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Abstract— In this paper, we revisit the problem of enlarging
the domain of attraction for linear systems with asymmetric
actuator saturation. We partition the state space into several
regions according to the sign of each input and rewrite the
linear system subject to asymmetric actuator saturation as
an equivalent switched system, each subsystem of which is
associated with one partition of the state space and is a linear
system subject to symmetric actuator saturation. Based on this
equivalent representation of the system, we present a Lyapunov
function, which is composed of a set of quadratic functions
associated with matrices that are not required to be positive
definite. We establish sufficient conditions for regional stability
and, based on them, formulate optimization problems to enlarge
the estimate of the domain of attraction. Simulation results
illustrate the effectiveness of the proposed approach.

I. INTRODUCTION

In practical control systems, actuator saturation is a ubiq-
uitous nonlinearity due to physical limitations and safety re-
quirements. The presence of actuator saturation may degrade
the performance of the closed-loop system and may even
cause instability. In the past decades, linear systems subject
to actuator saturation have become a focus of study in the
field of nonlinear control and a large number of interesting
results have been reported (see, for example, [1]–[3]).

Among the results available in the literature on linear
systems subject to actuator saturation are many on the study
of their domain of attraction (see, for example, [4], [8],
[9] and the references therein). Since the boundary of the
domain of attraction is difficult to obtain, a common practice
is to estimate the domain of attraction by using the level
sets of a Lyapunov function. The conservativeness of such
estimation depends to a large degree on the choice of the
Lyapunov function. Many Lyapunov functions have been
proposed. For example, in [15], a piece-wise quadratic Lya-
punov function is proposed, which effectively incorporates
the properties of the dead-zone function to provide a less
conservative estimate of the domain of attraction. In [6] and
[17], a regional sector condition is introduced to relax the
positive definiteness requirement of the matrix that defines
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the Lyapunov function for a larger estimate of the domain
of attraction.

The majority of the existing results, including those men-
tioned above, pertain to actuator saturation that is symmetric.
Asymmetric actuator saturation widely exists in physical
systems. There have been some attempts to achieve desirable
properties of linear systems with asymmetric actuator satura-
tion. In [10] and [11], a novel state transformation approach
is proposed to extending the available results on symmetric
saturation to the asymmetric case. In [14], for the enlarge-
ment of the domain of attraction, a system with asymmetric
actuator saturation is regarded as an equivalent switching
model and a set of conditions for determining linear con-
trollers and anti-windup compensators simultaneously are
established. Adopting the equivalent system representation
given in [14], Reference [7] constructs asymmetric piece-
wise quadratic Lyapunov functions, which contribute to a
considerable improvement in the estimation of the domain
of attraction. By an asymmetric Lyapunov function we mean
a Lyapuov function whose level sets are not symmetric with
respect to the origin of the state space. A parallel approach
for discrete-time systems is presented in [13]. Recently, by
shifting the state coordinates, Reference [12] proposes a
nonlinear asymmetric stabilizer for linear systems subject
to asymmetric saturation, which is demonstrated to have
the ability to enlarge the domain of attraction. In addition,
it is worth mentioning that, as a mechanism that naturally
accounts for constrained inputs, model predictive control
also attracts considerable attention in the enlargement of the
domain of attraction for linear systems subject to actuator
saturation (see, for example, [18], [19]).

In this paper, we aim to construct a generalized asymmet-
ric Lyapunov function for linear systems with asymmetric
actuator saturation to further enlarge the estimates of the
domain of attraction. Following the idea of [7], we will
consider a partition of the state space according to the
sign of each input, and decompose the linear system with
asymmetric actuator saturation into a set of subsystems with
symmetric actuator saturation. For each subsystem, we assign
a piece-wise quadratic function that is defined by a positive
definite matrix. These quadratic functions are then combined
in a switching manner to develop a generalized asymmetric
Lyapunov function. We establish sufficient conditions under
which a level set of the proposed Lyapunov function is
contractively invariant, and hence can be used as an estimate
of the domain of attraction. To further reduce the conserva-
tiveness, we develop relaxed conditions where the positive
definiteness of the associated matrices is not required. Based
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on these conditions, we formulate the optimization problems
for maximizing the estimate of the domain of attraction. A
numerical example is given to illustrate the effectiveness of
our approach.

The remainder of this paper is organized as follows. In
Section II, we give the problem statement and present the
generalized asymmetric Lyapunov function. In Section III,
sufficient conditions are established for regional stability
for systems with asymmetric actuator saturation. Based on
these conditions, we formulate in Section IV the optimization
problems for obtaining the largest estimates of the domain
of attraction. Section V illustrates the effectiveness of the
proposed approach through a numerical example. Section VI
concludes this paper.
Notation. For a square matrix A, He(A) := A + AT. For
two integers l1 and l2, l2 ≥ l1, I[l1, l2] denotes the set
of integers {l1, l1 + 1, · · · , l2}. The asymmetric saturation
function satµ,µ : Rm → Rm is defined as satµ,µ(u) =

[satµ
1
,µ1

(u1) satµ
2
,µ2

(u2) · · · satµ
m
,µm

(um)]T, where u =

[u1 u2 · · ·um]T and for each i ∈ I[1,m], satµ
i
,µi

(ui) is
defined as follows,

satµ
i
,µi

(ui) =


µi, ui > µi,

ui, ui ∈ [−µ
i
, µi],

−µ
i
, ui < −µi

,

(1)

where µi > 0 and µ
i
> 0 denote the magnitudes of the

positive and negative saturation levels, respectively, and µ =
[µ1 µ2 · · ·µm]

T, µ = [µ
1
µ
2
· · ·µ

m
]T. For simplicity, we

use satµ(u) to denote the symmetric case, that is, µ = µ =
µ. The dead-zone function is defined as dzµ,µ(u) = u −
satµ,µ(u), and for the symmetric case, dzµ(u) = u−satµ(u).

II. PRELIMINARIES

A. Problem Statement

Consider the following linear system with asymmetric
actuator saturation,

ẋ = Ax+Bsatµ,µ(Fx), (2)

where x ∈ Rn is the state and A ∈ Rn×n, B ∈ Rn×m and
F ∈ Rm×n are constant matrices of appropriate dimensions.
The closed-loop system is assumed to be asymptotically
stable in the absence of saturation. However, it is well known
that such asymptotic stability is in general not global. We
are thus interested in characterizing the domain of attraction
of the closed-loop system, the set of all the initial states
from which the state trajectory converges to the origin.
However, in general, it is difficult to accurately describe the
boundary of the domain of attraction. A common practice
is to estimate the domain of attraction with a level set
of Lyapunov function. This involves the construction of a
Lyapunov function that would result in a less conservative
estimate of the domain of attraction. We will focus on a new
Lyapunov function, whose construction exploits the special
property of the asymmetric saturation.

Motivated by [7], [13] and [14], we partition the state
space into 2m regions according to the sign of each input.
Each region is defined as

Γi = {x ∈ Rn : ΛiFx ≥ 0}, i ∈ I[1, 2m], (3)

where Λi = diag{λi1, λi2, · · · , λim} with λij = sgn(Fjx),
and Fj , j ∈ I[1,m], is the jth row of F . System (2) can
then be represented equivalently as the following switched
system,

ẋ = Ax+Bsatµi(Fx), x ∈ Γi, i ∈ I[1, 2m], (4)

where µi =
1
2 ((Λi + I)µ+ (I − Λi)µ). Within each region

Γi, the associated subsystem (4) is a linear system subject
to symmetric actuator saturation.

B. A Generalized Asymmetric Lyapunov Function

An asymmetric Lyapunov function, whose level sets are
not symmetric with respect to the origin, has been presented
in [7]. To further reduce the conservativeness of this asym-
metric Lyapunov function, in this subsection, we will present
a generalized asymmetric Lyapunov function based on the
partition (3). To this end, we denote, for i ∈ I[1, 2m],

Ei =

[
ΛiF 0
0 Λi

]
∈ R2m×(n+m),

F i = [ET
i In+m]T ∈ R(3m+n)×(n+m),

(5)

where Λi is as defined in (3). Let ξ = [xT dzµi
(Fx)T]T.

Then, within Γi, we define a piece-wise quadratic function
as follows,

VGi(x) =

[
x

dzµi
(Fx)

]T
F

T

i TF i

[
x

dzµi
(Fx)

]
= ξTPGiξ,

where T ∈ R(3m+n)×(3m+n) and PGi ∈ R(n+m)×(n+m) is
a symmetric matrix to be determined later. We then define
the following Lyapunov function candidate,

VG(x) = VGi(x), if x ∈ Γi, i ∈ I[1, 2m], (6)

whose level set is given as

EUnion = ∪2
m

i=1(E(PGi) ∩ Γi),

with
E(PGi) = {x ∈ Rn : ξTPGiξ ≤ 1}.

Partition T as T =

[
T1 T2

TT
2 T3

]
, where T1 ∈ R2m×2m,

T2 ∈ R2m×(m+n) and T3 ∈ R(n+m)×(n+m). We have

ξTPGiξ = ξTF
T

i TF iξ

= ξT[ET
i In+m]

[
T1 T2

TT
2 T3

]
[ET

i In+m]Tξ

= ξT
(
ET

i T1Ei +He(ET
i T2) + T3

)
ξ. (7)

Consider two intersected regions Γi and Γj . It is clear
that there is only one different element between Λi and Λj ,
that is, there is only one k ∈ I[1,m] such that λik ̸= λjk.
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Denote the boundary between Γi and Γj as Ωij , then for
each x ∈ Ωij , the following facts hold:

• There must be one input uk = Fkx such that Fkx =
dz(Fkx) = 0. Then one could have λikFkx =
λjkFkx = 0 and λikdz(Fkx) = λjkdz(Fkx) = 0.

• Since λik ̸= λjk, for each l ∈ I[1,m]\{k}, we have
ΛilFlx = ΛjlFlx and λildz(Flx) = λjldz(Flx).

Based on the above observations, it can be shown that
Eiξ = Ejξ and F iξ = F jξ hold if x is on the boundary
Ωij . This guarantees the continuity of VG(x) in the whole
state space.

Remark 1: Note that in the case that T1 = 02m×2m

and T2 = 02m×(m+n), VG(x) reduces to the asymmetric
Lyapunov function proposed in [7] with a common positive
definite matrix shared in each region Γi. Moreover, if T1 =
02m×2m and T2 ̸= 02m×(m+n), VG becomes the asymmetric
Lyapunov function with different positive definite matrices
for each Γi. This type of asymmetric Lyapunov functions
were also proposed in [7]. Apparently, the presence of T1

allows further enlargement of the differences between each
PGi. This will result in a larger estimate of the domain of
attraction. And the relaxed conditions that will be presented
later could transform the proposed Lyapunov function into a
sign-indefinite one (the matrices associated with Lyapunov
functions are not required to be positive definite), which
in turn reduces the conservatism. Therefore, the proposed
Lyapunov function in this paper is more general than those in
[7]. Also, compared with [7], where each PGi is constructed
by several different variables, the newly proposed Lyapunov
function shows a more compact form, that is, matrix T is
the only parameter that needs to be determined. In fact, such
a form is inspired by [16]. However, the method provided in
[16] is different from ours. In particular, although the specific
partition of the state space and the stability analysis for each
partition in [16] contribute to an LMI-based method that is
easy to solve, such a method is not directly applicable to
the estimation of the domain of attraction. This is because
the stability analysis in [16] is to verify the stability of
each predetermined partition in the state space while the key
idea of estimation is to find a set in the state space where
trajectories converge to the origin. Furthermore, instead of
piece-wise Lyapunov functions [15], quadratic Lyapunov
functions, which can be very conservative, are designated
to each partition in [16], leading to less favorable results.

The following lemmas present some useful properties of
saturation functions, which will help to develop the results
in the next section.

Lemma 1: [5] For any given diagonal matrix S > 0 ∈
Rm×m, for any v = [v1 v2 · · · vm]T ∈ Rm where |vj | ≤ µ,
∀ j ∈ I[1,m], the following inequality holds,

dzTµ (Fx)S(Fx− dzµ(Fx) + v) ≥ 0.

Let ϕµ(Fx) ∈ Rm be the directional derivative of
dzµ(Fx) at x along ẋ, which can be defined as

ϕµ(Fx) = lim
t→0+

dzµ(Fx+ tẋ)− dzµ(Fx)

t
.

Lemma 2: [15] For any given diagonal matrices S1, S2 ∈
Rm×m, the following sector-like conditions hold for any x ∈
Rn,

ϕT
µ (Fx)S1(Fẋ− ϕµ(Fx)) ≡ 0,

dzTµ (Fx)S2(Fẋ− ϕµ(Fx)) ≡ 0.

III. MAIN RESULTS

In this section, we establish sufficient conditions under
which a level set of the proposed Lyapunov function is
contractively invariant for system (4).

Theorem 1: Consider system (4). If there exist a symmet-
ric matrix T ∈ R(3m+n)×(3m+n), diagonal matrices S1i, S2i,
S3i ∈ Rm×m with S1i > 0, and matrix Hi ∈ Rm×(n+m),
i ∈ I[1, 2m], such that the following matrix inequalities hold,

Θi = He
(
OPGiA+ IT1 S1i(G1 +HiG2)

+ IT2 S2iG3 + IT1 S3iG3
)
< 0, (8)

and [
µ2
i hij

⋆ PGi

]
> 0, (9)

where hij is the jth row of Hi and

PGi = F
T

i TF ,

O =

[
In+m

0m×(n+m)

]
,

A =

[
A+BF −B 0n×m

0m×n 0m×m Im

]
,

I1 = [0m×n Im 0m×m],

G1 = [F − Im 0n×m],

G2 = [In+m 0(n+m)×m],

I2 = [0m×(n+m) Im],

G3 = [F (A+BF ) − FB − Im],

(10)

then the level set EUnion is a contractively invariant set of
system (4).

Proof: To prove the theorem, we need to show that the
value of the Lyapunov function decreases towards zero along
the system trajectory at each nonzero x ∈ EUnion. Since
the proposed Lyapunov function VG is continuous across the
boundaries among the partitions, it is sufficient to verify that
inequality V̇G(x) < 0 holds at each nonzero x ∈ E(PGi)∩Γi,
i ∈ I[1, 2m].

Recall that ξ = [xT dzµi
(Fx)T]T and ϕµi

(Fx) is the
directional derivative of dzµi(Fx) at x along ẋ, i ∈ I[1, 2m].
By the Schur complement, inequalities (9) is equivalent to
PGi ≥ 1

µ2
i
hT
ijhij . Thus, for each x ∈ E(PGi), we have

|hijξ| ≤ µi. Let vi = Hiξ. Then, by Lemma 1, the regional
sector condition is given as

dzTµi
(Fx)S1i(Fx− dzµi

(Fx) +Hiξ) ≥ 0,

which is equivalent to

Φi1 = ηTIT1 S1i(G1 +HiG2)η ≥ 0, (11)
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where η = [xT dzµi
(Fx)T ϕµi

(Fx)]T.
Besides, the sector-like conditions introduced in Lemma

2 can be written as
Φi2 = ηTIT2 S2iG3η ≡ 0, (12)

and
Φi3 = ηTIT1 S3iG3η ≡ 0, (13)

respectively.
Note that the time derivative of VG(x) can be computed

as

V̇G(x) = 2

[
x

dzµi(Fx)

]T
PGi

 ẋ
dzµi

(Fx)
ϕµi

(Fx)


= 2ξTPGi

[
A+BF −B 0n×m

0m×n 0m×m Im

]
η

= ηTHe(OPGiA)η. (14)

Then incorporating the sector and sector-like conditions (11),
(12) and (13) into (14), we have

V̇G(x) ≤ V̇G(x) + ηTHe
( 3∑

j=1

Φij

)
η = ηTΘiη. (15)

In view of inequalities (8), it can be verified that V̇G(x) < 0
for all nonzero x ∈ E(PGi)∩Γi, i ∈ I[1, 2m]. This completes
the proof. □

From inequalities (9) in Theorem 1, we can see that
matrices PGi, i ∈ I[1, 2m], are required to be positive definite
such that the positiveness of VG(x) can be guaranteed for
all x ∈ Rn. However, this seems to be unnecessarily
conservative since it is sufficient to show that VGi(x) > 0
for each x ∈ Γi. Let Ki ∈ R(n+m)×(n+m) be a symmetric
matrix whose elements are all non-negative. Recall that

Eiξ =

[
ΛiFx

Λidzµi(Fx)

]
.

For each x ∈ Γi, i ∈ I[1, 2m], all elements of Eiξ are non-
negative. Thus, we have

ξTET
i KiEiξ ≥ 0, i ∈ I[1, 2m], (16)

Then, the positiveness of VGi(x) = ξTPGiξ can be guaran-
teed if

ξTPGiξ − ξTET
i KiEiξ ≥ 0,

which can be further ensured by

PGi − ET
i KiEi ≥ 0. (17)

It is clear from (17) that PGi is not required to be positive
definite to guarantee VG(x) > 0, x ∈ Rn \ {0}. Based on
the analysis above, we establish the following theorem.

Theorem 2: Consider system (4). If there exist symmet-
ric matrices Ki, Mi ∈ R(n+m)×(n+m) with non-negative
entries, symmetric matrix T ∈ R(3m+n)×(3m+n), diagonal
matrices S1i, S2i, S3i ∈ Rm×m with S1i > 0, and matrix
Hi ∈ Rm×(n+m), i ∈ I[1, 2m], such that the following
inequalities hold,

Θ̃i = Θi +OET
i MiEiOT < 0, (18)

and [
µ2
i hij

⋆ PGi − ET
i KiEi

]
> 0, (19)

where hij is the jth row of Hi and matrices Θi and O are
as defined in (8) and (10), respectively, then the level set
EUnion is a contractively invariant set of system (4).

Proof: Recall the definition of Ei, ξ and η. It is clear that,
for any x ∈ Γi, all the elements of Eiξ and EiOTη are non-
negative. Since each element in the symmetric matrices Ki

and Mi is non-negative, for all x ∈ Γi, we have (16) and

ηTOET
i MiEiOTη ≥ 0. (20)

Noting that inequalities (19) imply that PGi−ET
i KiEi >

0, we have ξTPGiξ − ξTET
i KiEiξ > 0. By conditions

(16), the positive definiteness of VG(x) can be guaranteed.
Furthermore, from (15) and (20), we have

V̇G(x) ≤ V̇G(x) + ηTHe
( 3∑

j=1

Φij

)
η + ηTOET

i MiEiOTη

= ηTΘ̃iη.

By inequalities (18), it can be verified that V̇G(x) < 0 for
all nonzero x ∈ E(PGi) ∩ Γi, i ∈ I[1, 2m]. Hence, the level
set EUnion is contractively invariant for system (4). □

Remark 2: If Ki and Mi are set to be zeros, Theorem
2 will reduce to Theorem 1. Moreover, conditions (16) and
(20) play different roles in reducing the conservativeness of
Theorem 1. conditions (16) are used to relax the positive
definiteness constraint on PGi, while conditions (20) weaken
the negative definiteness constraint on Θi, which is defined
in (8).

Remark 3: Obviously, we can reduce our proposed Lya-
punov function into a quadratic one by fixing some parts
of T to be zeros. This implies that the selection of
(PGi, S1,i, Hi) can be inherited from the results obtained
by this quadratic Lyapunov function. Under such a selection
of (PGi, S1,i, Hi), let S3i = 0m and Ki = Mi = 0n+m,
and then we can always find a diagonal matrix S2,i with
sufficiently large diagonal elements such that conditions in
Theorems 1 and 2 are feasible [20].

IV. OPTIMIZATION PROBLEMS

Theorems 1 and 2 present sufficient conditions under
which the level set EUnion is an estimate of the domain of
attraction of system (4). Based on these conditions, we will
formulate optimization problems to obtain the estimates as
large as possible. Considering that PGi in Theorem 2 is not
required to be positive definite, we need to find a subset
of EUnion, which is characterized by some positive definite
matrices, to measure the size of EUnion. The following
proposition, which is modified from the one in [17], presents
a condition under which a reference set is a subset of E(PGi).

Proposition 1: Given a symmetric matrix PGi ∈
R(n+m)×(n+m). If there exists a symmetric matrix Li ∈
R(n+m)×(n+m) with non-negative entries, a positive definite
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matrix P̂i ∈ Rn×n and a diagonal positive definite matrix
Wi ∈ Rm×m such that

IT4 P̂iI4 − PGi − ET
i LiEi −He

(
IT5 WiG1

)
> 0, (21)

where I4 = [In 0n×m], I5 = [0m×n Im], G1 and Ei are
as defined in (10) and (5), respectively, then E(P̂i)∩Γi with
E(P̂i) := {x ∈ Rn : xTP̂ix ≤ 1} is a subset of E(PGi).

Let α := 1
2m

∑2m

i=1 tr(P̂i). The minimization of α repre-
sents the maximization of ∪2mi=1E(P̂i) ∩ Γi, which in turn
implies the maximization of the level set EUnion. Then
the optimization problem associated with Theorem 2 is
formulated as follows,

min
PGi,P̂i>0,S1i>0,S2i,S3i,Hi,Ki,Mi,Li,i∈I[1,2m]

α, (22)

s.t. Inequalities (18), (19) and (21).

Because of the presence of S1iHi in (18), the optimization
problem (22) is a BMI problem. Let Zi = S1iHi, and noting
that µ2

i s
2
1ij +

1
µ2
i
≥ 2s1ij , we replace (19) with[

2s1ij − 1
µ2
i

zij

⋆ PGi − ET
i KiEi

]
> 0, (23)

where s1ij is the jth diagonal element of S1i and zij is the
jth row of Zi, i ∈ I[1, 2m], j ∈ I[1,m]. As a result, (22)
reduces to the following LMI problem,

min
PGi,P̂i>0,S1i>0,S2i,S3i,Zi,Ki,Mi,Li,i∈I[1,2m]

α, (24)

s.t. Inequalities (18), (21) and (23).

The optimal solution to (24) is a suboptimal solution of the
BMI problem (22). Furthermore, by applying this optimal
solution as the initial values, we develop the following direct-
iterative algorithm for solving the optimization problem (22),
and the result obtained by this iterative algorithm is at least
as good as the result obtained by solving (24).

Algorithm 1 : Iterative Algorithm for Enlarging EUnion.

Step 1: Solve the LMI problem (24) and denote the optimal
solution as (α̂, PGi, P̂i, S1i, S2i, S3i, Zi,Ki,Mi, Li). Let
t = 0, Hi = S−1

1i Zi, i ∈ I[1, 2m] and α0 = α̂.
Step 2: Let k ← k + 1. Fix Hi and solve optimization
problem (22). Denote the optimal solution as (α̂, PGi, P̂i,
S1i, S2i, S3i,Ki,Mi, Li).
Step 3: Fix S1i and solve optimization problem (22). Denote
the optimal solution as (α̂, PGi, P̂i, S2i, S3i, Hi,Ki,Mi, Li).
Let αk = α̂.
Step 4: If | αk − αk−1 | ≤ θ, a pre-determined tolerance,
stop, then PGi, i ∈ I[1, 2m], are feasible solutions. Else go
to Step 2.

Remark 4: Note that Theorem 2 reduces to Theorem 1
when Ki = Mi = 0. Thus, setting Ki and Mi to be
zeros in the optimization problems (22) and (24), we obtain
the corresponding BMI-based and LMI-based optimization
problems, respectively, with their constraints obtained from

Theorem 1. Correspondingly, by setting Ki = Mi = 0,
Algorithm 1 can also be used to solve the resulting BMI-
based optimization problem from (22).

V. NUMERICAL EXAMPLES

Consider the following system taken from [7],

A =

[
0.6 −0.8
0.8 0.6

]
, B =

[
0.8030 0.9455
0.0839 0.9159

]
,

F =

[
−1.2031 1.0926
−0.4441 −1.5447

]
,

µ = [2 1]T, µ = [1 2]T.

We first estimate the domain of attraction by solving the
LMI-based optimization problems, corresponding to both
Theorems 1 and 2. To do this, we solve the LMI-based
optimization problem (24) with Ki = Mi = 0, which is
formulated according to Theorem 1, and obtain the estimate
ETh1-LMI
Union with αTh1-LMI

opt = 0.8910.
Then solving the optimization problem (24) whose con-

straints are derived from Theorem 2, we obtain the estimate
ETh2-LMI
Union with αTh2-LMI

opt = 0.6659 and matrix PG1 with its
eigenvalues being {0.7600, 0.1470, 0.0027,−0.0001}. It is
clear that PG1 is not positive definite.

For comparison, by using the asymmetric Lyapunov func-
tion presented in [7], we get the estimate E [7]Union1 with
α
[7]
opt1 = 0.9027. Also, if we use the asymmetric Lyapunov

function in [7] as the basic construction and then incorporate
the sector conditions into the construction such that the
associated matrices are not required to be positive definite
([6], [17]), the resulting estimate E [6,17]Union1 is with α

[6,17]
opt1 =

1.1449.
We plot these estimates and the actual domain of attraction

in Fig. 1. As apparent in Fig. 1, the estimates based on the
methods proposed in this paper, especially Theorem 2, are
significantly larger than the existing approaches.
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Fig. 1. The estimates of the domain of attraction obtained by LMI-based
optimization problems.

We next estimate the domain of attraction by solving the
BMI-based optimization problems, corresponding to both
Theorem 1 and Theorem 2. To obtain estimation based on

1746



Theorem 1, we let Ki and Mi be zeros and choose the
optimal solution of the resulting LMI-based problem (24)
as the initial values for the resulting BMI problem (22).
Carrying out the resulting Algorithm 1, we obtain ETh1-BMI

Union

with αTh1-BMI
opt = 0.7463.

We also carry out Algorithm 1 associated with The-
orem 2, and obtain ETh2-BMI

Union with αTh2-BMI
opt = 0.5377.

Specially, the associated matrix PG1 has eigenvalues
{0.7405, 0.1448, 0.0025,−0.0001}, that is, PG1 is not pos-
itive definite. Moreover, numerical computation shows that
each matrix Θi, i ∈ I[1, 4], in (18) has positive eigenvalues.
This reflects the discussion in Remark 2 that Theorem 2 leads
to less conservative results than Theorem 1.

For further comparison, we apply the same iterative strat-
egy to solve the BMI problems formulated by using the
Lyapunov functions in [7] and [6], [17]. We obtain E [7]Union2

with α
[7]
opt2 = 0.7566 and E [6,17]Union2 with α

[6,17]
opt2 = 0.6880,

respectively. Besides, in order to show the superiority of
piece-wise Lyapunov functions used in this paper, we re-
formulate Theorems 1 and 2 using the quadratic Lyapunov
functions suggested in [16], based on which we then establish
and solve the BMI problems to obtain quadratic-Lyapunov-
function-based estimates ETh1-Q

Union with αTh1-Q
opt = 0.7419 and

ETh2-Q
Union with αTh2-Q

opt = 0.6493, respectively. All of these results
and the actual domain of attraction are depicted in Fig. 2.
As observed in Fig. 2, the proposed approach contributes
to improving the estimates of the domain of attraction for
linear systems with asymmetric actuator saturation. Also, it
is apparent that the piece-wise Lyapunov function used in
this paper for each subspace yields less conservatism than
the quadratic one in [16].
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opt
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Fig. 2. The estimates of the domain of attraction obtained by BMI-based
optimization problems.

VI. CONCLUSIONS

This paper proposes a generalized asymmetric Lyapunov
function for the estimation of the domain of attraction for lin-
ear systems subject to asymmetric actuator saturation. Such
a Lyapunov function is less conservative as the associated
matrices are not required to be positive definite. Based on

the proposed Lyapunov function, sufficient conditions for
stability analysis are established and then relaxed conditions
are provided to further reduce the conservativeness. The
estimation of the domain of attraction is formulated as an
optimization problem. An iterative algorithm is developed
to solve the optimization problem. Simulation results show
that our approach has the ability to significantly enlarge the
estimate of the domain of attraction.
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