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Abstract— Quantum process tomography is an essential task
for characterizing the dynamics of quantum systems and
achieving precise quantum control. In this work, we propose a
machine learning-based quantum process tomography method
to reconstruct the Choi matrices of quantum channels from
the measurements of the output states. Numerical results
demonstrate that the proposed method exhibits a significant
potential to achieve accurate reconstruction of different quan-
tum channels.

I. INTRODUCTION

The characterization of quantum systems is a fundamental
task in quantum control and quantum information process-
ing [1], [2], [3]. The identification of quantum states is
indispensable in verifying experimental outcomes, which has
been developed as a general scheme, i.e., quantum state
tomography. Meanwhile, extraction of the evolution of states
(i.e., quantum channels) is another vital task in benchmarking
quantum operations and verifying the performance of quan-
tum devices. A typical framework to formulate this issue
is known as quantum process tomography (QPT), aiming to
specify the parameters of the quantum map from input states
to output states.

Based on the system architecture, QPT generally can be
classified into three categories: standard quantum process
tomography (SQPT), ancilla-assisted process tomography
(AAPT), and direct characterization of quantum dynamics
(DCDQ) [4]. In SQPT, the input states have the same dimen-
sion as the quantum channel, whose parameters are obtained
by reconstructing the output states after the evolution. In
AAPT and DCQD, an auxiliary system is attached to the sys-
tem to compose an extended Hilbert space, where the input
states are prepared and the measurements are performed [4].
However, due to the technical challenges associated with im-
plementing high-dimensional states in the extended space for
AAPT and the requirement of entanglement in DCQD [5],
[6], we will focus on SQPT in this paper, where a set of
input states evolve into a set of output states and the output
states are measured in order to determine the parameters of
the quantum channel.
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Several representations have been proposed for quantum
channels, including Kraus operators, the Choi matrix, and
the χ matrix [4]. The reconstruction of the Choi matrix
of a quantum channel can be achieved through maximum
likelihood estimation (MLE), which has been previously
studied in [7], [8]. To reconstruct the process matrix of
unitary maps, a two-stage QPT method based on linear
regression estimation (LRE) has been developed [9], and
has been extended to non-unitary operations [10]. Minimum
measurement resources required to estimate the completely
positive trace-preserving (CPTP) maps have been investi-
gated using direct and convex optimization methods [11],
[12]. Additionally, the identification of CPTP maps has been
explored using iterative projection algorithms [13], [14].

Quantum process tomography is essentially a data process-
ing problem, where machine learning (ML) techniques [15],
[16] can be applied for characterization of patterns from
quantum data. The use of ML in various quantum tasks has
been extensively investigated [17], [40] and has achieved
significant success in applications such as verifying quan-
tum devices [18], controlling quantum systems [19], [20],
[21], [22], and compressing quantum data [23], [24]. More
recently, the use of ML has been introduced to quantum
state tomography and has made remarkable achievements.
For instance, fully connected networks [24] and conventional
neural networks [25], [26], [27] have been designed to
reconstruct both pure and mixed states. The potential of neu-
ral networks to denoise state-preparation-and-measurement
errors has been investigated [28], and their favorable gener-
alization properties have enhanced the estimation of states
under limited resources [29], [30].

For an n-qubit system, there are (16n−4n) real parameters
describing a completely positive and trace preserving (CPTP)
quantum channel. To estimate a quantum channel under
standard QPT, a set of input states are prepared to form a
tomographically complete set, spanning the Hilbert subspace,
where the minimal number of required input states grows
exponentially with n. Similarly, a set of measurement must be
performed to reconstruct the output states, with the required
measurement resource for each state scaling exponentially
with n [31]. In practical applications, the observed dis-
tributions may not be well approximated due to limited
resources, leading to inaccurate estimation. Since machine
learning is capable of extracting information from quantum
measurements [25], [26], [27], it is natural to explore how
ML can be utilized to characterize quantum channels based
on the measurement of the output states.

Drawing inspiration from the success of deep neural
networks in reconstructing density matrices of quantum
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states, we propose a deep neural network quantum process
tomography (DNN-QPT) method to reconstruct the Choi
matrix (which has a similar physical interpretation as the
density matrix) of a quantum channel. We demonstrate the
efficiency and potential of this approach through simulations
on different channels, comparing it with traditional methods
such as LRE and MLE. Our results show a significant
improvement in average fidelity, indicating the potential
of DNN-QPT to accurately reconstruct quantum channels.
The rest of this paper is organized as follows. Section II
introduces several basic concepts about quantum process
tomography and traditional methods. In Section III, deep
neural network quantum process tomography is presented in
detail. Numerical results on different quantum channels are
presented in Section IV. Concluding remarks are drawn in
Section V.

II. PRELIMINARIES

This section provides an overview of some fundamental
concepts related to quantum process tomography. It also
provides a brief introduction to traditional methods such as
maximum likelihood estimation (MLE) and linear regression
estimation (LRE).

A. Representations of quantum channels

Quantum channels can be described as linear maps that
transform density matrices into other density matrices. Let
Λ be a map that transforms an input state ρin ∈ H1 into
an output state ρout = Λ(ρin) ∈ H2. Let d1 and d2 be the
dimensions of H1 and H2, respectively. Generally, d1 and d2
are not necessarily equal. In this work, we only consider the
case of d1 = d2 and utilize a unified notation as d = d1 = d2 to
represent the dimension of the quantum channel. However,
the notation of d1 and d2 are utilized to specify the sub-
systems that are involved in the Choi matrix representation.
For a quantum channel to be considered physical, it must
satisfy two conditions: (i) Λ is completely positive (CP),
and (i) Λ is trace-preserving (TP). Then, we will introduce
different mathematical representations for Λ, including Kraus
operators, the Choi matrix and the χ matrix.

Kraus operator representation: The transformation from
the input state ρin to the output state ρout can be expressed
using the Kraus operator-sum representation [32]:

ρout = Λ(ρin) = ∑
i

AiρinA†
i , (1)

where Ai is a set of mappings (known as Kraus operators)
that maps ρin to ρout . This equation already satisfies the
condition of complete positivity, and the trace-preserving
condition requires the following completeness relation

∑
i

A†
i Ai = I (2)

Choi matrix representation: According to the Choi-
Jamiolkowski isomorphism, every quantum channel Λ is in
one-to-one correspondence with an operator QChoi [33], such
that

Λ(ρin) = Tr1(QChoi(ρ
T
in⊗ Id2)), (3)

where Tr1(ρ) denotes the partial trace with respect to the
first system, i.e., the reduced state when partially observing
the second system [1] and we have

QChoi = ∑
i j
|i⟩⟨ j|⊗Λ(|i⟩⟨ j|), (4)

indicating that QChoi characterizes Λ completely [34]. Based
on Choi’s theorem on completely positive maps, a sufficient
condition for Λ to be a CP map is that QChoi is a positive-
semidefinite Hermitian matrix. The condition for Λ to be
trace preserving is that the partial trace of QChoi equals the
identity matrix:

Tr2(QChoi) = Id1 . (5)

χ matrix representation: By expanding {Ai} in (1) using
a fixed set of basis matrices {Fi}, we can express A j as
Ai = ∑ j ci jFj. Substituting this into (1), we obtain Λ(ρ) =

∑ jk FjρF†
k x jk, where x jk = ∑i ci jc∗ik. If we define the matrix

C = [ci j] and the matrix X = [xi j], then X = CTC, which
indicates that X must be Hermitian and positive semidefinite.
X is called χ matrix and it is in a one-to-one correspondence
with Λ. Hence, we can obtain a full characterization of Λ by
reconstructing X [35].

B. Traditional methods

To estimate an unknown quantum process, a series of
different input states are input to the process, and positive
operator-valued measure (POVM) measurements Pk are per-
formed on each corresponding output state. Let p̂lm be the
observed frequency of the corresponding outcomes from the
POVM. The frequency is an experimental approximation of
the true probability plm = Tr(PlΛ(ρm)). The goal of QPT
is to determine the parameters of quantum channels using
the experimental statistics {p̂lm}. In particular, we introduce
two traditional methods, i.e., maximum-likelihood estimation
(MLE) and linear regression estimation (LRE).

MLE is a widely used method for quantum process tomog-
raphy that aims to maximize the likelihood of the observed
data. In particular, we seek to maximize the constrained log-
likelihood functional as [8]

argmax
QChoi

∑
lm

p̂lm lnTr
(
QChoiρ

T
m ⊗Pl

)
−Tr(KL⊗Id2QChoi), (6)

where KL is a Lagrange multiplier matrix that accounts for
the trace-preservation condition in (5). By analyzing the
extremal equation, we have

K = ∑
ml

p̂lm

Tr(QChoiρ
T
m ⊗Pl)

ρ
T
m ⊗Pl , (7)

and KL = [Tr2(KQChoiK)]1/2. Then we update the estimation
as

QChoi← [K−1
L ⊗ Id2 ]KQChoiK[K−1

L ⊗ Id2 ]. (8)

Given an admissible guess, e.g., QChoi = Id1d2/d2, one can
obtain a solution in an iterative way [7], where the iteration
of (7) and (8) continues until the distance between two
successive runs is smaller than a given threshold.
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LRE is a method that converts a quantum process to-
mography problem into a parameter estimation problem of
a linear regression model [9]. To achieve this, we first
introduce a complete basis set of Cd×d , denoted by {σn}d2

i=1.
For example, the Pauli matrices together with I2 form a
complete basis set of C2×2. Then choose a set of linearly
independent input states {ρm}M

m=1 such that every matrix
can be expressed as a finite complex linear combination
of σn. Through Λ, each input state evolves into an output
state, which can be expanded uniquely in the basis set as
ρout

m = Λ(ρm) = ∑
d2

n=1 θmnσn. Define β
jk

mn such that A jρmA†
k =

∑
d2

n=1 β
jk

mnσn. From the linear independence of {σn}, the
reationship between X and α is ∑

d2

j,k=1 β
jk

mnX jk = θmn. We
define the matrix Θ = [θmn], and arrange the elements β

jk
mn

into an Md2×d4 matrix [35], [10]. Letting vec be the column
vectorization function, we obtain a compact equation as

Bvec(X) = vec(Θ), (9)

where B is determined once the bases {Fj} and {σn} are
chosen. Θ is obtained based on the reconstruction of the
output states using experimental data. As such, a least-
square solution for the process matrix can be obtained
as vec(XLS) = (BT B)−1BT vec(Θ) [9]. Considering that XLS
might break the positive and trace preserving conditions, a
physical projection technique is required to pull it back to a
positive matrix [36] and an additional measure is required to
guarantee the trace-preserving condition [10].

III. DEEP NEURAL NETWORK QUANTUM PROCESS
TOMOGRAPHY

In this section, we first introduce the generation of the
Choi matrix from the output of neural networks, then pro-
pose a machine learning-aided quantum process tomography
method, i.e., DNN-QPT, which leverages deep neural net-
works to reconstruct the Choi matrix of a quantum channel.

A. Choi matrix generation

In SQPT, the expectation values of measurements are
linked to a description of the operation like its Choi matrix or
χ matrix or Kraus operators. Although they are in principle
equivalent, they have different features. The Kraus operator
representation is intuitive, as it directly demonstrates the
transformation of an input state within a quantum channel in
(1). But the Kraus decomposition of a quantum channel is not
unique, and there are multiple sets of operators that represent
the channel. For example, any two sets of Kraus operators
{Ak} and {Bk} that correspond to the same quantum map can
be linked via a unitary matrix U as Bk = ∑ j Uk jA j [1]. The χ

matrix together with the basis {Fj} completely characterize
the map Λ and its value can be simplified when taking a
specific basis, e.g., Pauli basis.

The Choi matrix provides a unique and compact repre-
sentation of a quantum channel and it allows us to compute
the output state from the quantum channel following (4).
Furthermore, normalizing the Choi matrix to trace 1, we can

obtain a physical density matrix as

ρChoi =
QChoi

Tr(QChoi)
, (10)

where ρChoi represents a quantum state obtained from putting
half of the maximally entangled state 1

d2
∑i j |i⟩⟨ j| into the

map Λ while doing nothing on the other half. For a CPTP
map, the partial trace of ρChoi over H2 is actually the
maximally mixed states

Id1
d1

.
The χ matrix and the Choi matrix are two widely used

representations as they both characterize quantum channels
precisely. Moreover, they can be easily transformed into each
other using basic mathematical computations. In particular,
when taking the natural basis in the χ matrix, its value is
reduced to Choi matrix. Owing to the physical meaning of
the Choi matrix, which is similar to the density matrix used
in quantum state tomography, we finally decide on the Choi
matrix to represent a quantum channel Λ.

The Choi matrix of a CPTP channel satisfies the following
requirements (i) it is a positive semi-definite Hermitian ma-
trix, (ii) its partial trace equals I. To generate a Choi matrix
satisfying those conditions, we leverage a lower triangular
matrix QL to obtain a semi-definite Hermitian matrix as
QH = QLQ†

L. Then, we need to guarantee that it is a physical
Choi matrix with trace preserving charateristics (i.e., its
partial trace equals to the identity matrix), which can be
realized using the following equation

Q1 = [Tr2(QH)]
1/2, QChoi = [Q−1

1 ⊗ Id2 ]QH [Q−1
1 ⊗ Id2 ].

(11)
One can check Tr2[QChoi] = Id1 . Conversely, a lower trian-
gular matrix QL that achieves QLQ†

L = QChoi can be obtained
using the Cholesky decomposition [37]. Notably, a small
perturbation term with a small ε can be added to QChoi
with a low rank to avoid convergence issues in the Cholesky
decomposition [37].

B. DNN-QPT

Quantum process tomography aims to determine the pa-
rameters of a quantum channel that transforms a set of
input states into a set of output states. In standard QPT,
measurements are performed on the output states to obtain
frequencies, which are essential for determining the Choi
matrix of the quantum operation. Inspired by the universal
approximation theorem [15] which states that any contin-
uous function can be approximated by a multi-layer fully
connected neural network, we construct a multi-layer fully
connected neural network, to approximate the map function
from frequencies to the Choi matrix.

To fully specify a quantum channel, we need to perform
measurements on a set of input states that form a tomograph-
ically complete set, spanning the Hilbert subspace where the
POVM elements are defined. In this work, we consider the
input states as the tensor product of single-qubit states as{

I
2 ,

I+σx
2 ,

I+σy
2 , I+σz

2

}
. For measurements, we consider the

tensor products of Pauli matrices, which are also called the
cube measurements [38]. Hence, the obtained frequencies are
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Quantum 
channel

Output states 
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MSE

(b) 

Lower triangular matrix Hermitian matrix Choi matrix

Fig. 1. Schematic of DNN-QPT. (a) Input states are injected into the
quantum channel whose Choi matrix is represented as a real vector, (b)
Obtain measured statistics by observing the output states, (c) A multi-layer
neural network is designed to map the frequencies to the α-vector, (d) Obtain
the Choi matrix from the NNs’ output.

4n×6n matrices, where 4n denotes the number of the input
states and 6n denotes the number of measurement operators.
To obtain a d2×d2 Choi matrix from the NNs’ output, one
may generate a lower triangular matrix QL, which can be
further split into a real vector with length d4, called α-
vector. This vector can produce a physical Choi matrix after
some transformations. Hence, the input layer for DNN-QPT
should have 24n neurons and the output layer should have
d4 neurons. The number of hidden layers and the number of
hidden neurons can be adjusted according to the complexity
of the problem, e.g., the dimension of the quantum channel.

The QPT procedure using neural networks can be sum-
marized into fours aspects as shown in Fig. 1: (a) A set
of input states are injected into the quantum channel, whose
Choi matrix can be decomposed into a target vector using the
Cholesky decomposition, (b) Measurements are performed
on a set of output states, ending up with a set of frequencies,
(c) An architecture that utilizes input-hidden-output layers is
designed as a parameterized function to map a feature vector
comprising of measurement outcomes to an α-vector, (d) The
α-vector is finally transformed into a physical Choi matrix.
During the training process, the mean square error (MSE)
between the constructed α-vector (which is generated from
the neural network) and the expected αtarget vector (which is
obtained from the ground truth of a Choi matrix) is taken
as the cost function to train the parameters in (c). After the
Choi matrix is obtained in (d), the similarity between two

quantum channels can be measured as

F(Q1,Q2) = Fs

(
Q1

Tr(Q1)
,

Q2

Tr(Q2)

)
, (12)

where Q
Tr(Q) denotes the normalized density matrix from the

Choi matrix Q and Fs(ρ1,ρ2) represents the state fidelity
between ρ1 and ρ2 [1].

IV. NUMERICAL RESULTS

To test the performance of DNN-QPT, numerical simu-
lations on 1-qubit and 2-qubit quantum channels are carried
out. Parameter settings are first presented, and reconstruction
of different quantum channels, including unitary channels,
Pauli channels, dephasing channels, and depolarizing chan-
nels are investigated and compared on different methods.

A. Parameter settings

For each case, 50000 samples are generated by randomly
sampling the parameters. We use 97500 samples for training
the model of DNN-QPT and 2500 samples for testing the
performance of DNN-QPT. For the cube measurements,
the 6n measurements can be grouped into 3n sets, where
each set contains 2n operators. In practical applications,
the measurements are implemented with sets, i.e., each set
defines a detector. Hence, we define N as the number of
measurement copies in one detector when measuring one
input state. Then the number of measurement copies for each
input state is 3nN, with the total number of measurement
copies for all the input states being 12nN.

For the deep neural network architecture, 5 hidden layers
are utilized, with each hidden layer using 256 neurons for the
1-qubit case and 512 neurons for the 2-qubit case. We utilize
the Adam optimizer and a learning rate of 0.0001 to update
the parameters of neural networks. ε = 10−7 is utilized to
perform the Cholesky decomposition. For the simulations,
the Pytorch framework is utilized to construct the deep neural
network to run the model. The stopping criterion for MLE is
set as the norm difference between two successive runs below
10−8. For LRE, quantum measurements are performed on the
output states, with their density matrices reconstructed by a
standard quantum state tomography method [9]. In addition,
the obtained Choi matrix is transformed into a physical one
using some mathematical techniques [10], [36].

B. Unitary channels

A unitary operation on a density matrix can be expressed
as a map Λ(ρ) = UρU†. This map can be represented by
a Kraus decomposition with only one Kraus operator. As a
result, the Choi matrix only has 1 non-zero eigenvalue. In this
work, we generate random unitary matrices using the Haar
measure metric that is invariant under group multiplication,
which means that any region of Ud carries the same weight
in a group average [39]. Numerical results for different
measurement copies are summarized in Fig. 2, where DNN
achieves the best log of infidelity. For the 1-qubit case, LRE
achieves a little better performance than MLE, while for the
2-qubit case, MLE exhibits a small degree of superiority over
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LRE. Based on the above results, the proposed method is
effective in estimating unitary channels.

(a) 1-qubit

(b) 2-qubit
Fig. 2. The peformance of unitary channels under different measurement
copies where Infid denoting infidelity.

C. Error channels

Let P= (I2,σx,σy,σz). Pauli channels are formulated as

Λ(ρ) = ∑
Pk∈P

ωkPkρPk, (13)

where ωk ≥ 0 and ∑k ωk = 1. Clearly, all of the Kraus
operators are Pauli operators, each with its own specific
weight ωk. Dephasing and depolarizing errors are common
error channels that can be mathematically described as Pauli
channels. In the dephasing channel, the (relative) phase of a
qubit flips with a probability ω . For 1-qubit case, the Kraus
decomposition includes two operators: A1 =

√
1−ωI2 and

A2 =
√

ωσz. In the depolarizing channel, the Pauli X , Y ,
Z operators are applied to the state with equal probabilities
ω

3 , while the state can be fixed with a probability
√

1−ω .
For the 1-qubit case, it can be represented as a Kraus
decomposition of four operators:

{Ak}= {
√

1− pI2,

√
ω

3
σx,

√
ω

3
σy,

√
ω

3
σz}. (14)

Since Tr(ρ) = 1, the transformation of the state can be
written as Λ(ρ) = (1− 4ω

3 )ρ + 4ω

3
I2
2 .

The numerical results for Pauli channels are summarized
in Fig. 3, where DNN achieves the best reconstruction
accuracy, with MLE and LRE falling behind. The numerical
results for dephasing channels and depolarizing channels
are summarized in Table I, where the superiority of DNN
over LRE and MLE is strong for both dephasing channels
and depolaring channels, especially for the 2-qubit case.
The large gap between DNN and other traditional methods
demonstrates the potential of neural network-aided QPT in
reconstructing dephasing and depolarizing channels.

(a) 1-qubit

(b) 2-qubit
Fig. 3. The peformance of Pauli channels channels with N = 10000.

TABLE I
AVERAGE LOG OF INFIDELITY FOR ERROR CHANNELS WITH N = 10000.

Channels / Method DNN LRE MLE
1-qubit dephasing 1.47e-05 4.83e-03 5.00e-03
1-qubit depolarizing 3.30e-05 1.26e-03 1.08e-03
2-qubit dephasing 1.30e-06 2.68e-02 5.00e-03
2-qubit depolarizing 2.61e-06 7.33e-03 1.34e-02
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V. CONCLUSION

Quantum process tomography is a central problem in
quantum information processing. To leverage the capability
of neural networks to capture complex patterns from quan-
tum measured staticstics, we proposed a machine learning
adied QPT method to efficiently characterize the Choi matrix
of a quantum channel. Simulation results on 1-qubit and 2-
qubit quantum channels indicate that the proposed method
has the potential to achieve enhanced characterization of
different quantum channels, especially for dephasing chan-
nels and depolarizing channels. In our future work, we plan
to extend the approach to non-trace preserving channels
and explore adaptative quantum process tomography using
machine learning.
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M. Osborne, E. Laird, and N. Ares, “Efficiently measuring a quantum
device using machine learning,” npj Quantum Information, vol. 5,
no. 1, pp. 1–8, 2019.

[19] C. Chen, D. Dong, H.-X. Li, J. Chu, and T.-J. Tarn, “Fidelity-
based probabilistic Q-learning for control of quantum systems,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 5,
pp. 920–933, 2013.

[20] H. Ma, D. Dong, S. X. Ding, and C. Chen, “Curriculum-based deep
reinforcement learning for quantum control,” IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[21] D. Dong, X. Xing, H. Ma, C. Chen, Z. Liu, and H. Rabitz, “Learning-
based quantum robust control: algorithm, applications, and experi-
ments,” IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3581–
3593, 2020.

[22] R.-B. Wu, H. Ding, D. Dong, and X. Wang, “Learning robust and
high-precision quantum controls,” Physical Review A, vol. 99, no. 4,
p. 042327, 2019.

[23] C.-J. Huang, H. Ma, Q. Yin, J.-F. Tang, D. Dong, C. Chen, G.-Y.
Xiang, C.-F. Li, and G.-C. Guo, “Realization of a quantum autoen-
coder for lossless compression of quantum data,” Physical Review A,
vol. 102, no. 3, p. 032412, 2020.

[24] H. Ma, C.-J. Huang, C. Chen, D. Dong, Y. Wang, R.-B. Wu, and
G.-Y. Xiang, “On compression rate of quantum autoencoders: Control
design, numerical and experimental realization,” Automatica, vol. 147,
p. 110659, 2023.

[25] S. Lohani, B. Kirby, M. Brodsky, O. Danaci, and R. T. Glasser, “Ma-
chine learning assisted quantum state estimation,” Machine Learning:
Science and Technology, vol. 1, no. 3, p. 035007, 2020.

[26] O. Danaci, S. Lohani, B. T. Kirby, and R. T. Glasser, “Machine
learning pipeline for quantum state estimation with incomplete mea-
surements,” Machine Learning: Science and Technology, vol. 2, no. 3,
p. 035014, 2021.

[27] S. Lohani, T. A. Searles, B. T. Kirby, and R. T. Glasser, “On the
experimental feasibility of quantum state reconstruction via machine
learning,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–
10, 2021.

[28] A. M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S. Straupe, J. D.
Biamonte, and S. Kulik, “Experimental neural network enhanced
quantum tomography,” npj Quantum Information, vol. 6, no. 1, pp. 1–
5, 2020.

[29] H. Ma, D. Dong, and I. R. Petersen, “On how neural networks enhance
quantum state tomography with limited resources,” in 2021 60th IEEE
Conference on Decision and Control (CDC), pp. 4146–4151, IEEE,
2021.

[30] H. Ma, D. Dong, I. R. Petersen, C.-J. Huang, and G.-Y. Xiang,
“On how neural networks enhance quantum state tomography with
constrained measurements,” arXiv preprint arXiv:2111.09504, 2023.

[31] Z. Hou, H.-S. Zhong, Y. Tian, D. Dong, B. Qi, L. Li, Y. Wang, F. Nori,
G.-Y. Xiang, C.-F. Li, et al., “Full reconstruction of a 14-qubit state
within four hours,” New Journal of Physics, vol. 18, no. 8, p. 083036,
2016.

[32] K.-E. Hellwig and K. Kraus, “Pure operations and measurements,”
Communications in Mathematical Physics, vol. 11, no. 3, pp. 214–
220, 1969.

[33] M.-D. Choi, “Completely positive linear maps on complex matrices,”
Linear algebra and its applications, vol. 10, no. 3, pp. 285–290, 1975.

[34] M. Jiang, S. Luo, and S. Fu, “Channel-state duality,” Physical Review
A, vol. 87, no. 2, p. 022310, 2013.

[35] Y. Wang, D. Dong, B. Qi, J. Zhang, I. R. Petersen, and H. Yonezawa,
“A quantum Hamiltonian identification algorithm: Computational com-
plexity and error analysis,” IEEE Transactions on Automatic Control,
vol. 63, no. 5, pp. 1388–1403, 2017.

[36] J. A. Smolin, J. M. Gambetta, and G. Smith, “Efficient method for
computing the maximum-likelihood quantum state from measurements
with additive Gaussian noise,” Physical Review Letters, vol. 108, no. 7,
p. 070502, 2012.

[37] N. J. Higham, Analysis of the Cholesky decomposition of a semi-
definite matrix. Oxford University Press, 1990.

[38] M. D. De Burgh, N. K. Langford, A. C. Doherty, and A. Gilchrist,
“Choice of measurement sets in qubit tomography,” Physical Review
A, vol. 78, no. 5, p. 052122, 2008.

[39] F. Mezzadri, “How to generate random matrices from the classical
compact groups,” arXiv preprint math-ph/0609050, 2006.

[40] H. Ma, S. Xiao, D Dong, I. Petersen, “Tomography of quantum detec-
tors using neural networks”, 22th World Congress of the International
Federation of Automatic Control (IFAC), Yokohama, Japan, 9 July-14
July, 2023.

1200


