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Abstract— State estimation for continuous time nonlinear sys-
tems, in bounded error framework, is concerned in this paper.
Guaranteed state estimation is obtained without assumption
of differentiability on the dynamical function. The proposed
filter is mainly based on interval computations, bounded state
assumption and with or without Lipschitz smoothness condition
on the dynamical function. This filter is applied on a case study,
highlighting the potential of the proposed filtering method.

I. INTRODUCTION

Continuous time nonlinear systems of ordinary differential
equations (ODEs) represent a fundamental area of inquiry
within both academic and industrial spheres, owing to their
capacity to model a wide range of natural phenomena and en-
gineering systems. However, the resolution of such systems
poses a formidable challenge, prompting the development of
state approximation methodologies. These encompass punc-
tual and set-valued estimation approaches, with the former
tracing its origins to the earliest investigations of ODEs,
while the latter has garnered increasing attention in recent
years.

Historically, the advancement of punctual estimation
methodologies has occupied a central position since the
nascent stages of exploration into ODEs. These methodolo-
gies, encompassing numerical integrators and deterministic
approaches, aim to furnish discrete-time approximations of
system states. Despite their efficacy, they may encounter
challenges in capturing the nuanced behaviors inherent
to nonlinear systems, particularly in contexts marked by
uncertainties. Conversely, set-valued estimation methodolo-
gies have garnered prominence more recently, signaling a
paradigmatic shift in system analysis and control [1].

In the fields of control theory and signal processing,
filtering signals in the presence of uncertainties and non-
linearities is a significant challenge. Most of the real-world
systems exhibit nonlinear dynamics with states bounded
within certain intervals of uncertainties, and these systems
often lack the smooth differentiability conditions required by
traditional filtering approaches [2]. Recent advances in the
field have sparked a paradigmatic shift towards addressing
the constraints of conventional filters, leading to an upsurge
in alternative methodologies. Traditional filtering techniques,
such as the Kalman filter [3], rely heavily on assumptions of
linearity and differentiability, which are frequently violated
in practical scenarios. To overcome the heavy assumptions
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of linearity in the case of punctual estimation, several works
around extended Kalman filter have been proposed [4], [5],
[6]. On the other hand, for the nonlinear set-valued esti-
mation, interesting approaches have been developed based
on Particle Filters principle [7], [8] where efficiency and
accuracy depend mostly on the number of particles used
in the estimation which may require a high computation
time. Other set-membership filtering techniques aiming to
obtain the best guaranteed result/conservatism tradeoff have
also been proposed in [9], [10]. In addition to the known
advantages and drawbacks of these methods, all of them
necessitate adherence to the criterion of differentiability.

Our research focuses on interval filtering as a means to
overcome these limitations. Interval filtering accommodates
nonlinear systems with state variables confined within pre-
defined intervals, relaxing the necessity for strict adherence
to differentiability criteria.

In this article, a generic filter for continuous time non-
linear systems with bounded state while circumventing the
necessity for differentiability conditions is presented. It is
organised as follows. In Section II, some important defi-
nitions, notations and basic concepts needed for the esti-
mation strategy developments are provided. Then, Section
III presents the main result of the paper which is the
guaranteed state estimation obtained without assumption of
differentiability on the dynamical function. Section IV shows
the simulations results on two nonlinear systems: the first one
is a nonlinear suspension model identified on a real vehicle
and the second one is a nonlinear chemical reactor. These
simulation results highlight the efficiency of the proposed
estimation strategy. Finally, conclusions and future works are
described in Section V.

II. NOTATIONS AND BASIC CONCEPTS

A real interval (matrix) of dimension p × q is defined
as [X] ≡ [X,X]

△
=
{
X ∈ Rp×q : X ≤ X ≤ X

}
where

sup([X]) ≡ X , inf([X]) ≡ X , mid([X]) = (X + X)/2,
rad([X]) = (X − X)/2, width([X]) = X − X are called
respectively the largest, the smallest, the midpoint, the radius
and the width element (or matrix) of [X]. Denote also
[X] = mid([X]) ± rad([X]) and write X ∈ [X] to indicate
a punctual element X belonging element-wise to [X]. Basic
interval operators ⋄ ∈ {+,−,×,÷} defined in [11] are used
in computation (no approximation algorithm is necessary)
and more general operators are constructed by means of
inclusion function [f ] defined in Definition 1 below. In
practice, the Intlab package [12] developed for Matlab (also
existing in Octave and C/C++) is used for computations.
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Definition 1: An inclusion function of f : D ⊆ Rm →
Rn is a function [f ] that maps any interval [x] ⊂ D to an
interval [f ]([x]) ⊂ Rn which contains the image set f([x]).
The minimal inclusion function of f is a function [f ]∗ such
that (s.t.) for all [x] ⊂ D, [f ]∗([x]) is the smallest interval
containing f([x]).

A sequence of elements is noted as w1, ..., wk or w1 : wk

or w1:k where the notation p : q (p ≤ q) is used for a range
from p to q with step of 1. The function I(.) is defined as
I(x) = 1 if the (vector of) conditions x are true and I(x) = 0
otherwise. Denote {xt(i)}i=1:n for the components of an
indexed vector xt ∈ Rn, t ∈ I ⊂ R and {xi}i=1:n for
those of a non indexed vector x ∈ Rn. By abuse of notation,
following operators are componentwise : the absolute value
operator, the operators ⋆ ∈ {+,−,×,÷,≤,≥, <,>,∨,∧}
where x ∨ δ = max(x, δ) and x ∧ δ = min(x, δ).

III. MAIN RESULTS

A. Continuous time nonlinear system

Consider the following general continuous system{
ẋ(t) = f(x(t), u(t)),
x(0) = x0,

t ≥ 0 (1)

where x(t) ∈ Rnx is the system states, u(t) ∈ Rnu inputs
and f : D = Dx ×Du → Rnx a vector-valued function s.t.

f(x, u) =
(
f1(x, u), ..., fnx(x, u)

)T
, x ∈ Dx, u ∈ Du, (2)

where Dx ⊆ Rnx , Du ⊆ Rnu and {fi}i=1:nx
are real

functions. Note that Rnx × Rnu ≡ Rnx+nu and xt is used
interchangeably with x(t) to simplify the notation.

From the ODE’s theory, a solution x(t) of (1) is a
continuously differentiable function of t on some interval
I ⊆ [0,+∞) and s.t. x(0) = x0. So, x(t) (which is
differentiable) and ẋ(t) are continuous functions of t ∈ I
and thus, by writing

f(x(t), u(t)) = f ◦ ϑ(t), ϑ(t) = (x(t), u(t)), (3)

one deduces that f , ϑ and u are necessarily continuous
functions to ensure the continuity of ẋ. Furthermore, since
x(t) is continuous, then ∀τ > 0, ∀t ∈ Iτ = [0, τ ]:

xτ
△
= inf

t∈Iτ
{x(t)} ≤ x(t) ≤ sup

t∈Iτ

{x(t)} △
= xτ , (4)

or equivalently, x(t) ∈ [xτ ] = [xτ , xτ ].
In the literature, a majority of researches assume the

smoothness of f by its differentiability. In the present text,
we consider a class of functions f possessing a weakened
smoothness property but restricted by some conditions in a
practical view of filtering / state estimation and controlling
purposes. In that view point, there is no necessity to handle
with a system in which its state magnitudes ∥x(t)∥ tends to
∞ (as t → ∞), since in that case, after a time τ > 0, the
states are no longer in the scope of estimation or control.
Three overt ways causing this worst-case are as follows:
(W1) ∥ẋ(t)∥ = ∥f(x(t), u(t))∥ → ∞ as t→∞.
(W2) ∃τ > 0 s.t. ∀t ≥ τ : ∥ẋ(t)∥ ∈ [α] with α > 0.

(W3) c > 0 s.t. limt→∞ ∥ẋ(t)∥ = c.
Some researches do not consider these concerns in their
developments and some other consider the problem for only a
finite time horizon [0, τ ]. The last situation turns the problem
into bounded state condition: x(t) ∈ [xτ ], ∀t ∈ [0, τ ], as
stated in (4).

Furthermore, practical systems, in particular engineering
ones, are generally constrained by many technical limits
(material, operation energy, control working conditions,...)
so that their considered states are finite (e.g. rotor speed,
yaw angle, suspension position,...). Thus, in the following
development, we devote to a bounded state context as a
constraint to the system (1) in which the function f is
not necessarily differentiable and differs from (W1)-(W3)
aforementioned. This means that for any solution x(t) of (1),
along the curve {ϑ(t) = (x(t), u(t)) ∈ Dx ×Du | t ∈ I}:
(F1) f is bounded (constant bounds containing 0),
(F2) f = 0 infinitely many time (or f → 0) as t→∞,
(F3) f does not converge to any constant c ̸= 0.
Besides, any valid input u(t) should be finite and lies nec-
essarily in some range. Literally, we assume the following:
(H1) There are finite intervals [x] and [u] so that

x(t) ∈ [x] and u(t) ∈ [u] , ∀t ∈ I. (5)

Note that, in the case of finite time horizon, [x] ≡ [xτ ] for
some fixed τ > 0, and similarly for [u].

So, any continuous function f defined on the whole space
Rnx+nu and well describing the relation (1) can now be
considered as being restricted to the domain D = [x]×[u], in
the sense that f vanishes outside of D. Then the range of f is
contained in an interval [f ] which can be obtained by means
of an inclusion function. In other words, by assuming (H1),
condition (F1) naturally holds for any continuous function f
while (F2)-(F3) can be ignored since the system states have
already assumed to be bounded.

This extension allows us to handle with various class of
functions including linear functions, Lipschitz functions, Lp

(p ∈ [1,∞)) continuous functions,... defined on Rnx+nu ,
provided that (H1) is satisfied. In particular, the class of
Lipschitz function is the first one worthily to be considered
after those of linear and continuously differentiable functions
for two reasons: (a) the former effectively contains the others
(with bounded domains), (b) the former property concerns
the uniqueness of the solution of system (1) and provides
nicely bounds for it.

The system (1) can be equivalently written as:

x(t) = x0 +

∫ t

0

f(x(s), u(s))ds , ∀t ∈ I. (6)

Now, suppose further that:
(H2) x0 belongs to some known interval [x0] ⊂ [x].

Then, the following proposition provides the largest guar-
anteed results that include the corresponding real states at
any time instance t ∈ I . The issue that we have to resolve in
the next section is how to obtain better reductions of these
results at desired discrete times.
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Proposition 1: Consider system (1) with assumptions
(H1)-(H2). Then at any time t ∈ I:

xt
△
= x ∨

(
x0 + t.f

)
≤ x(t) ≤ x ∧

(
x0 + t.f

) △
= xt, (7)

and denote [xt] = [xt, xt] = [x] ∩ ([x0] + t.[f ]).
The proposition is obtained by direct computation from (6)
using (H1)-(H2), its proof is thus deliberately omitted here.

B. Discretized system

Let 0 = t0 < t1 < ... s.t. T = tk− tk−1, k ∈ N+, is small
enough and assuming that u(t) is constant in each interval
[tk−1, tk), i.e. u(t) ≡ uk, ∀t ∈ [tk−1, tk). For simplicity, let
x(tk) = xk, ∀k ∈ N∗, αf = f − f and βf = |f | ∨ |f |. The
system (1) can be discretized at t1, t2, ... and rewritten as:

xk = x0 +

∫ kT

0

f(x(s), u(s))ds , (8)

= xk−1 +

∫ tk

tk−1

f(x(s), uk)ds , k ∈ N∗. (9)

Then, consider that

(8) ⇐⇒ xk = xk−1+T.f(xk−1, uk)+ϵk , k ∈ N∗, (10)

with discretization errors ϵk’s determined by

ϵk =

∫ tk

tk−1

[f(x(s), uk)− f(xk−1, uk)] ds . (11)

Applying Proposition 1, one obtains

xk ∈ [xk] = [x(kT )] = [x] ∩ ([x0] + k.T.[f ]) ,

which is used as a consistency condition later on. Now, in
order to refine this guaranteed interval, we propose to use
further assumption as follows.
(H3) Assume that the function f is either:

componentwise Lipschitz with coefficients Li > 0 and
L = (L1, ..., Lnx

)T :

|f(x, u(t))− f(x̃, u(t))| ≤ L.∥x− x̃∥ , (12)

or totally Lipschitz with a coefficient L > 0:

∥f(x, u(t))− f(x̃, u(t))∥ ≤ L.∥x− x̃∥. (13)

Remark 1: Noting that |z| ≤ ∥z∥, ∀z ∈ Rn, so if (13)
holds then (12) also holds in which L is a scalar. Reversely,
if (12) holds then ∥f(x, u(t))− f(x̃, u(t))∥ ≤ ∥L∥.∥x− x̃∥.

Proposition 2: Consider system (10) with assumptions
(H1)-(H2), then ∀k ∈ N∗:
(2.1) |ϵk| ≤ T · αf and ∥ϵk∥ ≤ T · ∥αf∥.
(2.2) Assume further that f satisfies (H3). Then the follow-

ing inequalities hold true

|ϵk| ≤ T · (T · ∥βf∥ · L ∧ αf ) , (14)
∥ϵk∥ ≤ T · (T · ∥βf∥ · ∥L∥ ∧ ∥αf∥) . (15)

Remark 2: If (H3) is not verified or it is hard to find the
Lipschitz coefficient L, one can consider that L ≡ ∞ and
(14)-(15) remain valid, whence (2.1) ≡ (2.2).

Proof: Let k ∈ N∗ and i = 1 : nx, we have:

|ϵk(i)|2=
∣∣∣∫ tk

tk−1

(
fi(x(s), uk)− fi(xk−1, uk)

)
ds
∣∣∣2

≤
∫ tk
tk−1

12ds
∫ tk
tk−1
|fi(x(s), uk)− fi(xk−1, uk)|2 ds

= T ·
∫ tk
tk−1
|fi(x(s), uk)− fi(x(tk−1), uk)|2ds (∗)

where the Holder’s inequality is used to obtain the upper
bound in the above evaluation. Since f([x], [u]) ⊂ [f ], then
|fi(x(t), uk) − fi(x(tk−1), uk)| ≤ f i − f

i
≡ width([fi]),

and also |fi(x(t), uk)− fi(x(tk−1), uk)| ≤ 2
(
|f i| ∨ |f i

|
)
.

Since rad([fi]) ≤ |f i| ∨ |f i
| then |ϵk|2 ≤ T 2 ·

(
f − f

)2
and (2.1) is proved.

From (H3) and (∗), one obtains:

|ϵk|2≤ T ·
∫ tk
tk−1

L2.∥x(s)− x(tk−1)∥2ds ,

= TL2
∑nx

i=1

∫ tk
tk−1

∣∣∣∫ s

tk−1
ẋτ (i)dτ

∣∣∣2 ds
≤ TL2

∑nx

i=1

∫ tk
tk−1

(∫ s

tk−1
12dτ

)(∫ s

tk−1
|ẋτ (i)|2 dτ

)
ds

≤ T 3L2
∑nx

i=1

∫ tk
tk−1
|fi(x(τ), u(τ))|2 dτ

≤ T 4L2
∥∥(∣∣f ∣∣ ∨ |f |)∥∥2 ,

where the Holder’s inequality is used in the third inequality.
So (2.2) is implied using the obtained result and (2.1).

Corollary 1: Consider Proposition 2 and let δ > 0. Then
|ϵk| ≤ ∥ϵk∥ ≤ δ, ∀k ∈ N∗, if

T ≤ T
△
=

(
δ

∥αf∥
∨

√
δ

∥βf∥.∥L∥

)
.

Proof: Consider the right hand side of (15) and denote
it by RHS(15). If

T 2.∥βf∥.∥L∥ ≤ δ or T.∥αf∥ ≤ δ ,

then ∥ϵk∥ ≤ RHS(15) ≤ δ. So, the corollary is implied.

Let’s use following notations in the sequel: For all k ∈ N∗,
• x̂k

△
= x̂k−1 + T.f(x̂k−1, uk) be the state estimate,

• ek
△
= xk − x̂k be the estimation error.

Proposition 3: Consider system (10) with assumptions
(H1)-(H3). Let δ > 0, T ≤ T according to Corollary 1. Let
[x0] = m0 ± ρ0 with m0 = mid([x0]), ρ0 = rad([x0]) and
the initial estimate be chosen as x̂0 = m0. For all k ∈ N∗,
let [x̂k] = x̂k ± ρk be an interval estimate of xk, where

x̂k = x̂k−1 + T.f(x̂k−1, uk) ,

ρk = ρk−1 + T.
(αf

σ
∧ L
)
.∥ρk−1∥+ δ , (16)

with σ = ∥ρ0∥+ δ · I(∥ρ0∥ = 0). Then :

ρk−1 ≤ ρk and ∥ρk−1∥ ≤ ∥ρk∥ , (17)
xk ∈ [x̂k] , (18)
|ek| ≤ ρk . (19)

Proof: Firstly, (17) is directly deduced from (16) and
(18) holds if (19) is satisfied. So it remains to prove (19).

By assumptions, one gets

x0 ∈ [x̂0], |e0| = |x0 − x̂0| = |x0 −m0| ≤ ρ0,
e1 = x1 − x̂1 ,

= x0 − x̂0 + T. (f(x0, u1)− f(x̂0, u1)) + ϵ1.
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Thus
|e1| ≤ |x0 − x̂0|+ T.|f(x0, u1)− f(x̂0, u1)|+ |ϵ1|

≤ |e0|+ T. (αf ∧ L.∥e0∥) + δ

≤ ρ0 + T.
(

αf

∥ρ0∥ ∧ L
)
.∥ρ0∥+ δ

= ρ0 + T.
(αf

σ ∧ L
)
.∥ρ0∥+ δ ≡ ρ1 ,

where the last equality is verified for either ρ0 = 0 or not.
Assuming now that (19) is satisfied for a k > 1, one proves

that it also holds for k+1. Indeed, with the similar strategy,

|ek+1| ≤ ρk + T.
(

αf

∥ρk∥ ∧ L
)
.∥ρk∥+ δ

≤ ρk + T.
(αf

σ ∧ L
)
.∥ρk∥+ δ ≡ ρk+1 ,

regarding 1
∥ρk∥ ≤

1
∥ρ1∥ ≤

1
σ , ∀k ≥ 2, thanks to (17).

C. Filter algorithms

1) Generic Guarantor algorithm: In the following, we
propose a Generic Guarantor (GG) algorithm by applying
Proposition 3. As this algorithm is generic, any refined
consistency step could be appreciated and used in addition,
e.g. using measurements with contemporary contractors.

Algorithm 1 GENERIC GUARANTOR (GG)

1: Initialization: L, f , [x], [u], [x0], δ, {uk}k=1:N .
% Compute:

2: [f, f ] = [f ]([x], [u]) ;
3: Choose a T : 0 < T ≤ T (defined in Corollary 1).
4: x̂0 = mid([x0]); ρ0 = rad([x0]); [x̂0] = [x0];
5: σ = ∥ρ0∥+ δ · I(∥ρ0∥ = 0) ;
6: TL = T ·

[
(f − f)/σ ∧ L

]
;

7: for k = 1, 2, 3, ...N do
% Propagation step:

8: x̂k = x̂k−1 + T.f(x̂k−1, uk);
9: ρk = ρk−1 + TL.∥ρk−1∥+ δ ;

10: [x̂k] = x̂k ± ρk ;
% Consistency step:

11: [x̂k]← [x̂k] ∩ ([x0] + k.T.[f ]) ∩ [x] ;
12: ρk ← rad([x̂k]) ;
13: end for

Remark 3: The quality of GG algorithm is affected by the
Lipschitz coefficient L and the bounded range [f, f ]. The
smaller their sizes, the better the algorithm’s performance.

2) Robust Generic Guarantor algorithm: The Robust
Generic Guarantor (RGG) algorithm is proposed in order
to make the GG algorithm more efficient and robust in
consideration of: a) penalizing the wrapping effect of in-
terval computations; b) tolerating the errors which might be
caused by using the intersection operator inside of contractor
methods.

The algorithm is based on the following two principles:
(P1) Penalize the ρk’s increase by a factor γk. The choice

of γk depends on f . It should be a function of k decreasing
to 0 at a rate depending on the application, e.g.:

γk = n · k−1 or γk = (log kn)
−1 or else,

with a fixed chosen number n > 0. Using this factor γk, it is
still guaranteed that ρk ≤ ρk+1, ∀k ∈ N∗, and furthermore

ρk ≤ ρk+1 ≤ ρ = lim
t→∞

ρk <∞

where ρ is proportional to width([x]). This is coherent with
the fact that: [x̂k] ⊆ [x] ⇒ ρk ≤ width([x]), ∀k ∈ N∗.

(P2) Apply an alternative regularization method vis-a-vis
existing contractors to regularize the estimate consistency
using linear measurements [yk] = µk ± σk, where µk =
mid([yk]), σk = rad([yk]) is the measure precision and as-
suming that the real measurement yk = C.xk ∈ [yk]. Assume
further that [yk] ⊆ C.[x̂k] where [x̂k] is the estimate interval
provided by the propagation step of the GG algorithm. The
proposed method is supported by following propositions.

Proposition 4: Let α, β ∈ R and [x], [y] ⊂ R. Then
width(α.[x]+β.[y]) = |α|.width([x])+ |β|.width([y]). (20)

Proof: The proposition is proved by considering three
cases (α, β ≥ 0; α, β ≤ 0;β < 0 < α) using interval com-
putations included: [u] + [v] = [u+ v, u+ v], −[u] = [u, u]
and λ.[u] = sign(λ) [|λ|.u, |λ|.u], ∀λ ∈ R.

Proposition 5: Let [x], [y] ⊂ R: width([x]) ≤ width([y]).
Let [z] = α.[x] + (1− α).[y] with α ∈ [0, 1], then
a) width([x]) ≤ width([z]) ≤ width([y]),
b) [x] ∩ [y] ⊆ [z].

Proof: By applying Proposition 4, width([z]) is
a weighted average of width([x]) and width([y]). Thus,
width([z]) obtains an intermediate value between the other
two width values. The last statement of the Proposition is
proved regarding:
[z] = {z : ∃x ∈ [x],∃y ∈ [y], z = αx+ (1− α)y} ,
∀u ∈ [x] ∩ [y],∃u ∈ [x],∃u ∈ [y], u = αu+ (1− α)u.

The regularization method consists in replacing [x̂k] in the
RHS of line 11 of the GG algorithm by a regularized term:

Reg([x̂k]) = α · C+ · [yk] + (1− α) · [x̂k] , (21)

where C+ is the Moore-Penrose pseudoinverse of C and
α ∈ [0, 1]nx is a chosen regularization factor. Knowing that
[yk] contains the exact measurement yk = C · xk, the set
C+·[yk] provides the best approximation of the inverse image
C−1([yk]) regarding that:

∀u ∈ C+ ·[yk], ∃y ∈ [yk], ∃x ∈ [x] : u = C+ ·y = C+ ·C ·x,

and hence C · u = C · x = y (since C ·C+ ·C = C), while

xk ∈ C−1([yk]) = {x ∈ [x] : ∃y ∈ [yk], C · x = y} .

If C is invertible, then C+ · [yk] = C−1 · [yk] = C−1([yk])
but in general,

C+ · [yk] ⊆ C−1([yk]) ⊆ C+ · [yk] + Ker(C),

where Ker(C) denotes the kernel of C, and one desires xk

is contained in C+ · [yk] or “close” to it.
So, equation (21) provides a regularization of [x̂k] by

taking into account the xk information by the use of C+ ·[yk]
controlled with a regularization factor α. The smaller α is
used, the lesser influence of C+ · [yk] is contributed and
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hence the fact that xk ∈ Reg([x̂k]) is more conservative, and
vice versa. For α = 0 (and γk = 1), Reg([x̂k]) = [x̂k] and
the GG algorithm is recovered. In any case, by Proposition
5, Reg([x̂k]) contains (C+ · [yk]) ∩ [x̂k] and has a reduced
width compared to its former [x̂k] when an appropriate α is
applied. Thus, the proposed method is controllable, robust
and simple to implement. It is summarized as follows:

Algorithm 2 ROBUST GENERIC GUARANTOR (RGG)
Retain the entire GG algorithm with some replacements:

i) ρk = ρk−1 + (T.La.∥ρk−1∥+ δ) ∗ γk (line 9)
ii) [x̂k] ← Reg([x̂k]) ∩ ([x0] + k.T.[f ]) ∩ [x] (line 11)

for a chosen penalization factor γk and Reg([x̂k]) is
determined as (21).

IV. APPLICATIONS

A. Suspension model

In this simulation, we consider the Magneto-Rheological
(MR) damper model that was used in [13] with almost all
parameters and settings are kept unchanged. This model is
represented by the following system:{
msz̈s(t) = −kszdef (t)− Fd(t),
musz̈us(t)= kszdef (t) + Fd(t)− kt(zus(t)− zr(t)) ,

(22)

where zdef (t) = (zs(t)−zus(t)) is the suspension deflection,
zs and zus are the chassis and unsprung masses bounce, ms

and mus are sprung and unsprung masses, zr is the road
disturbance and Fd is the damper force defined by

Fd(t) = c0żdef (t) + k0zdef (t)
+ fI(t) tanh (c1żdef (t) + k1zdef (t)) ,

with c0, k0, c1, k1 chosen as [14]: c0 = 1500 (Nsm−1),
c1 = 129 (sm−1), k0 = 989 (Nm−1), k1 = 85 (m−1), and
fI is a controllable force depending on the input current
I and satisfying the dissipativity constraint 0 < fmin ≤
fI ≤ fmax. In this simulation, fmin = 1000 Nm−1, fmax =
1500 Nm−1 and other parameter values used are presented
in Table I issued from [15].

Symbol Value Unit Signification
ms 315 kg sprung mass
mus 37.5 kg unsprung mass
ks 29500 Nm−1 suspension linearized stiffness
kt 208000 Nm−1 tire stiffness
zdef [−0.09; 0.05] m suspension bound (stroke limit)

TABLE I
LINEARIZED RENAULT MÉGANE COUPÉ PARAMETERS OF THE QUARTER

VERTICAL MODEL (FRONT SUSPENSION).

Putting: xt = [zs(t), żs(t), zus(t), żus(t)]
T as state

variable under consideration whose components are
{xt(i)}i=1:4, ut = fI(t) controllable input and wt = zr(t)
disturbance, then (22) has the state-space representation

ẋt = f(xt, ut, wt), f = [f1, ..., f4]
T , (23)

where f1(xt, ut, wt) = xt(2), f3(xt, ut, wt) = xt(4),
f2(xt, ut, wt) =

(
aTxt − ut tanh(b

Txt)
)
/ms,

Fig. 1. MR damper model - Estimation results by RGG with γk = k−1

and α = 0.

Fig. 2. MR damper model - Estimation results by RGG with γk = k−1

and α = (2.10−2, 10−4, 2.10−2, 10−4)T .

f4(xt, ut, wt) =
(
cTxt + ut tanh(b

Txt) + ktwt

)
/mus,

a = [−ks − k0,−c0, ks + k0, c0]
T , b = [k1, c1,−k1,−c1]T ,

c = −a− [0, 0, kt, 0]T . The functions {fi}i=1:4 are Lipschitz
according to xt with coefficients: L1 = L3 = 1,
L2 = (∥a∥+ fmax.∥b∥) /ms, L4 = (∥c∥+ fmax.∥b∥) /mus,
computed by using following properties: ∀x, y ∈ R,
| tanh(x)| ≤ 1∧ |x|, | tanh(x)− tanh(y)| ≤ | tanh(x− y)|.

Further numerical setting in order to apply the proposed
algorithms is as follows: [u] = [1000, 1500], [w] = [0, 0.2],
T = 10−4, [x] = ([−0.3, 0.3], [−1, 1], [−0.3, 0.3], [−1, 1])T ,
δ = 0.1, [x0] = 0.02× ([−1, 1], [−1, 1], [−1, 1], [−1, 1])T .

The initial state x0 is chosen at random in [x0]. For
N = 5.104, ∀k = 1 : N , uk = mid([u]), wk =
sup([w]) × max{0, sin(π.k.T )} and xk is generated using
(23). Then yk = zdef = xk(1) − xk(3) simulated by using
C = [1, 0,−1, 0] and [yk] = (C.xk ± 0.05) ∩ [−0.09, 0.05]
regarding the zdef ’s constraint (see Table I).

The estimation result by applying the RGG algorithm is
shown in Figures 1 and 2, in which green dashed lines
are real states, red lines are sup([x̂k]) and inf([x̂k]). As
commonly known, the GG algorithm provides more con-
servative estimation results but less practically efficient. In
this simulation, using for instance the Forward-Backward
Propagation (FBP) contractor together with the GG algorithm
is also almost inefficient in terms of contraction effect. The
reason is that [xk(1)] and [xk(3)] are almost equal for all
k = 1 : N which makes the contraction procedure insight
of FBP contractor works with low success. Here, figures 1
and 2 emphasize the effect of the parameters γk, α on the
efficiency of the proposed RGG.
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B. Chemical reaction

In this part, we consider another nonlinear system describ-
ing the chemical reaction related to oil-reservoir often used in
the literature [16], [17], [18]. The ODE system is as follows:

ẋt = f(xt) =
(
xt(2), x2

t (2)− 3/[s+ x2
t (1)]

)T
(24)

where xt = (xt(1), xt(2))
T is the system state and s ∈

[10−4, 10−1] is the stiffness coefficient. The system is subject
to initial value sensitivity, step-size sensitivity and stiffness
dependency (Figure 3).

Initial value sensitivity. From left to right:

x0 = (10, 0)T , x0 = (9.7179,−0.3373)T , x0 = (9.9347, 0.2384)T .

Fig. 3. Chemical reaction model sensitivity.

The RGG simulation results are shown in Figure 4,
assuming the exact initial value x0 = (10, 0)T , the stiffness
s = 10−3 and time horizon [0, 50](s) (similar to [16]). The
step-size is chosen as T = 10−4(s) and other parameters
needed for the algorithm are γk = k−2 and α = (0, 0)T (i.e.
without measurement), ρ0 = 0, δ = 1 = σ, L = (1, 1010)T ,
[x] = ([−15, 15], [−25, 5])T .

Fig. 4. Chemical reaction - Estimation results by RGG. Dashed lines: xk .
Red lines: sup([x̂k]). Blue lines: inf([x̂k]).

V. CONCLUSION

The generic interval filter proposed in this paper is simple,
robust and controllable. It can be used in a wide range of ap-
plications, in which processes can be modeled by continuous
functions restricted on bounded domains regardless of their
differentiability. A crucial conception part of the method,
making it flexible and efficient, is the compromise interac-
tively of the step-size T and the control factors δ, γk, α.
As the computation engines and sensors are more and more
powerful, the use of an appropriate small step-size T is no
longer an intractable issue. However, if smaller step size can
not be acheived, the effect of the control factors become more

crutial in the algorithm and vise versa. The proposed method
might be used as a first verification of estimation results or
a benchmark tool in comparison with other filters.

REFERENCES

[1] L. Jaulin, “Nonlinear bounded-error state estimation of continuous-
time systems,” Automatica, vol. 38, no. 6, pp. 1079–1082, 2002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0005109801002849

[2] M. H. Davis and S. I. Marcus, “An introduction to nonlinear filtering,”
in Stochastic Systems: The Mathematics of Filtering and Identification
and Applications: Proceedings of the NATO Advanced Study Institute
held at Les Arcs, Savoie, France, June 22–July 5, 1980. Springer,
1981, pp. 53–75.

[3] G. Welch and G. Bishop, “An introduction to Kalman Filter,” in
International Conference on Computer Graphics and Interactive
Techniques, 1995. [Online]. Available: https://api.semanticscholar.org/
CorpusID:215767582

[4] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter
to nonlinear systems,” in Signal processing, sensor fusion, and target
recognition VI, vol. 3068. Spie, 1997, pp. 182–193.

[5] W. Bai, W. Xue, Y. Huang, and H. Fang, “On extended state based
Kalman filter design for a class of nonlinear time-varying uncertain
systems,” Science China Information Sciences, vol. 61, pp. 1–16, 2018.

[6] Y. Liu, Z. Wang, X. He, and D.-H. Zhou, “Filtering and fault detection
for nonlinear systems with polynomial approximation,” Automatica,
vol. 54, pp. 348–359, 2015.

[7] F. Abdallah, A. Gning, and P. Bonnifait, “Box particle filtering for
nonlinear state estimation using interval analysis,” Automatica, vol. 44,
no. 3, pp. 807–815, 2008.

[8] Q. H. Lu, S. Fergani, and C. Jauberthie, “Reinforced likelihood box
particle filter,” IEEE Control Systems Letters, vol. 7, pp. 502–507,
2022.

[9] A. A. de Paula, G. V. Raffo, and B. O. Teixeira, “Zonotopic filtering for
uncertain nonlinear systems: Fundamentals, implementation aspects,
and extensions [applications of control],” IEEE Control Systems Mag-
azine, vol. 42, no. 1, pp. 19–51, 2022.

[10] D. Bhattacharjee and K. Subbarao, “Set-membership filter for discrete-
time nonlinear systems using state-dependent coefficient parameteri-
zation,” IEEE Transactions on Automatic Control, vol. 67, no. 2, pp.
894–901, 2021.

[11] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval
Analysis, with Examples in Parameter and State Estimation, Robust
Control and Robotics. London: Springer-Verlag, 2001.

[12] S. Rump, “INTLAB - INTerval LABoratory,” in Developments in Re-
liable Computing, T. Csendes, Ed. Dordrecht: Kluwer Academic
Publishers, 1999, pp. 77–104, http://www.tuhh.de/ti3/rump/.

[13] Q. H. Lu, S. Fergani, and C. Jauberthie, “Fault detection combining
adaptive degrees of freedom χ2-statistics and interval approach for
nonlinear systems,” in The 22nd World Congress of the International
Federation of Automatic Control (IFAC), Yokohama, Japan, July
2023. [Online]. Available: https://laas.hal.science/hal-04069589

[14] E. Nino-Juarez, R. Ramirez-Mendoza, R. Morales-Menendez,
O. Sename, and L. Dugard, “Minimizing the frequency effect in a
black box model of a magneto-rheological damper,” in Mini confer-
ence; 11th, Vehicle system dynamics, identification and anomalies.
Technical University of Budapest, 2008, pp. 733–742.

[15] S. Fergani, “Robust multivariable control for vehicle dynamics,” PhD
Thesis, Grenoble INP, GIPSA-lab, Control System dpt., Grenoble,
France, October 2014.

[16] O. Bouissou, A. Chapoutot, and A. Djoudi, “Enclosing Temporal
Evolution of Dynamical Systems Using Numerical Methods,” in
5th NASA Formal Methods Symposium, ser. LNCS. Springer
Verlag, May 2013, vol. 7871, p. 108. [Online]. Available:
https://hal.science/hal-00819730

[17] J. Alexandre Dit Sandretto and A. Chapoutot, “Validated Explicit
and Implicit Runge-Kutta Methods,” Reliable Computing electronic
edition, vol. 22, July 2016. [Online]. Available: https://hal.science/
hal-01243053

[18] J. R. Cash and A. H. Karp, “A variable order runge-kutta method for
initial value problems with rapidly varying right-hand sides,” ACM
Trans. Math. Softw., vol. 16, pp. 201–222, 1990. [Online]. Available:
https://api.semanticscholar.org/CorpusID:1133671

6464


