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Abstract— We consider a cooperative multiplayer bandit
learning problem where the players are only allowed to agree
on a strategy beforehand, but cannot communicate during the
learning process. In this problem, each player simultaneously
selects an action. Based on the actions selected by all players, the
team of players receives a reward. The actions of all the players
are commonly observed. However, each player receives a noisy
version of the reward which cannot be shared with other players.
Since players receive potentially different rewards, there is an
asymmetry in the information used to select their actions. In
this paper, we provide an algorithm based on upper and lower
confidence bounds that the players can use to select their optimal
actions despite the asymmetry in the reward information. We
show that this algorithm is asymptotically optimal in 7. We
also show that it performs empirically better than the current
state-of-the-art algorithm for this environment.

I. INTRODUCTION

The field of stochastic Multi-armed Bandit (MAB) contains
some of the most well-studied problems in reinforcement
learning. These online learning algorithms are designed
to understand how to implement exploration-exploitation
tradeoffs to achieve the most reward. The classical version
of MAB consists of a single agent with a set of [m] :=
{1,...,m} actions to choose from. Each action is associated
with an unknown reward distribution that is sub-Gaussian.
A round in a MAB environment is defined as one iteration
where the player selects an action and obtains a reward.
At every such round, the agent’s goal is to select the arm
with the highest expected reward. ! One can measure the
success of a policy for arm selection using the notion of
regret, which measures how often a suboptimal arm is chosen
(pulled). The goal is to minimize the regret for large horizons.
In the classical single-agent setting, [19] showed that every
policy will not be able to perform better than O(logT') gap-
dependent regret. This lower bound on regret was first attained
by the UCB algorithm.

Single-player MABs, however, inadequately model the
complexities of real-world applications involving multiple
interacting entities. This gap has sparked a recent growing
interest in cooperative multiplayer MAB problems, where
multiple agents are maximizing their collective expected
rewards. For example, [12], [21], [1], [14], [27] introduces
and applies multiplayer MAB models for spectrum sharing in
wireless networks. These papers assume each player’s reward

I'We term ‘arm’ and ‘action’ interchangeably
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is independent of the other’s actions (i.e. joint actions are not
considered).

While the aforementioned works successfully extend the
classical MAB problem to include multiple players, they
remain restrictive. Specifically, they fail to adequately model
scenarios in which the decisions of one agent might influence
the rewards of others, a common interaction arising in real-
world settings. For instance, in shared network settings, the
bandwidth an agent consumes directly affects the network’s
capacity for other users. Similarly, in financial markets, buying
or selling decisions made by one trader can influence the
stock price and, consequently, the rewards for other traders.
To provide a framework to model these problems, we consider
multiagent settings where each agent has their own (marginal)
set of actions to choose from. Subsequently, all agents’
collective actions form a joint action across all players. Note
that this is different than leader-follower games [36], where
the leader selects an action first, which the followers observe
before they select their actions.

Furthermore, our paper considers the multiagent setting
where information asymmetry is preset. By information
asymmetry, we mean there exists some information that is
not shared among all players. Specifically, we analyze the
abovementioned multiplayer setting where reward asymmetry
is present; that is, agents do not observe the rewards obtained
by other agents. Information asymmetry naturally occurs
when communication between agents is restricted. Thus,
effectively, we do not allow for any form of communication
between agents, although they are allowed to agree on a
policy before the learning phase begins and know the number
of actions the other players have. This setting is rich in
real-world motivation, where agents collaboratively pursue a
common objective despite the absence of direct inter-agent
communications. For example, in decentralized traffic control
systems where individual agents — traffic lights in disparate
regions — endeavor to optimize the average vehicular travel
time. In this application, the actions of individual agents
depend on each other, and local traffic conditions are not
observed by traffic lights in remote areas, necessitating the
use of joint actions and reward asymmetry as investigated in
this study.

Our Contributions We propose merry go around variant of
the UCB algorithm we call mUCB-Intervals. The novelty
of this algorithm is combining an interval method for best arm
selection [3], applying it to regret minimization tasks, and



including an aspect of coordination for the multiplayer setting.
More explicitly, the players will decide on an ordering of the
arms prior to the learning (they can use the ordering given
in [10]), and during the process, they will pull each arm in
order. They will also maintain a desired set in which all the
arms will be in this set at the beginning. This desired set will
remain the same for all players for each round. Based on the
UCB "error" intervals each player will determine if the next
arm should be in the set, and if not, they will communicate
this to the other players by not pulling what should have been
the next arm. Note that there is no explicit communication in
the environment but the players know when they eliminate
the next arm from the desired set, and thus can maintain
the same desired set. This is similar to other bandit works
in collision sensing [8] but their communication scheme is
much simpler in that they simply have to observe when other
bandits have pulled the same arm.

We show that our algorithm achieves O(%) gap depen-
dent regret or O(+/T' logT') gap independent bound. Whereas
[10] was able to achieve almost optimal regret for this
setting, mUCB—Intervals is the first algorithm to achieve
optimal regret for a reward asymmetric setting. It’s easy to
implement and understand and performs better empirically
against mDSEE from [10], the current state of the art algorithm
for this environment.

Related Work.: The literature on multi-armed bandits is
overviewed in [31], [13], [20]. Some classical papers worth
mentioning are [19], [2], [4]. Interest in multi-player MAB
models was triggered by the problem of opportunistic spec-
trum sharing and some early papers were [12], [21], [1]. Other
papers motivated by similar problems in communications
and networks are [22], [18], [29], [9]. These papers were
either for the centralized case, or considered the symmetric
user case, i.e., all users have the same reward distributions.
Moreover, if two or more users choose the same arm, there
is a “collision", and neither of them get a positive reward.
The first paper to solve this matching problem in a general
setting was [14] which obtained log-squared regret. It was
then improved to log regret in [27] by employing a posterior
sampling approach. These algorithms required implicit (and
costly) communication between the players. Thus, there were
attempts to design algorithms without it [5], [28], [7], [11], [8].
Other recent papers on decentralized learning for multiplayer
matching MAB models are [34], [30].

In the realm of multiplayer stochastic bandits, many works
allow for limited communication such as those in [25], [26],
[32], [17], [33]. An exception is [6] where all the players
select from the same set of arms and their goal is to avoid
a collision, that is, they do not want to select the same
arm as another player. Another work that doesn’t allow for
communication [35] where they developed online learning
algorithms that enable agents to cooperatively learn how
to maximize reward with noisy global feedback without
exchanging information. Recently, in light of the work
from [10], there have been other works which have studied
information asymmetric multiplayer bandits [24], [16], [23],
[15].
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II. PRELIMINARY

We follow the formulation of information asymmetry
only in rewards given in [10] which we reiterate here for
completeness:

Consider a set of M players Py, --- , Py, in which player
P; has a set KC; of K; arms to pick from. At each time instant,
each player picks an arm independently and simultaneously
from other players from their set ;. The joint action can
be interpreted as an M-tuple of arms picked denoted by
a = (a1, ,ap). We shall use bold font to denote vectors.
For simplicity, we shall assume each player has /N actions
to pick from which gives a total of K = N™ joint actions.
This generates M independent and identically distributed
(iid) random rewards X! € [0,1] with ¢ € [M] from a 1-
subgaussion distribution F,, with mean p,. Each player P;
can only observe their rewards X/, and are oblivious to all
the other rewards (this is the reward asymmetry). However,
they can observe the actions of all other players at all times
after the joint action has been taken. Note that this is different
from leader-follower games in that all players select their
actions at the same time. All the players know the joint
action space beforehand and they can decide on a strategy
a priori. However, during learning they are not allowed to
communicate in any way.

Denote A, = p* — g where p* is the highest reward mean
among all arm tuples, and we shall call the corresponding arm
the optimal arm. The players share a goal and that is to pull
the optimal arm as often as possible. Let a.[¢] € {1, -+, K;}
be the arm chosen by player ¢ at time ¢, and denote a; =
(at[1],- -+ ,a¢[m]). A high-level objective is for the players
to collectively identify the best set of arms a* corresponding
to mean reward p*. But the players do not know the means
lta, nor the distributions Fy,. They must learn by playing and
exploring. Thus, we can capture learning efficiency of an
algorithm via the notion of expected regret,

Rr =E

T
Tu' = Xag) (t)] (1

t=1

where T is the number of learning instances and Xg ) ()
is the random reward if arm-tuples a(¢) are pulled. We let
ng(t) be the number of times joint arm a has been pulled up
to(not including) time ¢. Furthermore let [i%,(nq(t)) be the
empirical mean of arm a for player ¢ at time ¢ after ng (t)
pulls of the joint arm a. Note the empirical mean is indexed
by the player since each player gets their own copy of the
IID reward. However, as the rewards for each joint arm have
the same mean across all players, the expected regret R
is the same for each player. On the other hand, n, is not
indexed by the player ¢ since each player is contributing to
the same joint action a at every round.

Note that although each player will likely get different
rewards, the rewards are iid so that in expectation the regret
for all the players are the same. Note that fundamental results
for single-player MAB problems [19] suggest a O(log T)-
regret lower bound for the multi-player MAB problem as
well. If we can design a multi-player decentralized learning
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Fig. 1. A two-player information asymmetric in reward setting. The grid on the left is a visualization of the joint action space, where the rows correspond

to the actions available to Player A while the columns correspond to the actions available to player B. Each entry in this grid has a subgaussian reward
distribution D () for some mean p. The table on the right lists what is observed by each player for the different types of information asymmetry. In our
setting in gray, for each player, the joint actions are observed but only their copy of the IID reward is observed.

algorithm with such a regret order, then it would imply that
such a lower bound is tight for this setting as well.

III. MAIN RESULTS

To maximize the cumulative rewards, the players will define
the UCB (Upper Confidence Bound) index for each joint
action (not just their own action set), and try to pull arms
with high UCB indices as often as possible. This index for
player ¢ is given by

if na(t) =0,

otherwise.

o0,

1) =1 i na(0)) +

@

2log(1/6)
na(t)

Note that 7!, is indexed by the player because each player

observes a different empirical reward mean fi,(ng(t)).

Let ¢q(---) be the constant added to the empirical mean
for arm a in calculating the UCB index. This constant is
the same for every player which is why is not indexed by <.
Since the intervals used in our algorithm 1 will be of length

2¢€4(---), we add a hyperparameter y to tune this interval
length. More explicitly, it is defined as
log(1/6
Calta, 8,7) = 7| B0 3

where t is the round number, n, is the number of times
arm a has been fulled, § a constant that is set to %, and vy
scales the length of our interval. We know from Hoeffding’s
bound that for subgaussian variables, the true mean g, is
within the interval

“

with high probability, where we have omitted the arguments
as they are clear from the context. If an arm has not been
pulled yet, we will give it infinite interval namely, (—o0, c0).
This guarantees that every arm is pulled at least once. Using
this, at each round we can create a set of arms that are likely
to be optimal and make our selection from this set. Note that

Ijz = (/3/:1 - eaaﬂfz + 60,)

each player ¢ has a different interval for joint action a due to
the empirical means /!, being different. However, for each
joint action a, every player has intervals of the same length
for this action. Thus ¢, is not indexed by the player ¢ since
it is the same for each player.

We now propose mUCB-Intervals in Algorithm 1 used
to deal with reward asymmetry. In this algorithm, all the
players will maintain a desired set which contains the joint
arms that are candidates for the optimal arm. Initially, all K
joint actions are in this desired set. To ensure coordination, all
the players will agree before the learning process on an order
for the set of joint actions in this desired set. This is similar
to how [10] dealt with asymmetry in actions. Furthermore,
by observing the actions of the other players, they will be
able to maintain the same desired sets at each round. At a
particular round, a joint action is called considered if it’s the
arm in the desired set that was supposed to be pulled that
round in accordance with the order that was agreed upon by
all the players. We will use ¢ to denote a joint action in the
desired set. If there are /¢ joint actions cy, ..., ¢y, then the
ordering of the desired set can be viewed using the following
flow chart.

()

Cl—>Cy — " —>Cy
- - =

A joint arm is eliminated from this desired set, if at a
particular round ¢, a player i observes that the considered
joint arm (call it ay, in the flow diagram above) has a UCB
interval that is below and disjoint from another arm. Then
that player ¢ will effectively ’communicate’ this elimination
to the other players by not pulling ¢;[i]. Other players will
observe that ¢;[i] was not pulled by player ¢ and eliminate it
from their desired sets as well whilst maintaining the same
ordering of the remaining arms. In other words, pulling a
joint arm that isn’t considered is the same as removing the
considered arm from the desired set. The new flow diagram
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Algorithm 1: mUCB-Intervals

1 Each player P; has all the joint arms in their desired
sets. All the players will agree on the ordering of the
joint arms.

2 Initialize each UCB interval to be I, = (—00, 00)

sfort=1,...,7 do

4 Each player i identifies the next arm considered c;
in the desired set based on the arm pulled in the
previous round (see flowchart in (5)).

5 if exists player i and joint action a’ such that I,
is above and disjoint from I ét then

6 Player 7 will not pull ¢;[i] to inform the other

players that he will remove ¢; from his
desired set.

7 else

8 | Each player i pull c[i].

9 end

10 Each player 7 observes the actions from other
players to determine the joint action taken a; at
that step. They observe their own i.i.d. reward,
and update their I}, .

1 if a; # c; then

12 All players eliminate ¢; from their desired set

whilst maintaining the same ordering of the
remaining arms (see flowchart in (6))

13 end

14 end

after the elimination is,

(6

Cl—+C —> " C_1 —>Cty1 — " —C

and the arm that is considered in the next round ¢ 4 1 is
the next arm in the ordering prior to the elimination. In the
flowchart (6) it is aj,+1. On the other hand, if the arm that
was considered is the same as the one that was pulled, then
the flowchart in (5) remains unchanged.

A. Example

Due to the novelty of this algorithm and setting, we will
present an example of how this algorithm runs. Consider a
two-player setting where each player has two arms. We will
represent each joint arm as an entry in a matrix and what
goes inside the matrix is the corresponding UCB interval
defined in equation (4). The rows are numbered by player
I’s actions while the columns are numbered by player 2’s
actions. We will write (a,b) to denote the a-th actions of
player 1 and the b-th action of player 2 respectively. The
number of rows would be the number of actions for player 1
and the number of columns would the be number of actions
for player 2. Note this isn’t important for this example, but
if we had 3 players instead of 2, it will be a 3-dimensional
matrix. Since for every joint action, the UCB intervals are
infinite prior to the start of learning, our initial matrix for
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player 1 and player 2 respectively is

1| (=00,00) (—00,00)} 1 [(—OO»OO) (—00,00)
2 | (—o0,00) (—00,00) |"2 | (—o00,00) (—00,00)
Player 1 Player 2

Suppose the players agreed prior to learning the ordering of
the joint actions to be as follows

(1,1) = (1,2) = (2,1) — (2,2) )
— 2

Note that any order will suffice as long as the players use
the same ordering. Initially, all the UCB intervals are infinite
and each arm belongs in the desired set so each arm gets
pulled at least once in order. Suppose the matrices for both
players after pulling these four joint actions from ¢ = 1 to
t = 4 are now >

1 2 1 2
1 [ (2,5)  (.3,.6) } 1 { (5,.8)  (4,.7) ®
2 | (.55,.9) (.65,.8) |"2 | (.6,.95) (.65,.8)

Player 1 Player 2

In the following round ¢ = 5, the next arm to pull in order
is (1,1) because once you reach the end of the desired arm
set you start over from the beginning. Thus the action that
is considered at this round is (1, 1). However, note that the
interval for arm (1,1) for player 1 in red is now disjoint
from the interval for arm (2,1) in blue. Therefore, player 1
knows with a high probability that this arm is not optimal
and is thus ready to eliminate it. In order to communicate
that to player 2, he will pull arm 2 instead of arm 1. Player
2 had no intention of eliminating arm (1,1) so he will pull
arm 1. Thus the joint action that was taken at ¢ = 5 is (2, 1).
Player 2 will observe that player 1 pulled a different arm
than what was agreed upon, and understands that (1, 1) needs
to be eliminated. Note that player two did not observe the
interval for action (1, 1) being disjoint from action (2,1) but
the arm gets eliminated anyways as long as at least one
player observes this disjoint interval phenomenon.
Thus the desired set for both players now only contains,

(1,2) = (2,1) = (2,2) ©)
—_

The next considered arm for t = 6 is (1,2) because that was
the arm right after (1,1) prior to the elimination, and this
process repeats itself until eventually there is only 1 arm left
which will be the optimal arm with high probability.

2Note that for the same joint action, a, the corresponding intervals between
the two players are of the same length. For example for the joint action
(1,2) the interval for player 1 is (.3,.6) while the interval for player 2 is
(.4,7). The centers of these intervals are different since they have different
empirical means. However, the length of the interval for both is .3 because
that only spends on the horizon and the number of times (1,2) has been
pulled. Both of these quantities are the same for all players.



B. Discussion

We discuss why this algorithm performs so much better
than mDSEE from [10] which was used in asymmetry in
both rewards and actions. mDSEE explores all arms equally
at exponentially increasing intervals, which incurs a lot
of regret during the exploration process. In comparison,
mUCB-Intervals only focuses on arms that can potentially
be the optimal one, by eliminating arms that are clearly
suboptimal immediately.

Furthermore, mDSEE requires a unique global optimum.
This is because if there are two optimal actions, then at
the committing phase, players will commit to different joint
actions with constant probability. However, since the desired
sets of all the players are the same, in this setting a unique
global optimal action is not required.

This algorithm is similar to best arm identification algo-
rithms such as those in [3], where they also study UCB
intervals to determine which arm is optimal. However, in
our case, the predefined ordering of the joint arms and
maintenance of the same desired set for each player are
what makes coordination possible.

C. Regret Bounds

We have the
mUCB-Intervals.

Theorem 1: For any choices of v > 0, the gap dependent
regret of algorithm mUCB-Intervals is

Rr=0 ((Z Al> log T + MKM> (10)

acA ¢

following regret bounds for

Theorem 2: For any choices of v > 0, the gap-independent
regret bound of Algorithm 1 is

Rr=0 < MKMTlog(T)> . (11)

IV. PROOFS

In this section, we present the proofs to the regret bounds
given in section III. The following property on subgaussian
variables will be important.

Lemma 3: Assume that X; — p are independent, o-
subgaussian random variables. Then, for any € > 0,

. Te?
P(i>p+e) <exp (—202>
(12)

X e
and P (i <p—e)<exp ( 202)
where fi = 7 Zthl X;.
Proof: The reader is encouraged to look at Corollary
5.5 of [20]. It relies on the observation that ji — y is o/ VT-
subgaussian. [ |
The following regret decomposition is also going to be
useful in our proofs.
Lemma 4: With regret defined in (1), we have the follow-
ing regret decomposition for each player i:

= AGE[na(T)], (13)

where n4(T) is the number of times the arm a has been
pulled up to round 7.

Proof: The reader is encouraged to look at Lemma 4.5
of [20]. It follows from the fact that each round you pull arm
a, you incur (in expectation) A, regret. [ ]

We are now ready to present the proof of Theorem 1
Proof: We will write i%,(nq(t)) as i, when it is clear from
the context what the argument should be.

We suppose that the first arm is the optimal one for each
player, that is arm 1 = (1,...,1) has the highest average
reward. We define the following "good" event G’ where all
arms have their true means in the intervals at all times.
Explicitly, this is written as

M

G =) [ {lie ~ pal < ealt, 6, 7)|¥t € [1,n]}

i=1lacA

(14)

We define another good event for each arm based on the
observed means of arm a and arm 1.
M
Gi{oss = m {[LZZ (uav 5a FY) + €q (ua’ 67 7) (15)
i=1
< H1 — 261(“’(1 - 1567’7)}

This set is the event that after u, pulls, the UCB indices
of all the arms a is strictly smaller than lower bound of UCB
index of arm 1. The next lemma shows that when G N G
occurs, the number of pull is at most u,. Note that u, is an
abstract quantity that is only used in the proof and not in the
algorithm.

Lemma 5: Under the event GN G, the number of pulls
of arm a is at most ug.

Proof: Under the event G the optimal arm 1 is always
in the desired set. As the arms are pulled one at at time
in a predefined order in the desired set, if an arm a is at
the desired set at time ¢ then nq(t) > ng(t) — 1. It follows
that at the time when n4(t) = uq, we have nq(t) > uq — 1.
Furthermore, €1 (uq — 1,0,7) is decreasing as a function of
the number of pulls so €1(uq — 1,6,7) > €1(n1(t),d,7)

Suppose for the sake of contradiction that n4(n) > ug.
Then there must exist a round ¢ such that ng(t — 1) = uq
and the action taken at step ¢t was a,

Na(t —1) = fi' (-, ua) + 7 logiﬁ

< p1 — 2€1(ug — 1,4,7)
< pa = 2e1(na(t),6,7)
< //Zl - El(nl(t)>67 ’Y)

since G5 occurs
since n1(t) > uqg — 1
since (G occurs

Thus, for each player, it follows that the interval correspond-
ing to arm a is disjoint and below the interval corresponding
to arm 1. Thus, arm a should have been eliminated from
desired set, by round ¢. This contradiction completes the
proof. [ ]

Using the regret decomposition lemma, we can aim to
bound E[ng(t)]. We can decompose this quantity as follows,
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E[na(T)] = [na(T)]I G NG

(

E[na (T)I((G N GG™)%)]

= ]E[na(T)]I(G Gg**)]

+ Efne(T) (I(G) + UG N(GG™)))]
<ug + (P(G)+ P(GN (G T

We start with P(G°):

s

=YY P{3telln]: |-

=1 a
(T

= MZ ZPH/:L; — la] > €a(t,6,7)}
<MZ <Z2exp{

a
<My (Z 25221>
a t=1
< MKT§"
Finally, we turn to P(G N (GS*)¢).

=1 a

tal > €alt,d,7)}

)
)

tea(t,Na,d,7)?
2

PGN(GE))
M
=Ppr <U{ﬂ7an(u0757 ’Y) + Ea(an(sv’Y) Z M1 — 251(
i=1
= MP{jg (ua,d,7) + €a(ta,d,7) > p1 — 2¢1(uq
- MP{.U'a (u0757 '7)
_ _ _ 2
< Mexp (7 ua(Aa — €a(ta, 9, 7)2 2¢1(ua — 1,4,7))

99 log(1/9)
(1-c)2AZ

Ua — 1, 67’7)})

- 1,67}
ta > Ag — €a(ua751'7) — 2¢1(ua — 1751'7)}

)

—‘ for some ¢ € (0, 1), and

Let us pick ug = [
this will satisfy,

Aa 261 (ua - 17 5a FY) 2 Aa - 4€a(ua7 57 7)

> clAq

- Ea(ua767 ’Y) -

Combining everything together, we get

PG 1 G))
—ug A

2
)

22 log(1/6)c?
< MKTS" + M§ (-9%48

we obtain the following regret bound
) T

9+2 log(1/8)c?
__9ve? 4y
+ MK+ MT (-0?53

SMKT57+M6XP( (16)

Choosing § =

(

[ 18 1log(T)
(1—-0¢)?Ad

T2/'y ’
[18~%1og(1/6)

E[ne(T)] < (1—c)2A2

+ | MKT6&" + M§ (-974%

UU (3t € a1 — pal > ealt,6.7)})

)
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Our goal is now to select ¢ so that the exponent of T in the
expression above is negative. In order for —162¢ +1<0

(1—c)2A2
to hold, it is sufficient that ¢ > A + rweh Furthermore, it’s
clear that ¢ € (0, 1) as originally stated. Thus, with this value

of ¢, our bound above becomes

32~ 1log(T)
Elna(D)] < | o)
Plugging this into the regret decomposition shows Ry =
O(log(T')), completing the proof of theorem 1 [ |
While our analysis seems to suggest that the smaller the
~v > 0, the better the performance, however, note that when
v is too small, there is a higher probability that a good
arm is eliminated. In the experiments, we show that when
v is sufficiently small, it can outperform even the mUCB
algorithm from [10] which is a coordinated version of the
UCB algorithm in single player setting.

Proof: [Proof of Theorem 2] We first take the regret
decomposition given by equation (13) and partition the tuples
a to those whose mean are at most € away from the optimal
and those whose means are more than e. This gives us the
following inequality:

w +MEM+1)+1 A7)

Ry =Y AgE[na(T)] (18)
= > AdE[na(D)]+ D AcE[na(T)]  (19)
Ag>e Ag<e
< Y AgE[na(T)] + €T (20)
Ag>e
Equation (17) yields:
Rr< Y 0 (10i(T)) +eT 21)
Ag>€ a
<> o (k’gm) + €T (22)
Ag>e€ €

Since the last inequality holds for all ¢, we can pick € =

log( ) to obtain the result in Theorem 2.

V. NUMERICAL SIMULATIONS

In this section, we run simulations to verify the empirical
performance of our algorithm. In Figure 2, we plot the regret
versus time of mUCB—-Intervals analyzed in this paper in
comparison with mDSEE and mUCB from [10]. It should
be emphasized these algorithms assume different types of
asymmetry. For mDSEE, both action® and reward asymmetry
are assumed. mUCB assumes only action asymmetry, and
mUCB-Intervals assume only reward asymmetry.

We perform these simulations with Gaussian rewards
sampled from distributions with means sampled uniformly
from O to 1 and standard deviations uniformly from O to

3 Action asymmetry refers to the scenarios where agents do not observe
the action taken by other agents, and thus the joint-action taken remains
unknown. In general, action asymmetry is usually easier to solve than reward
asymmetry because a proper coordination scheme would reduce action
asymmetry to a single-player problem.
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Fig. 2. Plots comparing the regret of mUCB [10], mUCB-Intervals, and mDSEE [10] under the same reward environment but under asymmetry in

actions, asymmetry in rewards, and asymmetry in both respectively for horizon 7" = 10°. The shaded regions are 95% confidence intervals. It’s clear to see
that the algorithm proposed in this paper mUCB-Intervals outperforms the SOTA algorithm for asymmetry in both (mnDSEE) by a large margin. The
superiority of mUCB-Intervals over mDSEE is more pronounced as the joint action space increases in size.

0.5. For each environment, we run the simulations for a
total of 7" = 100, 000 rounds and repeat the simulations for
10 times to plot both the median and the 95% confidence
interval of regret. We set the hyperparameter v = 0.5 for
mUCB-Intervals. This choice is arbitrary and the perfor-
mance of mUCB-Intervals is not significantly affected
by the choice of ~ for non-extreme values.

In all simulations, we observe log-like behaviors for the
mUCB-Intervals algorithm. It is clear from the plots
that mUCB-Intervals exhibits an absolute competitive
advantage over other algorithms as their confidence intervals
on regret become disjoint in longer horizons. For robustness,
mUCB-Intervals also has a significant advantage over
mDSEE, as demonstrated by the large red-shaded regions.

These discrepancies in performance can be explained by the
differences in the type of asymmetries the algorithms consider.
Since mDSEE plotted in red also deals with asymmetry in
actions, when too many actions have the same empirical
mean, it becomes easy for the players to mis-coordinate,
hence the difficulties in convergence for this algorithm for
large action spaces. On the other hand, mUCB-Intervals
utilizes observation of actions from the other players to
coordinate the actions, giving it a superior performance. On
the other hand, we see that mUCB-Intervals outperforms
the coordinated UCB algorithm mUCB from [10] as well. This
is because for small values of -, there is less exploration so
that the mUCB-Intervals is able to eliminate suboptimal
arms faster and commit to better arms more often. However,
one must be careful to not choose a value of ~ that is too
small, as such a value would discourage sufficient exploration.
This will cause god arms to be eliminated too quickly.

In more detail, in the first few rounds, the UCB intervals

for mUCB-Intervals are large, and thus all of them are
included in the set for all players. As the rounds progress,
the intervals shrink as they tend towards the true means of
the arms. Some sub-optimal arms then get eliminated from
the set, giving a higher probability that a good arm is pulled.
Eventually, with high probability, all the players will only
have 1 arm in their set - the optimal one. From that point
forward, the regret curve is horizontal because no additional
suboptimal arms are pulled. It is clear from this plot that we
have sub-log regret.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we considered a cooperative multiplayer
bandit learning problem where the players are only allowed
to agree on a strategy beforehand, but cannot communicate
during the learning process. The actions of all the players
are commonly observed. However, each player receives a
noisy version of the reward which cannot be shared with
other players. We provide an algorithm mUCB-Intervals
based on upper and lower confidence bounds scaled by ~
that the players can use to select their optimal actions despite
the asymmetry in the reward information. For any choice of
~v we show that this algorithm can achieve logarithmic (gap-
dependent) regret as well as O(v/T'log T) gap-independent
regret giving us asymptotically optimal regret for our problem.
We ran numerical simulations on multiplayer bandit problem
and compared it with mDSEE from [10], and saw that some
choices of v perform better while others don’t. For future
work, we can better understand what choices of v lead to a
better performance. We can remove the asymmetry in actions
(i.e. consider a more general setting where the players cannot
observe the other player’s action either) and try to derive an
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algorithm that gives asymptotically optimal regret. We can
also consider a bandit MDP setting, where each joint action
now changes the environment for everyone. In this setting
we can still consider, asymmetry in rewards, asymmetry in
actions, or both.
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