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Abstract— One of the main challenges when performing
set-based state estimation is the inherent trade-off between
accuracy and computing time. When using accurate set rep-
resentations like polytopes, even if written in Constrained
Zonotopes (CZs) format, the data structures keep increasing
in size which will lead to the need of some order reduction
method that increases the computational load in the iterations
when such a routine is run. Moreover, computing a vector
estimate will amount to solving an optimization problem or
a matrix inversion, which are expensive procedures if the state
space is large. In this paper, we propose an efficient approach
for the state estimation of discrete-time Linear Time-Invariant
(LTI) systems based on Constrained Convex Generators (CCGs)
that allows to write explicitly the set in terms of a fixed
number of past inputs and measurements. In doing so, the
whole estimation task amounts to performing a small number
of multiplications with offline-computed matrices which makes
the runtime computation significantly faster and removes the
need for order reduction methods. Numerical results show the
effectiveness of the proposed method.

I. INTRODUCTION

Set-based observers are algorithms that compute sets con-
taining all possible state values for a given dynamical system.
According to the surveys in [1], [2], the issue of designing
set-based observers has received great attention. There are
several useful applications ranging from state estimation
with unknown distributions for the disturbances, position
estimation of safety-critical equipment [3], fault detection
[4], control of multiple-model systems [5] robust Model
Predictive Control (MPC) [6], collision avoidance [7] and
safe optimal control [8].

Since the early work in [9], which represents sets as
ellipsoids, guaranteed state estimation methods have been
extensively studied. A similar idea to [9] is used in [10],
but sets are expressed by their minimum-volume bounding
parallelotopes. In [11], a method with polytopic encoding is
provided. Similar techniques are used in the work in [12],
which employs a zonotope representation while reducing the
size of the zonotope using either an analytical formula or
solving a convex optimization problem. The work in [13]
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takes into account polytopic or ellipsoidal representations.
Finally, [14] uses sub-pavings to improve accuracy at the
expenses of computation.

The decision of how to depict the sets is crucial, which
can range from ellipsoids [15] [16] to zonotopes, where
[17]–[19] showed to have decreased wrapping effect. Interval
representations such as those in [20], are also prone to
wrapping effects. Constrained convex generators, which were
suggested in [21], are a recent alternative that unifies these
set representations.

Developing computationally efficient methods that do not
excessively over-approximate the set of admissible states
is one of the primary challenges concerning set-based ob-
servers. In comparison to CZs, using CCGs in state estima-
tion can minimize conservatism, as shown in [21]. Never-
theless, there is an inherent trade-off between accuracy and
computing time for set representations like Zonotopes, CZs
and CCGs. To address this problem, we present a method
that starts with a coarse estimate using an ellipsoidal method
that can be written in closed-form (which can be swapped by
other filters) and then improving its accuracy using a limited
number of previous inputs and measurements. In doing so,
the obtained set will be a mix of ellipsoidal and polytopic
components (for which CCGs are exact) and the need for
order reductions methods is eliminated. Moreover, most of
the data structures can be computed offline, which greatly
speeds up runtime computation. These features are critical if
set-based methods are to be incorporated in MPCs [22].

Therefore, the main contributions of this work are as
follows:

• A method for efficiently computing the CCG containing
the state of an LTI system where most of the data
structures can be pre-computed offline,

• A fast way to obtain a vector estimate by computing a
center of the CCG without requiring the inversion of a
matrix nor an optimization problem in runtime.

A. Notation

Let In be the identity matrix of size n, and let 0n stand
for the n-dimensional array of zeros and 1n denote the n-
dimensional array of ones. Dimensions are omitted when
can be infered from context. For a vector v, its transpose is
written as v⊺ and the Euclidean norm is denoted by ∥x∥2 :=√
x⊺x. Additionally, ∥x∥∞ := maxi |x(i)|, where x(i) is the

ith element of x. The generalized intersection is represented
by ∩R to mean X ∩R Y := {x : x ∈ X,Rx ∈ Y }, the
Minkowski sum of set X and Y by ⊕, i.e., X ⊕ Y := {x+
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y : x ∈ X, y ∈ Y }, and the cartesian product by × as

X × Y := {
[
x
y

]
: x ∈ X, y ∈ Y }.

II. PROBLEM DEFINITION

The problem of guaranteed state estimation in discrete-
time LTI systems can be formulated as the problem of
finding a set of possible state values given measurements,
disturbance, noise, and initial state bounds. The model is
provided by:

xk+1 = Fxk +Buk + wk, (1a)
yk = Cxk + vk, (1b)

where xk ∈ Rn, uk ∈ Rnu , wk ∈ Rn, yk ∈ Rny , and
vk ∈ Rny represent the system state, input, disturbance
signal, output, and noise, respectively. The problem this
article addresses can be summed up as follows:

Problem 1: How to calculate a set Xk that ensures that
xk ∈ Xk,∀k ≥ 0, given yk measurements and compact
convex sets X0, V , and W , such that x0 ∈ X0, vk ∈ V
and wk ∈W .

A. State estimation using CCGs

Before proceeding to the main results of this paper, in this
section, we review the standard solution for guaranteed state
estimation (Problem 1) with CCGs found in [3], [23].

The formal description of a CCG is given in Definition 1.
Definition 1 (Constrained Convex Generators): Z ⊂ Rn

is defined by the tuple (G, c,A, b,C) with G ∈ Rnc×ng ,
c ∈ Rn, A ∈ Rnc×ng , b ∈ Rnc , and C :=

{
C1, C2 . . . , Cnp

}
such that:

Z = {Gξ + c : Aξ = b, ξ ∈ C1 × . . .× Cnp
}, (2)

where the sets C1 to Cnp
are the generator sets, nc is the

number of constraints, ng is the sum of the size of the
generators and np is the number of generators.
Intuitively, CCGs describe in an indirect form a set X by
describing it as a linear operator of a much larger state space
of the generator variables ξ. CCGs are a very general form of
representing sets, which does not require set approximations
if we need to perform set operations between polytopes and
ellipsoids, amoung many other sets. In particular, it general-
izes constrained zonotopes or polytopes that correspond to

X = (G, c,A, b, ∥ξ∥∞ ≤ 1) (3)

or ellipsoids that can be written as

X = (G, c, [ ], [ ], ∥ξ∥2 ≤ 1) (4)

Other types of sets can also be described as CCGs such as
ellipsotopes, intervals, or zonotopes. For more information
on CCGs, the reader is referred to [3]. The usual operations
such as linear maps, Minkowsky sum, and intersection are
well-defined for CCGs and can be computed in closed-form
as given in Definition 2.

Definition 2: Consider three Constrained Convex Gener-
ators (CCGs) as in Definition 1:

• Z = (Gz, cz, Az, bz,Cz) ⊂ Rn

• W = (Gw, cw, Aw, bw,Cw) ⊂ Rn

• Y = (Gy, cy, Ay, by,Cy) ⊂ Rm

and a matrix R ∈ Rm×n and a vector t ∈ Rm. The three set
operations are defined as:

RZ + t = (RGz, Rcz + t, Az, bz,Cz)

Z ⊕W =([
Gz Gw

]
, cz + cw,

[
Az 0
0 Aw

]
,

[
bz
bw

]
, {Cz,Cw}

)
Z ∩R Y =[

Gz 0
]
, cz,

 Az 0
0 Ay

RGz −Gy

 ,

 bz
by

cy −Rcz

 , {Cz,Cy}


Given these operations, one may solve Problem 1 recursively,
since given a set Xk ⊂ Rn such that xk ∈ Xk and a
measurement yk, the set Xk+1 ⊂ Rn such that xk+1 ∈ Xk+1

can be computed as

Xk+1 = (FXk ⊕W +Buk) ∩C (yk − V ). (5)

In this implementation, we assume that the sets W and V
are represented as CCGs with a constant description for the
disturbance and noise sets:

W := (Gw, cw, [ ], [ ],Cw) , (6a)
V := (Gv, cv, [ ], [ ],Cv) . (6b)

One major drawback with this approach is that, since a
Minkowsky sum and a generalized intersection have to be
performed at each time instant, the number of generator sets
increases, rendering the problem computationally expensive
after a certain number of iterations. Therefore, to address this
issue in the next section, we will provide a more efficient
solution with a fixed-length description.

III. EXPLICIT COMPUTATION OF GUARANTEED STATE
ESTIMATES

In this section, we will resort to a conservative ellipsoidal
estimate that can be exchanged by any other filter output
as long as it is given by a closed-form expression (i.e., no
iterative procedure). Other options could be found in the
literature like in [24]–[26].

A. Ellipsoidal observer

Before obtaining a state estimate with low conservatism,
we start with a coarse ellipsoidal state estimate based on a
Luenberger observer, which for systems like in (1), is given
by

x̂k+1 = Fx̂k +Buk + L (yk − Cx̂k) , (7)

where L is defined such that ρ(F − LC) < 1, where ρ(·)
is the spectral radius. If the pair (F,C) is detectable, such
matrix L always exists. Defining the estimation error as
ek := xk − x̂k from (1) we obtain

ek+1 = (F − LC)ek + wk −Gvk. (8)

Given that ρ(F − LC) < 1 there exists a symmetric matrix
P ∈ Rn×n such that

(F − LC)⊺P (F − LC)− P = −In, (9)
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and we may define a decrease rate as follows

a := ∥P 1
2 (F − LC)P− 1

2 ∥2 =

√
1− 1

σmax (P )
, (10)

where σmax(·) is the maximum singular value. From (9), we
have that a < 1. Therefore, defining

einit := max
ξ∈X0

∥P 1
2 ξ∥2 (11)

enoise := max
ξ∈W⊕−LV

∥P 1
2 ξ∥2 (12)

and applying Theorem 6 in [27], we have that xk ∈ X̂k for
all k ≥ 0, where

X̂k =

{
x̂k + ξ : ∥P 1

2 ξ∥2 ≤ akeinit +
enoise
1− a

}
. (13)

Given that the state estimate is an ellipsoid, it can be written
in CCG format as follows

X̂k =

((
akeinit +

enoise
1− a

)
P− 1

2 , x̂k, [ ], [ ], ∥ξ∥2 ≤ 1

)
.

(14)
We remark to the reader that the fact that CCGs allow

for set operations between polytopes and ellipsoids, it is
possible to use the conservative ellipsoidal estimate X̂k and
improve it by explicitly considering the exact iterations for
some fixed number of time instants. Therefore, at some time
k, the set X̂k−N can be viewed as an implicit order reduction
to the more accurate set Xk−N that would be obtained by the
direct recursion in (5). These two fact will be useful in the
next section to provide the main contribution of this paper
to have a set-valued observer that does not require order
reduction methods and where most of the computations can
be performed offline before the estimation procedure is run.

B. Explicit finite-horizon observer

The state estimate given by (14) can serve as a conserva-
tive set that can be improved by N iterations of the recursion
(5). Specifically, defining for an integer l,

Y l
k :=

yk−1

...
yk−l

 , (15)

U l
k :=

uk−1

...
uk−l

 , (16)

we consider that the state estimate at time k is expressed by

X l
k =

(
Gl

X,k, c
l
X,k, A

l
X,k, b

l
X,k,C

l
X

)
⊂ Rn, (17)

where

Gl
X,k =

[
Gl

(
ak−leinit +

enoise

1−a

)
Gl

0

]
, (18a)

clX,k = cl + clUU
l
k + cl0x̂k−l, (18b)

Al
X,k =

[
Al

(
ak−leinit +

enoise

1−a

)
Al

0

]
, (18c)

blX,k = Y l
k + bl + blUU

l
k + bl0x̂k−l. (18d)

For l = 0 one recovers the ellipsoidal observer considering
that G0, c0U , A0,A0

0, b0, b0U and b00 are empty matrices,

C0
X = {ξ : ∥ξ∥2 ≤ 1} , (19)

and

G0
0 := P− 1

2 , (20a)

c0 := 0n, (20b)

c00 := In. (20c)

By applying (5) we obtain after simple computations the
main result of this paper.

Theorem 1: Given a state estimate X l
k such that xk ∈ X l

k,
then xk+1 ∈ X l+1

k+1 with

Cl+1
X = Cw × Cv × Cl

X , (21a)

Gl+1 =
[
Gw 0 FGl

]
, (21b)

Gl+1
0 = FGl

0, (21c)

cl+1 = Fcl + cw, (21d)

cl+1
U =

[
B FclU

]
, (21e)

cl+1
0 = Fcl0, (21f)

Al+1 =

[
0 Gv CGl

0 0 Al

]
, (21g)

Al+1
0 =

[
CGl

0

Al
0

]
, (21h)

bl+1 =

[
−Ccl − cv

bl

]
, (21i)

bl+1
U =

[
0 CclU
0 blU

]
, (21j)

bl+1
0 =

[
Ccl0
bl0

]
. (21k)

Proof: We first consider that at time k a state estimate
is given by (17) and (18). The Theorem follows by applying
(5) with the CCG operations defined in Definition 2, where
W and V are given by (6).

Based on Theorem 1, the observer proposed in this paper
consists of selecting a fixed horizon N and pre-computing
the set CN

X and matrices GN , GN
0 , cN , cNU , cN0 , AN , AN

0 ,
bN , bNU , and bN0 , offline with Algorithm 1.

Algorithm 1 Pre-computation of CCG parameters
Require: G0, c0U , A

0, A0
0, b

0, b0U , b
0
0 = []; C0

X is given by
(19); G0

0, c
0, c00 are given by (20)

1: for l← 0 to N − 1 do
2: compute Cl+1

X , Gl+1, Gl+1
0 , cl+1, cl+1

U , cl+1
0 , Al+1,

Al+1
0 , bl+1, bl+1

U , bl+1
0 with (21)

3: end for
4: return CN

X , GN , GN
0 , cN , cNU , cN0 , AN , AN

0 , bN , bNU ,
bN0

After obtaining matrices GN , GN
0 , cN , cNU , cN0 , AN , AN

0 ,
bN , bNU , and bN0 with Algorithm 1, at runtime, for k ≥ N ,
the observer consists of the Algorithm 2.
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Algorithm 2 Explicit finite-horizon observer
Require: CN

X , GN , GN
0 , cN , cNU , cN0 , AN , AN

0 , bN , bNU , bN0 ,
L, a, einit enoise, x̂0

1: for 0 ≤ k < N do
2: Xk =

((
akeinit +

enoise

1−a

)
P− 1

2 , x̂k, [ ], [ ], ∥ξ∥2 ≤ 1
)

3: end for
4: for k ≥ N do
5: x̂k−N+1 = Fx̂k−N+Buk−N+L (yk−N − Cx̂k−N ),
6: compute Y N

k+1 by storing yk and discarding yk−N

7: compute UN
k+1 by storing uk and discarding uk−N

8: GN
X,k+1 =

[
GN

(
ak+1−Neinit +

enoise

1−a

)
GN

0

]
9: cNX,k+1 = cN + cNU UN

k+1 + cN0 x̂k+1−N

10: AN
X,k+1 =

[
AN

(
ak+1−Neinit +

enoise

1−a

)
AN

0

]
11: bNX,k+1 = Y N

k+1 + bN + bNU UN
k+1 + bN0 x̂k+1−N

12: Xk+1 =
(
GN

X,k+1, c
N
X,k+1, A

N
X,k+1, b

N
X,k+1,C

N
X

)
13: end for

With Algorithm 2, to obtain the description of a guaranteed
state estimate set we only have to perform a small number
of computations proportional to the horizon length N , which
may be significantly more efficient than performing (5)
recursively. Given the finite-horizon nature of the algorithm,
this approach is more conservative than applying (5) recur-
sively. However, by increasing the horizon N the introduced
conservatism tends to disappear.

We have to remark that to apply this method for k < N
would imply storing in memory all the coefficients from l =
1 to l = N − 1. However, it greatly increases the memory
requirements for large N and it would only have an effect
in a small transient period. For that reason, we consider that
for k < N the state estimate is obtained with (14).

With the description of set XN
k , an important operation is

obtaining an estimate of the centre of the set. This can be
done with an optimization algorithm by estimating the centre
xcenter
k as

xcenter
k = cNX,k +GN

X,k argminAN
X,kξ=bNX,k

∥ξ∥2 (22)

Alternatively, this can be computed algebraically as follows

xcenter
k = cNX,k +GN

X,kA
N,⊺
X,kηk, (23)

where ηk is computed by solving the linear equation

AN
X,kA

N,⊺
X,kηk = bNX,k. (24)

Given that ak tends to zero, one may neglect the term
ak−Neinit after some time. Therefore, we may consider that

GN
X,k ≈ GN

X :=
[
GN enoise

1−a GN
0

]
, (25a)

AN
X,k ≈ AN

X :=
[
AN enoise

1−a AN
0

]
, (25b)

and we can pre-compute the matrix

ZN
X := GN

XAN,⊺
X

(
AN

XAN,⊺
X

)−1

, (26)

obtaining significant computational time savings in the com-
putation of the CCG center as

xcenter
k = cNX,k + ZN

X bNX,k. (27)

IV. NUMERICAL RESULTS

To assess the performance of the proposed algorithm we
consider a random system generated with the MATLAB
function drss with dimension 15, an output of size 3 and
input of size 5, that is, xk ∈ R15, uk ∈ R5 and yk ∈ R3, for
all k ≥ 0. We consider that the initial state is drawn from
an initial state which is a CCG given by

X0 = (GX,0, cX,0, [ ], [ ],CX,0) ⊂ Rn, (28)

where

CX,0 = {ξ : ∥ξ∥∞ ≤ 1} × {ξ : ∥ξ∥2 ≤ 1} , (29a)

GX,0 =
[
2I15 I15

]
, (29b)

cX,0 = 015. (29c)

The disturbance and noise sets are expressed as (6) with
parameters

CW = {ξ : ∥ξ∥∞ ≤ 1} × {ξ : ∥ξ∥2 ≤ 1} , (30a)

GW =
[
2I15 I15

]
, (30b)

cW = 015, (30c)
CV = {ξ : ∥ξ∥∞ ≤ 1} × {ξ : ∥ξ∥2 ≤ 1} , (30d)

GV =
[
I3 2I3

]
, (30e)

cV = 03. (30f)

The control input is constant and given by uk = 2015 for
all k ≥ 0.

Figure 1 shows the evolution in time of the projection
of the first coordinate of the state estimate obtained with
the ellipsoidal method of (14) (Ellipsoidal), the standard
description obtained by applying recursively (5) (Standard),
and the method proposed in this paper for various horizons
N . From Figure 1, we observe that the performance of the
algorithm approaches that of the standard case for large N .

In Figure 2, we plot the projection in the first two dimen-
sions of the state estimate obtained with various methods
and for different horizons N . As in Figure 1, we observe
that the performance of the algorithm approaches that of the
standard observer for large N . This fact can also be observed
in Figure 3 which shows the size of the projection in the first
dimension of the state estimate.

Figure 4 shows the time to compute the description of the
set at runtime with an Intel Core i7-12700H processor at 2.70
GHz. From Figure 4, we can observe that the computation
times are significantly more competitive with the method
proposed in this paper since most of the matrix computations
are done offline.

The most significant advantage of the method proposed
in this paper is the fact that the set description size remains
constant. Therefore, as shown in Figure 5 while with the
standard method, the computation time increases at every
iteration, with the method of Algorithm 2 the computation
time remains constant.
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Fig. 1. Time plot of state enclosures for diverse state estimation methods
for the first coordinate of the state. The black line in the middle represents
the system’s actual state, while the dashed line indicates the Luenberger
state estimates x̂k .
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Fig. 2. State enclosures for various state estimation techniques when k is
set to 20. The asterisk (∗) represents the Luenberger state estimate x̂k and
the circle (◦) represents the true state of the system.

Figure 6 shows the computation times for various centre
computation methods for the standard observer and horizons
N = 1 and N = 10. We tested the method of centre
computation of solving (22) with YALMIP and the MOSEK
solver [28] (Opt), the algebraic method of (23) (Alg), and the
method with pre-computed matrices of (27) (Pre). For im-
proved efficiency, for the optimization approach, we adopted
the simplification (25) and used the function optimizer to
pre-compile the optimization algorithm. From Figure 6 we
observe that it is significantly more advantageous to compute
the relevant matrices beforehand, instead of solving a linear
equation at every time.

To highlight the main advantage of the proposed method,
we used the same simulation for a larger number of iterations
with the results being depicted in Figure 7. Since the
description of the state estimate increases in size at each
iteration, the computation of the center becomes more time-
consuming, whereas, the proposed method benefits from the
constant description and pre-computation of parts of the data

0 5 10 15 20
0

50

100

150

200

250

Fig. 3. Size of the projection of the first dimension of the state at various
iterations for different state estimation methods and different horizons N .

0 5 10 15 20
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0.2

0.4

0.6

0.8

1

1.2
10-3

Fig. 4. Computation times for various state estimation methods.

structures being done offline. We remark that the presented
method voids the need for an order reduction procedure,
which is going to add conservatism and represent a time
overhead.

V. CONCLUSIONS

We proposed a novel, minimally conservative, and compu-
tationally efficient method for guaranteed state estimation of
discrete-time linear time-invariant (LTI) systems, which uses
CCGs. Additionally, we propose a method for computing the
CCG centre using pre-calculated matrix inversions that is
much quicker than alternative methods. The performance of
the computations of the suggested technique is demonstrated
by numerical results. In future work, we aim at developing
a fast implementation using C code that can be used by the
community and thus bridging one of the main drawbacks of
guaranteed state estimation in comparison with Luenberger
observers.
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