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Abstract— Existing studies have pointed out numerical insta-
bility in the Kalman filter of atomic clocks, but the reasons
for such instability have not been clarified mathematically.
In this paper, we mathematically clarify the reason for the
numerical instability by a new approach of spectral decom-
position of the error covariance matrix in the Kalman filter.
In particular, we reveal the fact that the error covariance
matrix for homogeneous undetectable atomic clock ensembles
can be decomposed into a diverging part and a converging
part. Furthermore, the Kalman gain is solely influenced by
the converging part, but not the diverging part, meaning that
the Kalman gain converges to a steady-state value if ideal
computation is possible without computation error. We present
an alternative method to the conventional Kalman filter to avoid
numerical instability and reduce computation cost where the
covariance of Kalman filter can be computed rigorously only
using three n-dimensional Riccati iterations instead of an nN -
dimensional Riccati iterations for an n-order clock model with
N clocks. A numerical example is provided to illustrate the
efficacy of our approach.

I. INTRODUCTION

Atomic clocks are fundamental devices to generate ac-
curate time scales for many fields in our daily life. Many
applications in which the technologies directly or indirectly
depend on time scales benefited from the development of
atomic clocks (see [1] and the references therein). For
example, the atomic clocks onboard the satellites and on
the earth stations play an essential role to achieve user
positioning by Global Positioning Systems. To improve the
accuracy of the atomic clocks for the development of modern
technologies, the researchers in the time and frequency com-
munity obtained experimental evidence and reliable models
for the atomic clocks. Since it is revealed experimentally that
the time deviation of atomic clocks can be characterized as
a random noise (so-called, clock noise), the time deviations
are properly modeled by the stochastic processes under
stochastic differential equations.

In order to keep precise and reliable time, an ensemble of
atomic clocks are used by the national metrology institutes
(NMIs) in many countries to generate their national time
scales. In such a time generation process, how to properly
deal with the prediction problem for the phase noises is
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the main problem to ensure excellent performance. As an
effective method for predicting noises in the fields of signal
processing, the Kalman filter has been implemented in time
scale generation for estimating the difference between two
clocks [2]–[5]. However, practical implementations often
ignore the fact that the system of the atomic clock ensemble
is undetectable due to its inherent properties in measure-
ments, even though detectability is considered as a necessary
condition for constructing a Kalman filter as an optimal
prediction algorithm [6], [7]. Since the detectability condition
is broken, the entries of the error covariance matrix of the
Kalman filter grow unboundedly due to computational errors,
which may lead to non-negligible numerical instability [8].

To deal with the problem, Brown proposed a covariance
reduction method to keep the error covariance matrix from
running away [9]. Greenhall developed a reduction method
that works well in the presence of noisy measurements using
some weighting parameters solved from an 1-parameter
least-squares problem [4], [10]. The key to both approaches
is how to modify the error covariance matrix of the Kalman
filter and suppress its divergence. The performance of both
methods depends on the value of initial error covariance
matrix in the Kalman filter.

In the literature, the prediction problem for undetectable
systems is not the main focus in the systems and control field
because we may be able to reset the sensors to re-design the
measurement policy in the practice to make a re-designed
control system detectable. However, in the atomic clock
ensembles, the sensors are impossible to make it detectable
due to a physical restriction.

In this paper, we focus on how to theoretically understand
the essential reason why numerical instability happens in the
Kalman filter for homogeneous atomic clock ensembles. To
this end, we apply spectral decomposition to atomic clock
ensembles decomposing the error covariance matrix of the
Kalman filter into several parts. The main contributions are
summarized as follows.

1) We reveal the fact that the error covariance matrix
of the conventional Kalman filter for homogeneous
undetectable atomic clock ensembles can be decom-
posed into a diverging part and a converging part. It
is found that the Kalman gain is solely influenced by
the converging part but not the diverging part, meaning
that the Kalman gain converges to a steady-state value if
ideal computation without computation error is possible.

2) Based on spectral decomposition, we present an al-
ternative Kalman filtering method to avoid numerical
instability and reduce computation cost where the co-
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variance of Kalman filter can be computed rigorously
only using three n-dimensional Riccati iterations instead
of an nN -dimensional Riccati iterations for an n-order
clock model with N clocks.

Notation We write R for the set of real numbers, R+ for the
set of positive real numbers, Rn for the set of n-dimensional
real column vectors, N+ for the set of positive integers, and
Rn×m for the set of n by m real matrices. Moreover, ⊗
denotes Kronecker product, (·)T denotes the transpose, (·)†
denotes the Moore-Penrose pseudoinverse, diag(·) denotes
a diagonal matrix, 1n denotes the n-dimensional all-ones
vector, and In denotes the n-dimensional identity matrix.

II. MATHEMATICAL MODEL

A. Single Clock in Homogeneous Clock Ensemble

Consider a discrete-time sequence {t0, t1, . . . , tT } in an
ideal time scale, where the interval between two adjacent
times is assumed to be a constant sampling period τ , i.e.,

tk := τk, k = 0, 1, . . . , T. (1)

Let n ∈ N+ denote the order of an atomic clock model,
which is assumed to be identical for all clocks labeled by j ∈
N := {1, 2, . . . , N} in the ensemble. Then, the stochastic
processes of the phase deviation [11] of each clock j ∈ N
in the clock ensemble can be represented by the discrete-time
linear stochastic system

Σj :

{
xj [k + 1] = Axj [k] + vj [k]

∆hj [k] = Cxj [k]
(2)

where xj = [xj
1, . . . , x

j
n]

T ∈ Rn denotes the state vector,
∆hj [k] ∈ R denotes the time deviation, vj = [vj1, . . . , v

j
n]

T ∈
Rn denotes the noise vector, and the matrices A and C are
defined as

A :=Aτ :=



1 τ τ2

2 · · · τn−1

(n−1)!

0 1 τ · · · τn−2

(n−2)!

...
. . . . . .

...
... 1 τ
0 0 · · · · · · 1


(3)

C :=
[
1 0 · · · 0

]
. (4)

The noise vj [k] is a white Gaussian process such that

E
[
vj [k]

]
= 0, E

[
vj [k]vj

T
[k]

]
= Q,

where the covariance matrix is given as

Q :=

∫ τ

0

Atdiag(q1, . . . , qn)A
T
t dt (5)

for some nonnegative values qi ≥ 0, i = 1, . . . , n. Note that
At in (5) is understood as Aτ with τ replaced by t [12]. The
detailed physical background of the model can be found in
[13] and the references therein.

B. Atomic Clock Ensemble With Measurement

For the presentation below, we let the discrete-time state
x of the overall clocks be defined as

x :=

 x1

...
xn

 ∈ RnN , xi :=

 x1
i
...

xN
i

 ∈ RN ,

and the system noise v as

v :=

 v1

...
vn

 ∈ RnN , vi :=

 v1i
...

vNi

 ∈ RN .

In terms of the physical meaning, note that the variables x1,
x2, and x3 represent the vector of phase deviations, random
walk components, frequency drifts of all the overall clocks
[3], respectively, and the remaining other variables represent
some components in higher-dimensional cases.

As a measurement output, the difference between the
phase deviations of clocks i and j, i.e., ∆hi[k]−∆hj [k], is
only measurable due to physical restrictions. Without loss of
generality, in this paper, we consider the case where clock N
acts as the reference clock for all the measurements on clock
differences. In particular, the measurement of the overall N -
clock ensemble is written as

y[k] :=

 ∆h1[k]−∆hN [k]
...

∆hm−1[k]−∆hN [k]


︸ ︷︷ ︸

(C⊗V )x[k]

+w[k] ∈ RN−1 (6)

where

V :=
[
IN−1 −1N−1

]
∈ R(N−1)×N

and w = [w1, . . . , wN−1]
T ∈ RN−1 is the measurement

noise which is a white Gaussian process such that

E
[
w[k]

]
= 0, E

[
w[k]wT[k]

]
= rIN−1 (7)

for some positive value r ∈ R+.
Then, the discrete-time system model of the overall N -

clock ensemble considered in the paper is given as

Σ :

{
x[k + 1] = (A⊗ IN )x[k] + v[k]

y[k] = (C ⊗ V )x[k] +w[k]
(8)

where the covariance matrix of the system noise v[k] is
defined as

Q := E
[
v[k]vT[k]

]
= Q⊗ IN

for the homogeneous clock ensemble.

C. Mission in Time Scale Generations: Better Prediction

Assuming that the weights of the homogeneous N -clock
ensemble, corresponding to the reliability of the individual
clocks, are all equal, the ideal and generated clock reading
of the N -clock ensemble are given as

h0[k] =
∑m

i=1

1
N (hj [k]−∆hj [k])
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Fig. 1. Example of numerical instability in a 4-clock ensemble.

ĥ0[k] =
∑m

i=1

1
N (hj [k]− ∆̂hj [k])

respectively, where hj [k] is the actual clock reading at time
tk, ∆hj [k] is the exact time deviation at time tk, and ∆̂hj [k]
is its predicted value. Then the accuracy of the generated
clock reading is characterized by the Temps Atomique [3]

TA[k] := h0[k]− ĥ0[k] =
C
N

(
In ⊗ 1T

N )(x[k]− x̂[k]) (9)

where x̂[k] denotes the predicted state. A small difference
TA[k] indicates high accuracy of the generated time scale.
Consequently, the main mission in time scale generation
is finding a good prediction algorithm that well predicts
the internal state x[k] over the discrete-time sequence
{t0, t1, . . . , tT }.

III. MAIN RESULTS

In this section, we begin with introducing the problem of
the conventional Kalman filter for the homogeneous atomic
clock ensemble, and then present the results of spectral
decomposition to clarify why numerical instability happens.
Specifically, given an initial covariance matrix P 0 of the
estimation error, the dynamics of the conventional Kalman
filter for time-scale generation can be given by

x̂[k+1] = (A⊗ IN )x̂[k]+Gk

{
y[k]− (C⊗V )x̂[k]

}
(10)

where Gk is the Kalman gain defined as

Gk := P k(C⊗V )T
{
(C⊗V )P k(C ⊗ V )T+rIN−1

}−1

(11)
with the error covariance matrix P k defined in the discrete-
time algebraic Riccati equation (12).

The Kalman filter is an optimal estimator as the discrete-
time algebraic Riccati equation (12) may determine the
solution of a special infinite-horizon time-invariant Linear-
Quadratic Regulator problem minimizing the mean squared
error E

[
∥x[k] − x̂[k]∥2

]
. In such a case, the Kalman gain

Kk in the update rules (11) and (12) is the optimal gain in
(10). However, in actual implementation, huge fluctuations
may occur along with the time that goes (see the example in
Fig. 1). This phenomenon is known as numerical instability
in [9] for time-scale generation via atomic clock ensembles.

Before we present our main results, we introduce the
following lemma as a preliminary.

Lemma 1: Consider a symmetric matrix A ∈ Rn×n. Let
V1 ∈ Rn×m and V2 ∈ Rn×(n−m) satisfying imV1⊕ imV2 =
Rn, AV1 = V1A1, and AV2 = V2A2 for some A1 ∈ Rm×m

and A2 ∈ R(n−m)×(n−m). Then,

A = V1A1V
†
1 + V2A2V

†
2 .

Furthermore,

A1 = V †
1 AV1, A2 = V †

2 AV2

have the spectra such that

λ(A) = λ(A1) ∪ λ(A2).
Proof: The proof is omitted.

A. Essential Reason

To theoretically understand the essential reason why nu-
merical instability happens, we apply spectral decomposition
to the task of time generation in the following results.

Theorem 1: Consider an N -clock ensemble with the con-
ventional Kalman filter algorithms (10)–(12). If the initial
error covariance matrix P 0 satisfies

P 0(In ⊗ 1N ) = (In ⊗ 1N )P̂0 (13)

P 0(In ⊗ V )† = (In ⊗ V )†P̌0 (14)

for some matrices P̂0 and P̌0, then the error covariance
matrix P k in the CKF algorithms can be decomposed as

P k = (In⊗1N )P̂k(In⊗1N )†+(In⊗V )†P̌k(In⊗V ) (15)

with the matrices P̂k and P̌k such that

P̂k+1 =AP̂kA
T +Q (16)

P̌k+1 =− (A⊗ IN−1)Ǧk(C ⊗ IN−1)P̌k(A⊗ IN−1)
T

+ (A⊗ IN−1)P̌k(A⊗ IN−1)
T +Q⊗ IN−1 (17)

where Ǧk is given in (18).
Proof: Note from the fact 1T

NV
†
= 0 that the condition

im1N ⊕ imV
†
= RnN is satisfied and thus it follows from

Lemma 1 that (15) holds for the initial P 0. The condition
(13) indicates that

P k+1(In⊗1N ) =(A⊗ IN )P k(In ⊗ 1N )AT+(In ⊗ 1N )Q

− (A⊗ IN )Gk(C ⊗ V )P k(In ⊗ 1N )AT

=(A⊗ IN )(In ⊗ 1N )P̂kA
T + (In ⊗ 1N )Q

− (A⊗ IN )Gk (C ⊗ V )(In ⊗ 1N )︸ ︷︷ ︸
=0

P̂kA
T

=(In ⊗ 1N )P̂k+1 (19)

holds for any k ∈ {0, 1, 2, . . .}.
In terms of the matrix P̌k, because of

(A⊗ IN )(In ⊗ V )† = (In ⊗ V )†(A⊗ IN−1), (20)

the condition (14) indicates that (21) holds for any k =
0, 1, 2, . . .. Thus, the proof is complete by Lemma 1.

Remark 1: In numerical implementation, the calculations
of high dimensional matrices in the Kalman filtering al-
gorithms are costly and difficult. However, the result of
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P k+1 = (A⊗ IN )
[
P k − P k(C ⊗ V )T

(
(C ⊗ V )P k(C ⊗ V )T + rIN−1

)−1︸ ︷︷ ︸
Gk

(C ⊗ V )P k

]
(A⊗ IN )T +Q (12)

Ǧk =P̌k(C ⊗ IN−1)
T
{
(C ⊗ IN−1)P̌k(C ⊗ IN−1)

T + r(V V
T
)−1

}−1
(18)

P k+1(In ⊗ V )† =(In ⊗ V )†(A⊗ IN−1)P̌k(A⊗ IN−1)
T + (In ⊗ V )†(Q⊗ IN−1)

− (In ⊗ V )†(A⊗IN−1) P̌k(C
T⊗V V

T
)
{
(C⊗V )P k(C ⊗ V )T + rIN−1

}−1

︸ ︷︷ ︸
=P̌k(C⊗IN−1)T

{
(C⊗IN−1)P̌k(C⊗IN−1)T+r(V V

T
)−1

}−1
=Ǧk

(C⊗V V
†
)P̌k(A⊗IN−1)

T

=(In ⊗ V )†
{
(A⊗ IN−1)

[
P̌k − Ǧk(C ⊗ IN−1)P̌k

]
(A⊗IN−1)

T+(Q⊗ IN−1)
}
= (In ⊗ V )†P̌k+1 (21)

Theorem 1 indicates that the conventional Kalman filtering
algorithm in (10)–(12) can be equivalently reconstructed
as (10) and (11) with (15)–(18) where calculation time
are supposed to be shortened since the dimension of the
calculated matrix is reduced from nN to nN − n.

Remark 2: Note that the equation (17) along with (18) can
be understood as a discrete-time algebraic Riccati equation
which converges to a steady-state value since the pair (A,C)
is observable. Thus, the essence of Theorem 1 is that the
error covariance matrix P k of the Kalman filter can be
decomposed into a diverging part P̂k and a converging part
P̌k (see Fig. 2). Moreover, because

P k(C⊗V )T = P k(In ⊗ V )†(C ⊗ V V
T
)

= (In ⊗ V )†P̌k(C ⊗ V V
T
) (22)

(C⊗V )P k(C ⊗ V )T

= (C ⊗ IN−1)(In ⊗ V )P k(In ⊗ V )†(C ⊗ V V
T
)

= (C ⊗ IN−1)P̌k(C ⊗ V V
T
) (23)

the Kalman gain Gk of the Kalman filter in (11) is solely
influenced by the converging part P̌k instead of the di-
verging part P̂k, i.e, Gk converges to a steady-state value
if there is no computation error. However, because there
must be a computation error in practical implementation,
(C ⊗ V )P k(C ⊗ V )T may be no longer equal to (23) and
hence numerical instability occurs.

B. Further Decomposition to Reduce Computation Costs

The following result indicates that the decomposed error
covariance matrix P̌k of (17) can be further decomposed
to obtain a new expression with some lower-dimensional
matrices. The calculation cost can be further saved from the
reduced algorithms (10), (11) with (15)–(18).

Theorem 2: Consider an N -clock ensemble with the CKF
algorithms (10)–(12). If the initial error covariance matrix
P 0 satisfies P 0 = pInN for some non-negative scalar p ≥ 0,
then the error covariance matrix P k of the CKF algorithms
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Fig. 2. Trace values of the error covariance matrix P k , the decomposed
divergent part P̂k , and the converging part P̌k .

can decomposed as

P k = 1
N(N−1)

(
In⊗

[
1N−1

−(N − 1)

])
X̌k

(
In⊗

[
1N−1

−(N − 1)

])T

+ Y̌k ⊗
[
IN−1 − 1

N−11N−11
T
N−1 0

0 0

]
+ 1

N (In ⊗ 1N )P̂k(In ⊗ 1N )T (24)

where the matrix P̂k follows the dynamics (16), and the
matrices X̌k and Y̌k follows

P̂k+1 =AP̂kA
T +Q

X̌k+1 =AX̌kA
T+Q−AX̌kC

T(CX̌kC
T + r

N )−1CX̌kA
T

Y̌k+1 =AY̌kA
T+Q−AY̌kC

T(CY̌kC
T + r)−1CY̌kA

T

(25)
with P̂0 = X̌0 = Y̌0 = pIn for any k = 0, 1, 2, . . ..

Proof: First of all, the condition P 0 = pInN indicates
that the conditions (13) and (14) in Theorem 1 are satisfied
with P̂0 = pIn and P̌0 = pIn(N−1). Therefore, it follows
from Theorem 1 that the error covariance matrix P k of
the CKF algorithms can be decomposed as (15) with P̂k

following (16) and P̌k following (17) and (18). Now, note
that

w :=

[
IN−2

−1T
N−2

]
∈ R(N−1)×(N−2) (26)
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satisfies 1T
N−1w = 0 and im1N−1 ⊕ imw = RN−1 holds.

Moreover, note that

P̌0(In ⊗ 1N−1) = (In ⊗ 1N−1)X̌0 (27)

P̌0(In ⊗ w) = (In ⊗ w)Ž0 (28)

with Ž0 = Y̌0 ⊗ IN−2 due to the facts P̌0 = pIn(N−1) and
P̂0 = X̌0 = Y̌0 = pIn. Letting λ and Λ satisfy

{(C⊗IN−1)P̌k(C ⊗ IN−1)
T+r(V V

T
)−1}−11N−1 = λ1N−1

{(C⊗IN−1)P̌k(C ⊗ IN−1)
T+r(V V

T
)−1}−1w = wΛ,

it follows from

1N−1 =λ
{
(C⊗IN−1)P̌k(C ⊗ IN−1)

T+r(V V
T
)−1

}
1N−1

=λ
{
(C⊗IN−1)P̌k(In ⊗ 1N−1)C

T +r(V V
T
)−11N−1

}
=λ

{
(C ⊗ 1N−1)X̌kC

T +r 1
N 1N−1

}
=λ1N−1

{
CX̌kC

T + r
N

}
(29)

and

w =
{
(C⊗IN−1)P̌k(C ⊗ IN−1)

T+r(V V
T
)−1

}
wΛ

=
{
(C⊗IN−1)P̌k(In ⊗ w)(C ⊗ IN−2)

T+r(V V
T
)−1w

}
Λ

=
{
(C ⊗ w)Žk(C ⊗ IN−2)

T+rw
}
Λ

=w
{
(C ⊗ IN−2)Žk(C ⊗ IN−2)

T + rIN−2

}
Λ (30)

that the expressions of λ and Λ are given by

λ =
{
CX̌kC

T + r
N

}−1
(31)

Λ =
{
(C ⊗ IN−2)Žk(C ⊗ IN−2)

T + rIN−2

}−1
. (32)

Thus, it follows from (27) that (33) holds k = 0, 1, 2, . . ..
In terms of the matrix Žk, it follows from (28) that (34)

holds k = 0, 1, 2, . . ., where Žk+1 follows

Žk+1 =(A⊗ IN−2)Žk(A⊗ IN−2)
T +Q⊗ IN−2

− (A⊗ IN−2)Žk(C ⊗ IN−2)
T

·
{
(C ⊗ IN−2)Žk(C ⊗ IN−2)

T + rIN−2

}−1

· (C ⊗ IN−2)Žk(A⊗ IN−2)
T (35)

for k = 0, 1, 2, . . .. Here, the condition Ž0 = Y̌0 ⊗ IN−2

indicates that

Žk = Y̌k ⊗ IN−2, k = 0, 1, 2, . . . .

Thus, it follows from Lemma 1 that the decomposed matrix
P̌k can be further decomposed as

P̌k =(In ⊗ 1N−1)X̂k(In ⊗ 1N−1)
†

+ (In ⊗ w)(Y̌k ⊗ IN−2)(In ⊗ w)†

=(In ⊗ 1N−1)X̂k(In ⊗ 1N−1)
† + Y̌k ⊗ ww† (36)

Now, substituting (36) to (15), we have

P k =(In ⊗ V )†P̌k(In ⊗ V ) + (In ⊗ 1N )P̂k(In ⊗ 1N )†

=(In ⊗ V
†
1N−1)X̂k(In ⊗ V

†
1N−1)

†

+ Y̌k ⊗ V
†
ww†V + 1

N (In ⊗ 1N )P̂k(In ⊗ 1N )T

= 1
N(N−1)

(
In ⊗

[
1N−1

−(N − 1)

])
X̂k

(
In ⊗

[
1N−1

−(N − 1)

])T

+ Y̌k ⊗
[
ww† 0
0 0

]
+ 1

N (In ⊗ 1N )P̂k(In ⊗ 1N )T.

which is same as (24) due to

ww† = IN−1 − 1
N−11N−11

T
N−1.

The proof is completed.

IV. NUMERICAL SIMULATIONS

In this section, we provide an application example to
demonstrate our results. Specifically, consider a homoge-
neous third-order atomic clock ensemble with N = 3 clocks.
The coefficients of the model are set to the standard values
of q21 = 9e − 26, q22 = 7.5e − 34, and q23 = 1e − 47.
The sampling interval is set to τ = 1. The variance of the
measurement noise is set to r = 1e− 12. In the simulation,
both of the initial state x[0] of this 3-clock ensemble and
the initial predicted value x̂[0] are set to 1e − 2819. The
time scale difference TA[k] of a single stochastic path for
P 0 = 1e−13I, 4e−13I, 8e−13I are shown in Fig. 3, which
reveals the fact that the performance of the Kalman filter with
and without covariance reduction significantly depends on
the initial covariance P 0. In addition, Fig. 3 is able to reveal
the fact that the short-term performances of the naive Kalman
filter and Kalman filters with Brown’s and Greenhall’s cor-
rection methods are good, but the performances turn to bad
in a long term. However, our new approach shows good
performances in both short-term and long-term evaluations
compared to those existing methods.

V. CONCLUSION

We studied the prediction problem for the atomic clock
ensembles to generate an accurate time scale. To clarify the
essential reason why numerical instability happens in the
Kalman filter for homogeneous atomic clock ensembles, we
applied spectral decomposition to the task of time generation.
In particular, we showed that the error covariance matrix of
the Kalman filter can be decomposed as a diverging part
and a converging part where the Kalman gain is solely
influenced by the converging part instead of the diverging
part. We presented several alternative methods to the con-
ventional Kalman filter to reduce computation cost where
the covariance of Kalman filter can be computed rigorously
only using three n-dimensional Riccati iterations instead of
an nN -dimensional Riccati iterations for an n-order clock
model with N clocks.
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P̌k+1(In ⊗ 1N−1) =(A⊗ IN−1)P̌k(In ⊗ 1N−1)A
T + (In ⊗ 1N−1)Q− (A⊗ IN−1)Ǧk(C ⊗ IN−1)P̌k(In ⊗ 1N−1)A

T

=(In ⊗ 1N−1)AX̌kA
T + (In ⊗ 1N−1)Q− (A⊗ IN−1)Ǧk1N−1CX̌kA

T

=(In ⊗ 1N−1)AX̌kA
T + (In ⊗ 1N−1)Q− λ(A⊗ IN−1)P̌k (C ⊗ IN−1)

T1N−1︸ ︷︷ ︸
=(In⊗1N−1)CT

CX̌kA
T

=(In ⊗ 1N−1)
{
AX̌kA

T +Q− λAX̌kC
TCX̌kA

T
}
= (In ⊗ 1N−1)X̌k+1 (33)

P̌k+1(In ⊗ w) =(A⊗ IN−1)P̌k(In ⊗ w)(A⊗ IN−2)
T + (In ⊗ w)(Q⊗ IN−2)

− (A⊗ IN−1)Ǧk(C ⊗ IN−1)P̌k(In ⊗ w)(A⊗ IN−2)
T

=(In ⊗ w)(A⊗ IN−2)Žk(A⊗ IN−2)
T + (In ⊗ w)(Q⊗ IN−2)

− (A⊗ IN−1)Ǧkw(C ⊗ IN−2)Žk(A⊗ IN−2)
T

=(In ⊗ w)(A⊗ IN−2)Žk(A⊗ IN−2)
T + (In ⊗ w)(Q⊗ IN−2)

− (A⊗ IN−1)P̌k(C ⊗ IN−1)
TwΛ(C ⊗ IN−2)Žk(A⊗ IN−2)

T

=(In ⊗ w)(A⊗ IN−2)Žk(A⊗ IN−2)
T + (In ⊗ w)(Q⊗ IN−2)

− (A⊗ IN−1)P̌k(In ⊗ w)(C ⊗ IN−2)
TΛ(C ⊗ IN−2)Žk(A⊗ IN−2)

T

=(In ⊗ w)
{
(A⊗ IN−2)Žk(A⊗ IN−2)

T +Q⊗ IN−2

− (A⊗ IN−2)Žk(C ⊗ IN−2)
TΛ(C ⊗ IN−2)Žk(A⊗ IN−2)

T
}
= (In ⊗ w)Žk+1

(34)
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Fig. 3. Time scale difference TA[k] under the conventional Kalman
filter (CKF), Kalman filter with Brown and Greenhall’s correction, and our
decomposed approach (DKF) for different initial covariance matrices.
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