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Abstract— In this paper we present a method for estimating
time-varying parameters in a linear regression equation. We
combine local polynomial regression with dynamic regressor
extension and mixing to independently estimate the parameters.
During local polynomial regression, a time-varying parameter
is approximated by locally constant polynomial coefficients. We
propose to use the Bernstein basis instead of the commonly
used monomial basis to improve numerical conditioning. A
simulation example shows that our proposed estimator has
improved performance compared to a similar method and allows
a higher polynomial order.

I. INTRODUCTION

Parameter estimation plays an important role in adaptive
control, as many practical applications involve time-varying
parameters. In safety-critical applications such as the remote
maintenance of fusion reactors, it is pivotal to estimate the
parameters to guarantee overall system safety.

A common assumption of gradient-based and least-squares
parameter estimators is that the parameters are quasi-static
[1]. This can be a limitation in practice when dealing with
time-varying parameters. To overcome this issue, one can
fit a local polynomial to the parameter estimate. Thus, the
parameter goes from being time-varying to locally constant.
Locally weighted polynomial regression was carried out in
[2] for different scenarios, where different types of regression,
e.g., polynomials of different orders, were applied to a local
neighbourhood. Local polynomial regression was combined
with the recursive least-squares (RLS) algorithm in the
parameter space [3] and in the time domain [4]. In the papers
[5], [6] time was divided into small sections, and in each
window the parameters were fitted by a local polynomial
with constant parameters.

A further limitation of the standard gradient-based pa-
rameter estimator is that it requires the restrictive condition
of persistence of excitation (PE) to converge. In [7] and [8]
linear filters were used to modify the stability and convergence
properties of the linear regression equation. A new method
of designing parameter estimators called dynamic regressor
extension and mixing (DREM) was introduced in [9]. A
key feature of DREM is the guaranteed performance increase
compared with the gradient-based parameter estimator and the
least-squared parameter estimator, [1]. Ortega explains in [10]
that DREM can be interpreted as two different Luenberger
observers with a gradient descent. The dynamics of DREM
depends on the choice of the filters. I-DREM, introduced
in [11], relaxes the square integrability condition of DREM
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by using an integral-based filter. The same authors used the
method to estimate time-varying parameters using a first order
approximation in [12].

An issue with most polynomial regression methods [3], [4],
[5], [6], [12] is that they rely on the monomial polynomial
basis, which can often be numerically ill-conditioned in
practical applications [13]. An alternative to the monomial
basis is the Bernstein basis [14], that has had great use in
the area of computer graphics, see e.g., [15] for details. The
Bernstein basis was compared with the monomial basis in
[13], and it was found that if one has the choice between
the two, one should always use the Bernstein basis, due to it
being more numerically robust against floating point errors.

In this paper we show how to combine local polynomial
regression and DREM to enable estimation of time-varying
parameters, and that the use of the Bernstein basis, in
comparison with the monomial basis, increases the numerical
stability when the polynomial order is increased.

The rest of the paper is organised as follows. Section II
describes two methods for estimation of constant parameters,
while Section III describes two methods for estimation of
time-varying parameters. Our contributions are presented
in Section IV and Section V. Numerical simulations are
presented in Section VI and the conclusion is given in
Section VII.

II. ESTIMATION OF CONSTANT PARAMETERS

In this section, two methods for estimating constant
parameters in a linear regression equation (LRE) is presented.
The LRE is defined as:

y(t) = ϕ⊺(t)θ + w(t), (1)

where y : R+ → R and ϕ : R+ → Rp are the known bounded
output and input functions of time, respectively, θ ∈ Rp is
the unknown constant parameter vector, w : R+ → R is the
measurement noise, and p is the number of parameters.

The standard gradient-based parameter estimator is de-
scribed in Section II-A, and DREM is described in Section II-
B.

A. Gradient-Based Parameter Estimation

This section presents the gradient-based parameter estima-
tor defined in [1]. The parameter θ can be estimated using:

˙̂
θ(t) = γϕ(t)

[
y(t)− ϕ⊺(t)θ̂(t)

]
, (2)

where θ̂(t) is the estimate of θ, and γ > 0 is a tuning
parameter. The dynamics of the parameter estimation error
is given as:

˙̃
θ(t) = −γϕ(t)ϕ⊺(t)θ̃(t), (3)
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where θ̃(t) := θ − θ̂(t). It is seen that γ affects the rate
of convergence, and that ϕ(t)ϕ⊺(t) also affects the error
dynamics; in a way that can be quantified via persistence of
excitation defined as follows:

Definition 1 (Persistency of Excitation (PE), Ch. 2 in [1]).
A function ϕ : R+ → Rp is persistently exciting (PE) if there
exists µ1, µ2, δ > 0 such that

µ2Ip ≥
∫ t+δ

t

ϕ(τ)ϕ⊺(τ) dτ ≥ µ1Ip (4)

for all t ≥ 0, where Ip is the p× p identity matrix.

Proposition 1 (According to [1]). The estimator (2) has the
following properties:

1) The error function given by (3).
2) The Euclidean norm of θ̃(t) is monotonically non-

increasing.
3) The following equivalence holds, [1, Theorem 2.5.1]:

lim
t→∞

∥∥∥θ̃(t)∥∥∥ = 0 ⇐ ϕ(t) ∈ PE, (5)

where ∥·∥ is the Euclidean norm.
4) If ϕ(t) ∈ PE, then the estimated parameter θ̂(t) con-

verges exponentially to the nominal parameter θ, [1,
Theorem 2.5.3].

B. Dynamic Regressor Extension and Mixing

In this section a method of relaxing the restrictive condition
of PE is presented. The method is called DREM [9],
[16]. DREM converts (1) to p, one-dimensional LREs to
independently estimate each of the parameters. A linear,
single-input p-output, bounded-input bounded-output operator
(BIBO) H is introduced to reformulate (1) as:

Y (t) = φ(t)θ, (6)

where

Y (t) := H[y(t)] ∈ Rp, φ(t) := H[ϕ⊺(t)] ∈ Rp×p. (7)

Different choices can be made on the operator H [10],
[17], [16]. Recall that for any matrix M ∈ Rm×m we have
adj{M}M = det{M}Im, where adj{·} is the adjugate,
det{·} is the determinant, and Im ∈ Rm×m is the identity
matrix. Left-multiplying (6) with the adjugate of φ(t) results
in the following scalar equations:

Yi(t) = ∆(t)θi, i = 1, 2, . . . , p, (8)

where
∆(t) := det{φ(t)} ∈ R,
Y(t) := adj{φ(t)}Y (t) ∈ Rp.

(9)

Then, each parameter θi can be estimated individually by
a gradient-based parameter estimator:

˙̂
θi(t) = γi∆(t)

[
Yi(t)−∆(t)θ̂i(t)

]
, (10)

where γi > 0 is a tuning parameter.

Proposition 2 (We reformulate from [16]). The estimator
(10) has the following properties:

1) The error function given by:

˙̃
θi(t) = −γi∆

2(t)θ̃i(t), (11)

where θ̃i(t) := θi − θ̂i(t).
2) The absolute value of the individual parameter errors

θ̃i(t) are monotonically non-increasing.
3) The following equivalence holds:

lim
t→∞

∣∣∣θ̃i(t)∣∣∣ = 0 ⇔ ∆(t) /∈ L2, (12)

where |·| is the absolute value.
4) If ∆(t) ∈ PE, then the convergence is exponential.

III. ESTIMATION OF TIME-VARYING PARAMETERS

In this section two methods for estimating time-varying
parameters are presented. The LRE is defined as:

y(t) = ϕ⊺(t)θ(t) + w(t), (13)

where y : R+ → R and ϕ : R+ → Rp are the known bounded
output and input functions of time, respectively, θ : R+ → Rp

is the unknown time-varying parameter vector, w : R+ → R
is the measurement noise, and p is the number of parameters.

A method for local polynomial regression using the
monomial polynomial basis is described in Section III-A, and
a method from literature combining I-DREM and first order
local polynomial regression is briefly described in Section III-
B.

A. Local Polynomial Regression

The gradient-based parameter estimator and DREM as-
sumes that the parameter vector θ is constant, though in
many practical applications, this is not the case. The idea of
local polynomial regression is to approximate the parameter
locally using a polynomial. Thus, the parameter estimation
problem goes from being time-varying to locally constant
[4], [5], [6].

To represent time-varying parameters, time is divided into
segments of width T which begins at t0 given by [6]:

t0(t) = T ·
⌊
t

T

⌋
, (14)

where ⌊·⌋ is the floor-function, which rounds down to
the nearest integer. Equation (14) defines a non-decreasing
sequence of time instants t0 = [t0,j ], j = 0, 1, . . . , where the
difference between each t0 instant is T . In the following the
function argument t is omitted for brevity.

It is well known that a smooth function can be represented
by a Taylor series around a point t0. Assuming that the
parameter elements θi(t) are smooth, the approximation can
be applied in each window t ∈ [t0, t0 + T ):

θi(t) = Li(t, t0)αi(t0) + ϵi, (15)

where ϵi is the Lagrange error, and

Li(t, t0) =
[
1 t− t0 (t− t0)

2 . . . (t− t0)
ki
]
, (16)

αi(t0) =
[
ai,0(t0) ai,1(t0) . . . ai,ki

(t0)
]⊺

, (17)
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and for all parameters, where ϵi is disregarded:

θ(t) = L(t, t0)α(t0), (18)

where K =
∑p

i=1 ki and

L(t, t0) =

L1(t, t0)
. . .

Lp(t, t0)

 ∈ Rp×(p+K), (19)

α(t0) =
[
α⊺
0(t0) α⊺

1(t0) . . . α⊺
ki
(t0)

]⊺ ∈ Rp+K .
(20)

By inserting (18) into (13):

y(t) = ϕ⊺(t)θ(t) = ϕ⊺(t)L(t, t0)︸ ︷︷ ︸
:=Φ⊺(t,t0)

α(t0),
(21)

where α(t0) can be estimated by α̂(t). The vector of param-
eters α(t0) is constant in each time window t ∈ [t0, t0 + T ),
and θ(t) is varying with time in the same window. The
parameter estimate θ̂ can be found from α̂ using (18):

θ̂(t) = L(t, t0)α̂(t). (22)

To make sure the parameter estimate θ̂ is continuous across
time windows, α̂ should be reset in the beginning of each
time window:

α̂(t0 + T ) = X(t0 + T, t0)α̂((t0 + T )−), (23)

for t = t0 + T , where (t0 + T )− is just before the resetting
point and X(t0 + T, t0) ∈ R(p+K)×(p+K) is the resetting
matrix, see [5], [6] for details.

B. Integral Dynamic Regressor Extension and Mixing
In this section the integral dynamic regressor extension

and mixing (I-DREM) is introduced in short. It was recently
introduced in [11] to relax the square integrability condition
(∆(t) /∈ L2) present in ordinary DREM. The same authors
used I-DREM to estimate time-varying parameters in [12].
Here, the authors combine a first order local polynomial
regression, like Section III-A, with I-DREM.

The update rule in [12] is conditional on the value of ∆(t);
it switches between an I-DREM estimator and a gradient-
based parameter estimator. With the symbols of this paper,
their update rule is:

˙̂
θ(t) =


− γ0

∆2(t)∆(t)
[
∆(t)θ̂(t)−Υ(t)

]
if ∆(t) ≥ κ,

−Γϕ(t)
[
θ̂(t)ϕ(t)− y(t)

]⊺
−

σΓθ̂(t) otherwise,
(24)

where Υ(t) = L(0, 0)Y(t), Γ is a gain matrix, κ is a
threshold, and σ is a forgetting factor, see [12] for more
details.

The main point of concern is the conditional nature of the
update rule, where the system behaviour depends heavily on
κ. Based on experience, the value of ∆ can be quite small,
see Section VI, so κ can be difficult to tune.

In this paper we aim at providing another update rule, such
that switching is not required, and the order of the local
polynomial approximation can be increased beyond one.

IV. DYNAMIC REGRESSOR EXTENSION AND MIXING
WITH LOCAL POLYNOMIAL REGRESSION

We propose to combine local polynomial regression,
Section III-A with the DREM procedure, Section II-B, to
obtain a method that benefits from both. Following [18], we
apply Kreisselmeier’s regressor extension, [8], as the operator
H of the form

ẋ(t) = −ℓx(t) + Φ⊺(t, t0)u(t),

yu(t) = x(t),

where x(t) ∈ Rn is the internal state vector, and ℓ > 0
is a tuning parameter. Applying Kreisselmeier’s regressor
extension to Φ(t, t0) and y(t) from (21) as H in (7), results
in

φ̇pol = −ℓφpol +Φ⊺(t, t0)Φ(t, t0), φpol(0) = 0,

Ẏpol = −ℓYpol +Φ⊺(t, t0)y(t), Ypol(0) = 0,
(25)

giving a polynomial version of (6):

Ypol(t) = φpolα(t0). (26)

The DREM procedure is applied to the above:

Ypol,i(t) = ∆pol(t)αi(t0), (27)

where

∆pol(t) := det{φpol(t)} ∈ R,
Ypol(t) := adj{φpol(t)}Ypol(t) ∈ Rp+K ,

(28)

which can be individually estimated using the following least
squares parameter adaption scheme [1], [18]:

˙̂αi(t) = γi∆pol(t)pi(t) [Ypol,i(t)−∆pol(t)α̂i(t)] ,

ṗi(t) = γi(λipi(t)− p2i (t)∆
2
pol(t)),

(29)

where pi(0) > 0, and γi > 0 are the design parameters, and
λi is the forgetting factor. The parameter estimator (29) yields
the following error dynamics:

˙̃αi(t) = −γi∆
2
pol(t)pi(t)α̃i(t), (30)

where α̃i(t) = αi(t0)− α̂i(t).
The estimated parameter vector θ̂ can be extracted as:

θ̂(t) = L(t, t0)α̂(t), t ∈ [t0, t0 + T ), (31)

and α̂ has to be reset in the beginning of each time window
using the reset matrix X , [5], [6]:

α̂(t0 + T ) = X(t0 + T, t0)α̂((t0 + T )−). (32)

To compensate for the resetting of α̂, the filtered dynamics
(26) should be reset accordingly at the beginning of each
time window:

φpol(t0 + T ) = φpol((t0 + T )−)X−1(t0 + T, t0), (33)

which is not something that is considered in [6].

Proposition 3 (Proposition 2 in [18]). Let i be the parameter
index. Consider the estimation algorithm (29) with pi(0) > 0
and γi > 0.

1) If λi = 0 then
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a) if ∆pol ∈ L2 then for all nonzero α̃i(0) the signal α̃i

does not converge to zero;
b) if ∆pol /∈ L2 then α̃i is monotonic and converges to

zero asymptotically;
c) if ∆pol ∈ PE, it does not imply exponential conver-

gence.
2) If λi > 0 the

a) pi is bounded from below;
b) if ∆pol ∈ L2 or

∆pol /∈ L2 and ∆pol → 0, (34)

then the estimator is unstable and pi tends to infinity;
c) if ∆pol ∈ PE the pi is bounded, α̃i is monotonic and

converges to zero exponentially fast.

The proof is given in [18].

V. BERNSTEIN POLYNOMIAL BASIS

It is observed in Section VI that using the polynomial
DREM estimator with the monomial basis has numerical
issue; therefore, the more numerically robust Bernstein basis
is presented in this section. The Bernstein basis has always
a better numerical condition than the conventional monomial
basis [13]. This leads to better numerical stability against
arithmetic round-off error when the method is implemented.
The Bernstein basis was first introduced in [14], and is given
by:

Bν,n(t) =

(
n

ν

)
(b− t)n−ν(t− a)ν

(b− a)n
, ν = 0, . . . , n, (35)

where n is the order, and t ∈ [a, b]. In our case where time is
divided into windows defined by (14), a = t0 and b = t0+T .

The Bernstein basis Bν,n(t) fulfills the properties of
positivity and partition of unity [13]:

Bν,n(t) ≥ 0, ∀t ∈ [a, b]

and
n∑

ν=0

Bν,n(t) = 1, ν = 0, . . . , n.
(36)

The time-varying parameter θ(t) can be approximated as:

θi(t) = L⊺
i (t, t0)αi(t0) + ϵi(t), (37)

where

Li(t, t0) =
[
B0,ki

(t) B1,ki
(t) . . . Bki,ki

(t)
]
,

αi(t0) =
[
ai,0(t0) ai,1(t0) . . . ai,ki

(t0)
]⊺

,
(38)

and for all parameters, disregarding ϵi(t):

θ(t) = L(t, t0)α(t0), (39)

where

L(t, t0) =

L1(t, t0)
. . .

Lp(t, t0)

 ∈ Rp×(p+K), (40)

α(t0) =
[
α⊺
0(t0) α⊺

1(t0) . . . α⊺
ki
(t0)

]⊺ ∈ Rp+K ,
(41)

and the parameter estimate is thus:

θ̂(t) = L(t, t0)α̂(t). (42)

As for the monomial basis we have to make sure that
the estimate θ̂ is continuous across time windows. The reset
matrix is constructed using the relationship between Bernstein
coefficients ᾱ on the interval [ā, b̄] and α on [a, b], [13], [15,
Sec. 11.4] given by:

ᾱl =

ki∑
k=0

Ai,lkαk, (43)

where

Ai,lk =

min(l, k)∑
ℓ=max(0, l+k−ki)

Bk−ℓ,ki−l(ā)Bℓ,l(b̄), (44)

for l, k = 0, 1, . . . , ki, that are the row and column, respec-
tively. The reset matrix should be formulated to be on the
same form as (23):

α̂(t0 + T ) = X(t0 + T, t0)α̂((t0 + T )−), (45)

where X(t0,j+1, t0,j) is the resetting matrix given by:

X(t0 + T, t0) =

[
A1(t0+T,t0)

. . .
Aki

(t0+T,t0)

]
, (46)

where the elements Ai,lk are given by (44). Since the time is
divided into time windows, ā = t0 + T , b̄ = t0 + 2T . With
these, the basis function (35) calculated at ā simplifies to:

Bν,n(ā) =

{
1 if ν = n,

0 otherwise,
(47)

i.e., only the last iteration of the sum in (44) is included, thus
the i-th reset matrix can be written as
Ai(t0 + T, t0) =

0 0 ... 0 B0,0(b̄)

0 0 ... B1,0(b̄) B1,1(b̄)

...
... . .

. ...
...

0 Bki−1,0(b̄) ... Bki−1,ki−2(b̄) Bki−1,ki−1(b̄)

Bki,0
(b̄) Bki,1

(b̄) ... Bki,ki−1(b̄) Bki,ki
(b̄)

 .
(48)

It can be seen that (48) does not depend on the window
size T as the monomial reset matrix [5], [6] does.

Proposition 4. Resetting α̂ at the start of each time interval
using (45) ensures a continuous parameter estimate θ̂.

The proof is omitted as it follows the proof in [6].
Denoting ∆pol(t) when using the Bernstein basis as

∆pol,B(t), and using the monomial basis as ∆pol,m(t). Empiri-
cally, the following relationship was observed, see Section VI:

|∆pol,B(t)| > |∆pol,m(t)|, (49)

for all t ≥ 0, k > 0. This indicates that using the Bernstein
basis results in a faster convergence than when using the
monomial basis. A comparison of the numerical condition
between the Bernstein and the monomial basis was performed
in [15, Sec. 12.4.3], [13] which concludes that the monomial
basis is much more sensitive to floating point arithmetic.
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Farouki concludes in [15], [13] that if one has the choice
between the Bernstein base and the monomial base, the
Bernstein basis is preferable.

VI. NUMERICAL SIMULATIONS

To highlight the advantages of the proposed method, two
simulation examples are given in this section.

A. Estimation of Time-Varying Parameters

In this section several estimation methods are compared.
The proposed method (29) using the Bernstein basis, Sec-
tion V, is compared with the gradient-based parameter
estimator (2) and the I-DREM-based method proposed in
[12], Section III-B. We consider the LRE (13) defined as:

ϕ(t) =

[
3 sin(4πt)

2.5

]
, θ(t) =

[
2 + sin(t)

3 + cos(0.5t)

]
. (50)

It can be seen, that ϕ(t) ∈ PE and ϕ(t) /∈ L2. The system
was simulated for 10 s with time step dt = 1× 10−4 s. The
gain of the gradient method was γ = 1.595. The parameters
of our method were:

T = 0.4 s, γ = 1, ℓ = 1.95, λ = [7 7],

p(0) = 1× 1010, θ̂ = [0 0]⊺, k = [2 2].
(51)

We compare with the numerical experiment from [12] and
use the parameters given there:

T = 0.25 s, γ0 = 100, β =
0.05

T
,

Γ = 0.75I2, k = [1 1], κ = 10−9, σ = 10−4.
(52)

The result of the simulation is on Fig. 1 without noise
(w(t) = 0) and on Fig. 2 with noise (w(t) ∼ N (0, 1)). The
error, e, in the bottom subplot is the 2-norm of the estimation
error.With no system noise, Fig. 1, our method performs
clearly the best, with a low error. When introducing noise to
the system, Fig. 2, our method still has the lowest error, but
in general the three methods are robust to noise. Our method
shows a slower initialisation time in comparison with the two
others. This might be related to pi in the least squares update
rule (29) that has to “warm up”.

B. Comparison of Polynomial Bases

We analyze the effect of using the Bernstein basis or the
monomial basis in (29). In this simulation there is no noise,
w = 0, and the parameters are as follows:

T = 0.25 s, γ = 15, ℓ = 5, λ = 0.8, (53)

p(0) = 1× 1030, θ̂ = 0, k = 1, . . . , 10, (54)

and the LRE is given by:

ϕ(t) = 3 sin(4πt), θ(t) = 2 + sin(t). (55)

To remove the effect of filter initialisation the first second
of the data was removed. The mean square error (MSE) was
used to compare the methods. The simulation result can be
seen on Fig. 3. For the polynomials of degree 3 or lower,
the error is the same for the two bases, but from k ≥ 4, the
error on the monomial basis increases. This is related to the

0.0

2.5

5.0

θ 1

Actual

Gradient

I-DREM

Ours

0.0

2.5

5.0

θ 2

0 2 4 6 8 10

Time [s]

0.0

0.5

e

Fig. 1. Estimation of time-varying parameters comparing our method with
the gradient-based parameter estimator and the I-DREM-based method in
[12] without noise (w = 0). In θ1, θ2 the actual value is hard to see, as the
other lines overlap it.

0.0

2.5

5.0

θ 1
Actual

Gradient

I-DREM

Ours

0.0

2.5

5.0

θ 2

0 2 4 6 8 10

Time [s]

0.0

0.5

e

Fig. 2. Estimation of time-varying parameters comparing our method with
the gradient-based parameter estimator and the I-DREM-based method in
[12] with noise (w ∼ N (0, 1)). In θ1, θ2 the actual value is hard to see,
as the other lines overlap it.

numerical condition of the two polynomial bases, see [13],
[15]. The main difference between the polynomial bases is
the value of ∆. A comparison of the first three orders can be
seen on Fig. 4. The shape is the same, but numerical value
is different, note the numerical difference in the limits on
the y-axes between the monomial and the Bernstein basis.
From the figure, notice that |∆pol,B(t)| > |∆pol,m|(t) ∀t > 0,
which results in a faster convergence time for the Bernstein
basis version compared with the monomial basis version.
From k = 8 and above, neither of the polynomial bases can
estimate the parameter correctly.
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Fig. 3. Bar plot comparing the MSE when using the Bernstein and monomial
base. The polynomial order ranges from 1 to 10. The hatched bars indicate
when the estimator is not working, and the error is at maximum.
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Fig. 4. Comparison of the ∆ of the orders k = 1, 2, 3.

VII. CONCLUSIONS

In this paper, we presented a method for combining local
polynomial regression and DREM to estimate time-varying
parameters in a linear regression equation. Simulation results
shows that the method performs better than the standard
gradient-based parameter estimator and a state-of-the art
method from [12]. We also show that using the Bernstein
polynomial basis instead of the monomial polynomial basis
allows the proposed method to work at a higher order. Though
when the order is low enough, k < 4, they show similar
performance.
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