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Abstract— Regularized system identification is one of the
major advances in the field of system identification in the last
decade. One key issue is the hyper-parameter estimation, for
which the generalized maximum likelihood (GML) estimator
is a popular one closely related to the empirical Bayes (EB)
method. Considering the rich theoretical results on the EB
estimator, the asymptotic properties of the GML estimator
has not been studied before and is critical for understanding
its efficacy when the sample size is large. In this paper, we
investigate the asymptotic properties of the GML estimator
and show that the GML estimator is asymptotically equivalent
to the EB estimator. Furthermore, Monte-Carlo simulations
verify their asymptotic equivalence and also indicates the GML
estimator outperform the EB estimator for small sample sizes.

Index Terms— Regularized system identification, empirical
Bayes estimators, generalized maximum likelihood estimators,
asymptotic properties.

I. INTRODUCTION

Over the past decade, the kernel-based regularization
method (KRM) has achieved great success in system identi-
fication and become an emerging new system identification
paradigm [1]–[4]. The recent progress of KRM are on the
kernel design and analysis, input design, efficient implemen-
tation, asymptotic theory, and etc.

Kernel design refers to how to parameterize the kernel by
hyper-parameters based on various prior knowledge of the
system to be identified. For example, two systematic kernel
design methods from a system theoretic perspective and a
machine learning perspective for causal stable linear time-
invariant system (LTI) identification were proposed in [5].
The machine learning perspective was then adopted in [6] for
the harmonic analysis of kernels, and the system theoretic
perspective was further extended to non-causal stable LTI
system identification in [7] and led to the non-causal SI
kernel.

Efficient implementation refers to how to develop efficient
implementation algorithms by exploring the structure of
the key components involved in the computation of KRM,
including the structure of the kernel, the input signal, and
the output kernel. For example, it was shown in [8] that the
AMLS and SI kernels can be semi-separable, and moreover,
for many frequently used test input signals in automatic
control, and by exploring the semiseparable structure of a
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kernel and the corresponding output kernel, the computa-
tional complexity of KRM, without any approximations, can
be lowered to O(N), where N is the sample size, by making
use of the implementation in [9]. Following [8], some latest
results on efficient implementation of KRM can be found in
[10]–[12].

Input design aims to design input signals such that for a
chosen model structure, a scalar measure of the covariance
matrix of the estimator is minimized subjects to certain kinds
of constrains on the inputs. This problem was first studied
in [13], [14] by maximizing the mutual information between
the output and the impulse response subject to energy-
constraint on the input. Then in [15], a two-step procedure
was introduced to avoid the non-convex problem encountered
in [13]. Following [15], some latest results on input design
of KRM can be found in [16], [17].

The asymptotic theory studies asymptotic properties of
model estimators as the sample size goes to infinity, which
has been widely used to evaluate the quality of an estima-
tor [18]. There have been many results on the asymptotic
properties of some commonly used hyper-parameter estima-
tors, such as empirical Bayes (EB), Stein’s unbiased risk
estimator (SURE), cross-validation (CV) [19]–[21], and etc.
For instance, the asymptotic properties including almost sure
convergence, convergence in distribution and their connec-
tion of the EB and SURE methods have been extensively
studied in [21]–[25], the asymptotic optimality of the CV
methods has been studied in [26]–[28].

Besides these hyper-parameter estimators, the generalized
maximum likelihood (GML) estimator is also popular [29],
[8]. A significant advantage of the GML estimator over the
EB/SURE methods is that it does not involve the unknown
noise variance in the estimation criterion. In contrast, the
EB/SURE methods often estimate the noise variance using
the least squares (LS) estimator of an FIR model or an
ARX model [4], [18], [30]. However, this approach may
not perform satisfactorily, especially when the data is short
and/or has low signal-to-noise ratio, potentially affecting the
accuracy of the EB/SURE methods. However, the asymptotic
properties of the GML estimator have not been studied
before, despite being crucial for understanding its efficacy
when the sample size is sufficiently large. In this paper, we
address this gap by investigating the GML estimator. To this
end, we first demonstrate that the GML estimator is essen-
tially equivalent to the EB estimator, with a noise variance
estimator that is linked to the chosen hyperparameters. We
then analyze the asymptotic properties of the GML estimator,
showing that it behaves identically to the EB estimator
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asymptotically. Finally, we use Monte Carlo simulations to
validate our theoretical findings. Interestingly, the simulation
results also indicate that the GML estimator can outperform
the EB hyper-parameter estimator in scenarios with small
sample sizes.

The remaining parts of the paper are organized as follows.
Section 2 provides a brief overview of regularized least
squares for impulse response identification, while Section 3
reviews the EB and GML estimators. In Section 4, we present
the theoretical properties of the GML estimator, followed by
Monte Carlo simulations in Section 5. Finally, a concluding
remark in Section 6.

II. REGULARIZED LEAST SQUARES ESTIMATORS

Consider a single-input single-output discrete-time linear
time-invariant, stable and causal system

yk = G0(q
−1)uk + vk, k = 1, . . . , N, (1)

where k is the discrete time index, N is the sample size,
G0(q

−1) is a rational transfer function of the linear time-
invariant system with q−1 being the backward shift operator
(q−1uk = uk−1), uk and yk are the input and the output
corrupted by the measurement noise vk independent of
the input uk, respectively. The identification problem is to
estimate the transfer function

G0(q
−1) =

∞∑
k=1

g0kq
−k (2)

determined by the impulse response coefficients {g0k, k =
1, · · · ,∞} as well as possible based on the the available
data {uk, yk}Nk=1.

The exponential stability of G0(q
−1) implies that it is pos-

sible to truncate the infinite impulse response at a sufficiently
high order and obtain a finite impulse response (FIR) model:

G(q−1) =

n∑
k=1

g0kq
−k, θ0 = [g01 , · · · , g0n]T ∈ Rn. (3)

Thus the estimation of the infinite impulse response (2) is
reduced to the linear FIR model:

yk = ϕT
k θ0 + vk, k = 1, . . . , N

where ϕk = [uk−1, · · · , uk−n]
T ∈ Rn are the regressors,

and its matrix-vector form is

Y = Φθ0 + V, where (4a)

Y = [y1 y2 · · · yN ]T (4b)

Φ = [ϕ1 ϕ2 · · · ϕN ]T (4c)

V = [v1 v2 · · · vN ]T . (4d)

We make the following assumptions on the above linear
model.

Assumption 1: (i) The dimension n of parameters θ0 is
fixed as N −→ ∞;

(ii) The noise sequence {vk} is a sequence of independent
and identically distributed random variables with zero
mean and variance σ2 > 0.

The unknown parameters θ0 are typically estimated using
the LS estimator

θ̂ls = arg min
θ∈Rm

∥Y − Φθ∥2 = (ΦTΦ)−1ΦY. (5)

When the input is ill-conditioned and/or the dimension n
is large, the estimator (5) usually encounters the big variance
problem and the RLS estimator defined by

θ̂ = arg min
θ∈Rm

∥Y − Φθ∥2 + σ2θTP−1θ (6a)

= PΦTQ−1Y (6b)

Q = ΦPΦT + σ2IN (6c)

is a proper method to cure the big variance problem and
achieves a good bias-variance trade-off [2], [4], where P is
a positive semi-definite kernel matrix to be specified later.

For a given kernel matrix P , the mean squared error
(MSE) criterion is a reference to evaluate the performance of
the RLS estimator (6). Here we introduce the MSE reflecting
its output prediction ability defined by [20]

MSE(P ) = E∥Φ(θ̂ − θ0)∥2 (7)

where ∥ · ∥ for a vector represents Euclidean norm and E(·)
is the mathematical expectation with respect to the noise
distribution.

The choice of matrix P significantly impacts the perfor-
mance of the RLS estimator (6). However, directly optimiz-
ing P based on an optimization criterion is often impractical.
This is because the number of elements in P typically
far exceeds the size of the parameter vector. To select an
appropriate P , kernel-based regularization methods, initially
introduced in [2] and subsequently refined in [4], have
devised a two-step approach to identify a suitable candidate
for P using data. It involves two consecutive steps: kernel
design and hyper-parameter estimation.

Kernel design is to parameterize P by a few number of
parameters η, called hyper-parameters, namely,

P (η), η ∈ Ω ⊂ Rp, (8)

in which available prior knowledge of the system to be iden-
tified, e.g., exponential stability and smoothness, is encoded
by the parameterization of P . Taking into account various
forms of prior knowledge from different angles, several
parameterization strategies for P have been constructed.
These include the stable spline (SS) kernel [2], the diagonal
correlated (DC) kernel, and the tuned-correlated (TC) kernel
[4]:

SS : Pkj(η) = c
(αk+j+max(k,j)

2
− α3max(k,j)

6

)
η = [c, α] ∈ Ω = {c ≥ 0, 0 ≤ α ≤ 1}; (9a)

DC : Pkj(η) = cα(k+j)/2ρ|j−k|

η = [c, α, ρ] ∈ Ω = {c ≥ 0, 0 ≤ α ≤ 1, |ρ| ≤ 1}; (9b)

TC : Pkj(η) = cαmax(k,j)

η = [c, α] ∈ Ω = {c ≥ 0, 0 ≤ α ≤ 1}. (9c)
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For convenience in the following, we also denote

P (η) = cK(λ) (10)

with η = [c, λ], where c is the scale hyper-parameter.
Hyper-parameter estimation is to estimate the hyper-

parameters by the data based on certain criteria. Several
commonly used hyper-parameter estimation methods have
been developed in the literature, e.g., empirical Bayes (EB)
estimator, Stein’s unbiased risk estimator (SURE), gener-
alized maximum likelihood (GML) estimator, generalized
cross-validation (GCV) estimator, and among others [8],
[17], [19]–[21], [29].

III. REVIEW OF THE EB AND GML HYPER-PARAMETER
ESTIMATORS

In this section, we recap the EB estimator, along with a
detailed procedure of how the GML estimator is deduced
from the maximum likelihood principle.

The EB estimator is derived from the Bayesian perspective
by assuming θ0 ∼ N (0, P ). Then, the output Y is Gaussian
with zero mean and covariance Q defined in (6c). As a
consequence, the EB method tunes the hyper-parameters η
by maximizing the marginal likelihood of Y , also called
the marginal likelihood estimator, which is equivalent to
minimizing Ceb(P (η)):

EB : η̂eb = argmin
η∈Ω

Ceb(P (η)), (11a)

Ceb(P ) = Y TQ−1Y + log det(Q), (11b)

where det(·) denotes the determinant of a square matrix.
Note that the EB criterion depends on the unknown noise

variance σ2, which is involved in the matrix Q in the way
Q = ΦPΦT + σ2IN . Therefore, it needs to be estimated
from the data in practice. Right now, the state-of-the-art
method for estimating σ2 follows from [18], [30], which
first estimates an ARX model [2], [3] or an FIR model [4],
[20], [21] with least squares and then chooses the sample
variance as the estimate of the unknown noise variance. This
method is also used in recent work for investigating the
asymptotics of the EB estimator [24]. However, one main
drawback of this method is that the accuracy of the estimated
noise variance might not be reliable when the sample size is
small and the input is ill-conditioned.

To circumvent the estimation of σ2, another way is to treat
σ2 as an extra hyper-parameter and estimate it along with
hyper-parameter η by maximizing the marginal likelihood,
which is used in [29], [8]. This procedure follows the
derivation of the generalized maximum likelihood (GML)
method for choosing the shape parameter of kernel functions
in the curve estimation problem [31], [32]. Specifically,
instead of estimating σ2 directly, it first exposes σ2 in (11b)
by redefining the kernel matrix as

P (η) = cK(λ) (12)

with η = [c, λ], c = c/σ2, leading to

Q = σ2Q, Q = ΦPΦT + IN ,

where Q is independent of σ2. Accordingly, the EB estimator
defined in (11) equivalently becomes

η̂eb = argmin
η∈Ω

Ceb(η, σ
2), (13a)

Ceb(η, σ
2) =

1

σ2
Y TQ

−1
Y +N log σ2 + log det(Q).

(13b)

Clearly, the domain of the new hyper-parameter η is still Ω.
Then by differentiating Ceb(η, σ

2) with respect to σ2 and
setting it to be zero, i.e.,

∂Ceb(η, σ
2)

∂σ2
= − 1

σ4
Y TQ

−1
Y +

N

σ2
= 0,

we obtain the optimal value of σ2, which is given by

σ̂2 =
Y TQ

−1
Y

N
(14)

for a given η. Replacing σ2 in (13b) by the optimal value
(14) leads to the GML estimator, which tunes the hyper-
parameters η by

GML : η̂gml = argmin
η∈Ω

Cgml(P (η)), (15a)

Cgml(P ) = N log

(
Y TQ

−1
Y

N

)
+ log det(Q), (15b)

where the term irrespective of η is neglected.
Building upon the redefined kernel matrix P (η), the EB

estimator with the noise variance replaced by the LS is
specified as

η̂ebls = argmin
η∈Ω

Cebls(η, σ̂2
ls), (16a)

Cebls(η, σ̂2
ls) =

1

σ̂2
ls

Y TQ
−1

Y +N log σ̂2
ls + log det(Q),

(16b)

where

σ̂2
ls =

∥Y − Φθ̂ls∥2

N − n
. (17)

It has been shown in [24] that σ̂2
ls = σ2 + Op(1/

√
N),

which means that σ̂2
ls is a consistent estimator for σ2 under

mild assumptions. In the sequel, we call the hyper-parameter
estimator η̂ebls as the EBLS hyper-parameter estimator for
convenience.

Remark 1: To enable a clearer comparison with the GML,
the EBLS (16) is introduced. In fact, it is important to note
that the scale parameter estimate ĉ in (16) equals to the scale
parameter estimate ĉ in (11) divided by σ̂2

ls.

IV. MAIN RESULTS

In this section, we will establish the asymptotic properties
of the GML estimator.

Note that the asymptotics of the EBLS estimator (16) has
been reported in [21], [24]. And both of the derivations
of the GML (15) and EBLS (16) are based on the EB
(13) and thus the analysis of the GML should follow the
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line used in [21], [24]. But the proof is not straightforward
since we cannot directly tell their similarities and differences
from the estimation criteria. Therefore, we turn to calculate
their first-order derivatives, which can reveal the terms that
really rely on hyper-parameter η in the estimation criteria.
Before proceeding, we first introduce an assumption on the
parameterized kernel matrix P (η).

Assumption 2: The set Ω is connected, the parameter-
ized kernel matrix P (η) is symmetric and positive definite,
continuous and twice differentiable with respect to η, and
∥P (η)∥ < ∞ for any interior point η ∈ Ω, where ∥ · ∥ for a
square matrix denotes spectral norm.

Proposition 1: Suppose that Assumption 2 holds. Then,
for i = 1, · · · , p, the first-order derivatives of (15b) and (16b)
with respect to ηi are, respectively,

∂Cebls(η, σ̂2
ls)

∂ηi

=
1

σ̂2
ls

(θ̂ls)T
∂S(η)−1

∂ηi
θ̂ls+Tr

(
S(η)−1∂P (η)

∂ηi

)
, (18a)

∂Cgml(P (η))

∂ηi

=
1

σ̂2(η)
(θ̂ls)T

∂S(η)−1

∂ηi
θ̂ls+Tr

(
S(η)−1∂P (η)

∂ηi

)
, (18b)

where S = P + (ΦTΦ)−1, and ηi is the ith element of η.
Proposition 1 provides a clear overview on the same parts

and the different parts of the GML and EBLS estimation
criteria and shows that the only difference between the
GML and EBLS lies in the different estimates for the noise
variance. Provided that σ̂2(η) shares the same limit with σ̂2

ls,

these observations suggest that ∂Cebls(η,σ̂2
ls)

∂η and ∂Cgml(P (η))
∂η

may have the same limit.
In the sequel, based on the insights from Proposition 1, we

first investigate the convergence of the estimation criterion
of the GML method and then that of the GML estimator.
Before doing it, we need to give an assumption on the Gram
matrix ΦTΦ.

Assumption 3: ΦTΦ/N −→ Σ almost surely as N −→ ∞,
where Σ is positive definite.

For convenience of notation, we introduce the averaged
squared residuals by the LS estimator:

χN
△
=

1

N
∥Y −Φθ̂ls∥2 =

1

N
Y T (IN−Φ(ΦTΦ)−1ΦT )Y.

(19)

Under Assumptions 1 and 3, there holds that

χN = σ2 +Op

(
1/
√
N
)
. (20)

The following Proposition shows that each term within the
estimation criterion of the GML method can be decomposed
into one term relying on η and another term independent of
η.

Proposition 2: Suppose that Assumptions 1, 2 and 3 hold.
Thus, we have the following decompositions for the estima-

tion criterion of the GML:

Y TQ
−1

Y

N
= χN︸︷︷︸

Op(1)

+
1

N
(θ̂ls)TS

−1
θ̂ls︸ ︷︷ ︸

γN=Op(1/N)

, (21a)

N log
(Y TQ

−1
Y

N

)
=N log

(
1 +

γN
χN

)
︸ ︷︷ ︸

Op(1)

+N log(χN ),

(21b)

log det(Q) = log det(S)︸ ︷︷ ︸
Op(1)

+ log det(ΦTΦ); (21c)

In light of the consistency (20), the equation (21a) in
Proposition 2 shows that the estimator for the noise variance
used in the GML estimator is consistent for σ2. Together
with Proposition 1, we speculate that the GML method shares
the same asymptotic properties with the EBLS method. The
following results confirm the conjecture.

Based on Proposition 2, the following proposition demon-
strates that the affine transformations of the GML and EBLS
estimation criteria, achieved by subtracting terms indepen-
dent of the kernel matrix P , converge to the same determin-
istic function almost surely as the sample size approaches
infinity.

Proposition 3: Suppose that Assumptions 1 and 2 hold.
Then, it entails that

Cebls(η, σ̂2
ls)−NχN−log det(ΦTΦ) −→ W (P , θ0), (22a)

Cgml(P )−N log(χN )−log det(ΦTΦ) −→ W (P , θ0) (22b)

almost surely as n −→ ∞, where

W (P , θ0) =
1

σ2
θT0 P

−1
θ0 + log det(P ).

Based on the limiting loss function given in Proposition
3, we define the hyper-parameters that minimize W (P , θ0)
by

η∗
△
= argmin

η∈Ω
W (P (η), θ0). (23)

For certain specific kernel matrices, the limiting hyper-
parameters η∗ have explicit expressions.

Corollary 1: Suppose that Assumptions 1 and 3 hold.
Then,

(i) when the kernel matrix: P = ηK, where η > 0 and K
is fixed and positive definite,

η∗ = argmin
η≥0

1

ησ2
θT0 K

−1θ0 + n log η + log det(K)

=
θT0 K

−1θ0
nσ2

.

(ii) when the kernel matrix: P = diag([η1, · · · , ηn]) where
ηi > 0, i = 1, · · · , n, and Σ = cIn with c > 0,

η∗ =
1

σ2
[(g01)

2, · · · , (g0n)2]T .
However, regarding general cases, we require the follow-

ing assumption on the location of η∗ for further investigating
its asymptotic.
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Assumption 4: The set η∗ consists of isolated interior
points of Ω.

Then we have the following result according to Proposition
3.

Theorem 1: Suppose that Assumptions 1-4 hold. Then,
the following limits hold

η̂ebls −→ η∗, η̂gml −→ η∗ (24a)

almost surely as N −→ ∞.
Theorem 1 says that the hyper-parameters tuned by the

GML and EBLS methods converge to the same limit η∗ as
N −→ ∞, which is the minimizer of the limiting loss function
W (η, θ0). This means that the GML and EBLS estimators
are asymptotically equivalent.

From the perspective of asymptotic properties, therefore,
we do not need to distinguish the GML and EBLS estimators.

V. NUMERICAL ILLUSTRATION

In this section, we run Monte-Carlo simulations to illus-
trate the numerical performance of the GML estimator (15),
the EBLS estimator (16), and the EB estimator (13).

A. Test data-bank

By using the method in [4], 1000 30th order test systems
are generated randomly. And then each system is truncated
to FIR system with order n = 200.

For each FIR system, we consider two different test input
signals denoted by IT1 and IT2, which are white Gaussian
noise of unit variance filtered by a second order transfer
function 1/(1 − aq−1)2 with a = 0.1, 0.9, respectively.
To generate data, we first obtain the noise-free output by
simulating each FIR system with the test input signal and
then corrupt the noise-free output by an additive white
Gaussian noise with variance σ2 such that the signal-to-
noise ratio (SNR) is uniformly distributed in [1, 10], which
remains the same for two inputs. For each input signal, we
use the sample sizes N = 400 and N = 8000 to show the
performance of these estimators under the small and large
sample sizes.

B. Simulation setup

Here, the unknown input is not used. Thus, the length of
data used in each experiment is N − n. And the TC kernel
is applied to parameterize the kernel matrix and the involved
hyper-parameter becomes η = [c, λ], c = c/σ2 by adopting
the noise variance σ2 into the scale parameter c. Furthermore,
the hyper-parameter η is estimated by the GML method (15),
the EBLS method (16), and the EB method (13), where the
true value of σ2 is used for (13).

To evaluate the performance of the RLS estimates with
these hyper-parameters, we use the fit defined in [33],

Fit = 100×
(
1− ∥θ̂ − θ0∥

∥θ0 − θ̄0∥

)
,where θ̄0 =

1

n

n∑
i=1

g0i .

C. Simulation results

The average fits of the RLS estimates over 1000 test
systems are given in Table I. The boxplots of fits for IT1
and IT2 under the sample sizes N = 400 and N = 8000 are
presented in Figs. 1 and 2.

TABLE I
AVERAGE FITS FOR THE RLS ESTIMATES OVER 1000 TEST SYSTEMS

AND DATASETS FOR ALL THE CASES.

Inputs Sample sizes GML EBLS EB
IT1 N = 400 83.03 35.76 82.99

N = 8000 96.31 96.31 96.31
IT2 N = 400 36.53 -5.59 35.67

N = 8000 49.92 49.92 49.92

GML EBLS EB
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Fig. 1. Boxplots of fits over 1000 test systems for IT1 with sample size
N = 400, 8000.
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Fig. 2. Boxplots of fits over 1000 test systems for IT2 with sample size
N = 400, 8000.

D. Findings

We obtained the following observations from the simula-
tion results.

Firstly, for all sample sizes, the average fits of the three
methods for IT1 is much larger compared to IT2. This is
because ΦTΦ of IT2 is much more ill-conditioned than that
of IT1, which can be deduced based on Lemma 2 in [24].
And for each input, the average fits get higher as the sample
size N increases.

Secondly, for both IT1 and IT2 with N = 400, their
average fits of the GML and EB hyper-parameter estimators
are quite higher than that of the EBLS hyper-parameter
estimator, and the average fit of the GML hyper-parameter
estimator is slightly better than that of the EB. Actually,
according to the simulation setup, the case N = 400
corresponds to the scenario where the sample size equals the
dimension of the parameters. In this case, the noise variance
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estimate given by the LS estimate is infinity, which makes
the first term in the EB estimation criterion (16) tends to
zero, leading to the ineffectiveness of the EBLS estimator.

Lastly, for both IT1 and IT2 with N = 8000, the average
fits of the GML, EBLS and EB estimators are equal and their
distributions of 1000 fits are almost the same, which verifies
their asymptotic equivalence shown in Theorem 1.

VI. CONCLUDING REMARK

In this paper, on the one hand, we studied the asymptotic
properties of the GML estimator and demonstrated that it
is asymptotically equivalent to the EBLS hyper-parameter
estimator. On the other hand, Monte-Carlo simulations vali-
date our theoretical findings that the GML estimator performs
similarly with the EBLS when the sample size is sufficiently
large and also indicate that the GML estimator behaves better
than EBLS estimator for the scenario when the sample size is
so small such that the noise variance estimator σ̂2

ls diverges.
With this inspiration, we will continue our work to explore
the distinction between the GML and EBLS estimators that
adopt different noise variance estimators.
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