83 1/h wu −1 1/EUR
C̃ζ 0.83 1/h ε̂ 0.45 1
Cζ 1.67 1/h q̂ 4600 veh/h
Nζ 50 veh αu 0.8 1
ε̃ 0.7 1 αP 1.2 1

TABLE I: Simulation parameters and their values.

Fig. 3: Total profit of the three charging stations. The solid lines
show the median profits over all simulation runs, and the range
between the first and third quartile is shaded and outlined dashed.

ηζ(ε, 0) = 0 veh. The dynamics of EV traffic are described
by an exponential traffic speed function

V(ρ) = vffe
− 1

2 (
ρ

ρcr
)
2

with vff=100 km/h, ρcr=15 veh/km, and a second-order
polynomial battery discharge function

D(v) = D0 +D1v +D2v
2

with parameters D0=0.0175 1/h, D1=3·10−3 1/km, and
D2=2.15·10−5 h/km2. The system is initialized by keeping
all charging prices constant and balancing capacities at zero
for the first two hours.

Charging stations with three different pricing strategies are
competing against each other:
1) Constant price, not providing FCR
2) Commitment-satisfaction controlled price, providing FCR
3) Optimally controlled price, providing FCR
The second control schemes is described in Section IV-B,
and the third in Section IV-C. The hourly committed
balancing capacities of both charging stations are
randomly generated day-ahead, with uniformly distributed
P↓
ζ (kT )∼U [0,P] MW and P↑

ζ (kT ) ∼ U [−P, 0] MW.
The charging stations’ FCR are activated at random times,
generated as a Poisson arrival process with an average
gap of 1 h, and it is equally likely that the request is for
upward (with R

↕
ζ(t)<0) and for downward (R↕

ζ(t)>0)
regulation. The hourly price at which the charging stations
buy electricity π(kT )∼U [4, 10] is known ahead of time.

We executed five simulation batches, with 100 runs
of 24 hours each, using different maximum balancing
capacity commitments P∈{0, 0.1, 0.2, 0.3, 0.4} MW. The
results are shown in Fig. 3, displaying the total profit
statistics achieved by different charging stations. Since the
commitment-satisfaction price control law is designed solely
to ensure that the balancing capacity commitments are
respected, its charging price is set to the same nominal value
as that of the first one for P = 0 MW and P = 0.1 MW.

It can be seen from Fig. 3 that the profit of all charging
stations decreases as P increases, requiring more competitive
pricing to ensure that the balancing commitments are
satisfied. This holds even for the charging station with
constant price and no commitments, since the other two
charging stations will need to reduce their prices in order to
attract enough EVs. Note that in this case the FCR revenues
are not included, hence the total achieved profit will be
higher. The optimally priced charging station consistently
achieves the best profit, but in case of P=0.4 MW,
it does slightly violate the balancing commitments, with
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(a) Charging station selling (uζ(t))
and buying (π(t)) electricity prices. (b) Charging station profits.

Fig. 4: Charging station prices and profits.

Fig. 5: Current charging station power Pζ(t) (black), maximum
(P ζ(t)) and minimum (P ζ(t)) achievable power (dotted red), and
committed range of reference power for downward (P̃ζ(t)+P↓

ζ (t))
and upward (P̃ζ(t)+P↑

ζ (t)) regulation (dotted blue). Thick red line
indicates times when the FCR commitment is violated.

average and maximum cumulative violation of 0.0711 MWh
and 0.717 MWh, respectively, over all simulation runs. In
practice, these violations could be offset using stationary
storage, or by better selecting of balancing capacity
commitments to match the expected EV traffic conditions.

In order to better demonstrate the operation of the model
and the control laws, we display the details of one simulation
run with P=0.4 MW. In Fig. 4 we show the charging and
electricity prices, as well as charging station profits over
time, and in Fig. 5 the evolution of charging station power
over the course of the simulation run (with spikes due to the
arrival of FCR requests). As shown in Fig. 5 (bottom), the
optimal pricing control does violate the balancing capacity
commitments, but in practice, this violation is very small,
with total energy of 0.2629 MWh. As a result of lower
conservatism, allowing higher charging prices, the optimal
pricing control achieves around 20% higher profit than the
commitment-satisfaction control in this case.

VI. CONCLUSIONS

In this work we proposed a framework for EV charging
station pricing control for maximizing their profit, while
ensuring they can provide FCR. We extended the CTEC
model to the case of the road network, as well as to
explicitly capture the influence of the charging price on
EV decisions, and designed the pricing control laws based
on the linearized model. Charging stations with different
control laws are made to compete against each other in the

simulations, and are in general shown to be able to respect
their balancing capacity commitments, while achieving better
profit than the benchmark charging station with constant
charging price. It was shown that the FCR commitments
by the charging stations requires them to reduce their
charging price, potentially leading to cheaper service for the
consumers, while also helping the power grid.

In the future, all facets of the overall system will need
to be considered in more detail. The dynamics of the EV
traffic and the influence that the altered routing behaviour
will have on it is among the topics that need to be addressed.
On the other side, a more realistic representation of the
power grid and its complexities will need to be considered
explicitly. Finally, practical aspects of implementing FCR via
EV charging stations need to be tackled, and the potential
contribution of such schemes to building a more sustainable
future need to be assessed.
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