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Superposition theorems for input-to-output stability of infinite
dimensional systems

Patrick Bachmann!, Sergey Dashkovskiy! and Andrii Mironchenko?

Abstract— We characterize input-to-output stability of a
general class of both continuous-time and discrete-time infinite
dimensional systems in terms of weaker stability properties.
Our results generalize the corresponding criteria for ordinary
differential equations achieved by Ingalls et al. [1] and those
for infinite dimensional systems for which the output equals the
state [2]. This way, we investigate the relation between several
stability and attractivity properties for infinite dimensional
systems with outputs by providing the according implications
and giving counterexamples, respectively.

Index Terms— Distributed parameter systems; Stability of
nonlinear systems; Nonlinear systems; Input-to-state stability;
Input-to-output stability

I. INTRODUCTION

Input-to-state stability (ISS) was first introduced for sys-
tems of ordinary differential equations (ODEs) [3], and then
developed for other classes of finite-dimensional control
systems such as switched [4], hybrid [5], and impulsive
systems [6]. More recently, the ISS theory was extended to
infinite dimensional systems, including time-delay systems
[71, [8], partial differential equations (PDEs) [9] and general
evolution equations in Banach spaces [10], [11]. For more
details, we refer to the survey [11].

Yet, these developments are confined to systems with full-
state output. The notion of input-to-output stability (IOS)
introduced for ODE systems in [12] extends ISS to output
systems. IOS combines the uniform global asymptotic stabil-
ity of the output dynamics with its robustness w.r.t. external
inputs. If the output equals to the state, IOS and ISS coincide.

For finite-dimensional systems, the IOS theory is quite
rich. Lyapunov characterizations of IOS have been shown
in [13] based on some earlier developments in [12]. A so-
called IOS superposition theorem was obtained in [1]. It
states that a forward-complete ODE system satisfying both
output Lagrange stability (OL) and output-limit property
(OLIM), is necessarily 10S. For the special case of ISS, a
corresponding result has been shown in [14] and extended
to infinite dimensional systems in [2].

Trajectory-based small-gain theorems for interconnections
of two IOS systems have been obtained in [15] and gen-
eralized to interconnections of n IOS systems in [16].
Lyapunov-based small-gain theorems for couplings of n € N

*A. Mironchenko has been supported by the German Research Founda-
tion (DFG) (grant MI 1886/2-2).

1P, Bachmann and S. Dashkovskiy are with the In-
stitute of Mathematics, University of Wiirzburg, Ger-
many patrick.bachmann@uni-wuerzburg.de,
sergey.dashkovskiy@uni-wuerzburg.de

2 Andrii Mironchenko is with the Department of Mathematics, University
of Klagenfurt, Austria andrii.mironchenko@aau.at

979-8-3503-1632-2/24/$31.00 ©2024 IEEE

interconnected IOS systems have been reported in [17, Sec.
3.3.4].

IOS is paramount in numerous applications including
multi-agent systems [18], coverage controllers [19] and neu-
ral networks [20].

In time-delay context, IOS for infinite dimensional systems
serves for controller design in networked systems, which
is applied to teleoperating systems, though in this case
only weaker than I0S properties for the control system are
obtained [21]. The work [22] develops finite-dimensional
observer-based controllers for a linear reaction-diffusion sys-
tem. In [23], [24], small-gain theorems for the so-called
maximum formulation of the IOS property are presented.
For time-delay systems, Lyapunov characterizations of 10S
were developed (cf. [8]).

Nevertheless, despite its practical relevance, infinite di-
mensional IOS theory remains largely unexplored [11].

In the following, we characterize the IOS property for infi-
nite dimensional systems in terms of weaker properties, such
as the output-uniform asymptotic gain property (OUAG),
output-uniform local stability (OULS), output continuity at
the equilibrium point (OCEP) and other notions. Further-
more, we consider the influence of output-Lagrange stability
(OL) on the IOS property by establishing a superposition
theorem for systems which are OL and IOS. We provide
a superposition theorem for OL. We point out differences
between the ISS case and general IOS case by several
(counter)examples.

The characterizations from [1] cannot be extended straight
forwardly to infinite dimensional systems. In [2, Ex. 1], it is
shown directly that the output-limit property (OLIM) and
OL are not sufficient to imply IOS for the case of full-
state output-linear infinite dimensional systems. Similarly,
the IOS characterization for finite-dimensional systems in
terms of OL and the output-asymptotic gain property (OAG)
cannot be extended to the infinite dimensional setting in the
same formulation, even in the ISS case (i.e., if h(z,u) = ),
because trajectory-wise asymptotic stability does not imply
uniform asymptotic stability as argued in [2, Lem. 9].

A different problem arises due to the fact that nonlinear
forward complete infinite dimensional systems do not neces-
sarily have bounded reachability sets, in contrast to nonlinear
ODE systems [2]. As we discuss in [25, Sec. VI], one of
the consequences of this problem is the breakdown of the
equivalence between several types of uniform asymptotic
gain properties, in contrary to the finite dimensional case.
In view of this, the investigation of the IOS of infinite
dimensional nonlinear systems becomes challenging.
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IOS superposition theorems are a meta-tool that helps to
prove other important theoretical results including Lyapunov
theory and small-gain theorems. Recently, in [26], ISS char-
acterizations have been used to prove Lyapunov-Krasovskii
theorems with pointwise dissipation for ISS of nonlinear
time-delay systems. Our IOS characterizations can be a basis
that will help to extend those results to IOS Lyapunov-
Krasovskii theorems.

These IOS characterizations can be applied to extend
a small-gain theorem to infinite networks of infinite di-
mensional IOS subsystems. For ISS, [27] provided such a
general small-gain theorem based on the ISS superposition
theorems [2]. Our work will serve as a basis for IOS small-
gain theorems for infinite networks. Furthermore, one could
formulate stronger IOS small-gain theorems for time-delay
systems, which will go far beyond existing results even in
the ISS case.

Due to the page limit, most of the proofs are omitted here.
A preprint of the version of this work with further results and
insights, detailed proofs, and counterexamples can be found
in [25], to be submitted to a journal.

We denote the nonnegative integers by Ny, the natural
numbers by N, the real numbers by R, the nonnegative real
numbers by ]R(J{ and the balls of radius r around zero in
Banach spaces X, U and U, respectively, by B,, B,y and
B, 4. We define the standard classes of comparison functions
(cf. [28, p. xvi]) by

K:={y:R{ = R |7(0) =0, v is continuous
and strictly increasing},
Koo := {7 € K|~ is unbounded},
L:={y:R{ — RJ |v is continuous and decreasing
with tlirgo ~(t) = 0},
KL:={BeR; xRS - R |B(-,t) €K, Vt >0,
B(r,-) € L, Vr > 0}.

II. PRELIMINARIES
Definition 1: Consider a quadruple ¥ = (I,X,U, )
consisting of:
1) A time set I € {Ny,R{}.

2) A normed vector space (X, | -|/y), called the state
space.

3) A vector space U of input values and a normed
vector space of inputs (U4, || - [|,,), where U is a linear

subspace of {u|u : I — U}. We assume that the
following invariance axioms hold:

o Axiom of shift invariance: for all v € U and all
7 € I, the time-shifted function u(- + 7) belongs
to U with [[ull, > [Ju(- +7)ll.

o Axiom of restriction invariance: for each u € U
and for all t5 > t; > 0 the restriction of u to time
interval [t, o] given by u|, ., belongs to U and
lelies,eatllyg < Tl

4) Amap ¢: Dy — X, Dy C I xX xU, called transition
map, so that for all (r,u) € X x U it holds that

Dy (I x{(z,u)}) =[0,tm) x {(z,u)}, for a certain
tm = tm(z,u) € (0,+00]. The corresponding interval
[0,t,,) is called the maximal domain of definition of
the mapping ¢t — ¢(¢, x, u), which we call a trajectory
of the system.

The quadruple ¥ is called a (control) system if it satisfies

the following axioms:

(31) Identity property: for all (z,u) € X x U, it holds that
?(0,z,u) = x.

(X2) Causality: for all (t,x,u) € Dy and @ € U such that
u(s) = u(s) for all s € [0,¢], it holds that [0,#] x
{(z,u)} C Dy and ¢(t,z,u) = (¢, x, u).

(323) Cocycle property: for all x € X, u € U and
t,s > 0 so that [0,t + s] x {(z,u)} C Dy, we have
¢(t + s, u) = ¢(57 ¢(t7 T, u)? U(t + - ))

Definition 2: A (time-invariant) control system with out-
puts ¥ := (I, X,U,$,Y,h) is given by an abstract control
system (I, X, U, ¢) together with

1) a normed vector space (Y, |||y ) called the output-

value space or measurement-value space; and

2) amap h: X xU — Y, called the output (or: measure-

ment) map.

We also denote y(-,x,u)
(x,u) € X xU.

The following definition is taken from [2].

Definition 3: We call a control system (I, X,U, ) for-
ward complete (FC), if foreach x € X, u e Y and t € |
the value ¢(t,z,u) € X is well-defined.

In the following, we always consider a forward complete
control system with outputs ¥ = (I, X, U, ¢, Y, h).

Definition 4: We call X output continuous at the equilib-
rium point (OCEP) if for every 7 € I and every € > 0 there
exists § = d(e,7) > 0 such that

= h(o(-,z,u),u(-)) for all

tel:t <7 |lz|ly <6, [lully, <6 = y(t,z,u)lly <e.
Definition 5: 3 is said to have bounded output reachabil-
ity sets (BORS) if for all C' > 0 and 7 € [ it holds that

sup
2l luly,<C, t<r .
Definition 6: We call the output map h K-bounded if there

are 01,7, € K so that for all z € X and all © € U we have

1Az, w)lly < or(llzllx) + 71 (llully,)- (1)
Let us define the main concept of this paper.
Definition 7: % is called input-to-output stable (I0S), if
there exist § € KL and v € K such that Vx € X, Yu e U
the following holds:

Iyt 2, wlly < Bllelx .0 +1(ul,),  tel @
The concept of IOS was introduced in [15], generalizing
input-to-state stability as given in [3].
Definition 8: X is called input-to-state stable (ISS), if
there exist § € KL and v € K such that Vo € X, Vu € U
the following holds:

lo(t, z,u)llx < Blzllx,t) +y(Nully),  tel. 3)
Remark 9: A special case of output systems is given for
Y =X, h(z,u) =z and y(t,z,u) = ¢(t,x,u) forall ¢ € I,

ly(t, 2, u)lly < oo
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r € X and v € U. We call such systems as systems with
full-state output. For such systems, IOS reduces to ISS.

A. Stability properties

In this section, we introduce several stability properties
needed for the characterization of I0S.

Definition 10 ([12]): We call X output Lagrange stable
(OL) if there exist 0,7 € K such that for all z € X and
u € U, it holds that

ly(t, 2z, u)lly < o(ly(0,2z,u)lly) +y(luly,),  tel.
We call X locally output Lagrange stable (locally OL) if
there exist 0,7 € Ko and r > 0 such that for all z € X
and u € By such that ||y(0,z,u)|| < r, it holds that

ly(t 2, w)lly < o([ly(0,z,uw)lly) +(ully), — tel.

The following notions generalize the classical concepts
of uniform local/global stability (cf. [2]) to systems with
outputs.

Definition 11: We call system

1) output-uniformly locally stable (OULS) if there exist
r > 0 and 0,7 € K4 such that for all x € B, and
u € B, yy, it holds that

ly(t,z,u)lly < ollelx) +y(lully,),  tel

2) output-uniformly globally stable (OUGS) if there exist
0,7 € Ko such that for all x € X and all u € U, it
holds that

ly(t, 2, u)lly <olllelly) +y(lull,),  tel.
An equivalent characterization of local OL and OULS in
e-d-notation is given by the following
Lemma 12: Consider a control system with outputs ¥ =
(I,X,U,p,Y,h).

1) ¥ is locally OL if and only if for all € > 0 there exists
0 > 0 such that

ly(0, 2, u)lly <6, lully, <6, tel

= ”y(t?x»u)HY <e.

2) System X is OULS if and only if for all € > O there
exists § > 0 such that

l#llx <6 llully, <6, t el = |y(t,z,u)lly <e.
Proof: The proof is analogous to the proof of [2,
Lem. 2]. |
The notions of OULS and local OL (OUGS and OL)
coincide for systems with full-state output. For systems with
full-state output, OULS and local OL become uniform local
stability (ULS), OUGS and OL are the same as uniform
global stability (UGS). Similarly, many of the other notions
are derived from a concept for systems with full-state output
which has the same name except the word output in the
beginning.

B. Attractivity properties

Following [1], we define several attractivity-like proper-
ties for systems with inputs and outputs, and use them to
characterize 10S.

Definition 13: % has the

1) output-global uniform asymptotic gain property

(OGUAG) if there exists v € K such that for every
e > 0, and every r > 0 there exists 7 = 7(e,7) € I
such that

ly(t, z,u)lly <e+y(llully),
re€B,ucld,tel:t>T.

2) output-uniform asymptotic gain property (OUAG) if
there exists v € K such that for every e,7,s > 0
there exists 7 = 7(e,7,s) € I such that

ly(t,z, u)lly < e+y(lully)
reEB,ueBsy,tel:t>r.

A system is OGUAG and OUAG, respectively, if all outputs
converge to the ball with radius y(||u||,). The difference
between the two is that for OUAG, the convergence rate is
dependent on the norm of the input and the norm of the state
of the system, and for OGUAG it depends on the norm of
the state, but not on the applied input.

C. Weak attractivity properties

Weak attractivity for dynamical systems was introduced in
[29]. Its extension of the limit property (LIM) to control sys-
tems with full-state output [14] is essential for ISS superpo-
sition theorems. To characterize ISS for infinite dimensional
systems, several variations of the LIM property have been
introduced in [2]. We extend these notions to systems with
general outputs.

Definition 14: X is said to possess the output-limit prop-
erty (OLIM) if there exists 7 € Ko such that for all € > 0,
all z € X and all u € U there exists a t = t(e,z,u) € I,
such that

ly(t 2, u)ly < e +([lully,) -

In other words, system X is OLIM, if for any input u and
any initial state, its output function can approach the ball of
radius (||ul,,) arbitrarily close.

As shown in [2, Ex. 1] for the special case of ISS, OLIM
and OL are in general not sufficient to imply IOS for infinite
dimensional systems. Therefore, we introduce the following
new notions, which are stronger as compared to OLIM.

Definition 15: We say X possesses the output-global uni-
Sform limit property (OGULIM) if there exists v € K such
that for all e, > 0 there exists 7 = 7(g,7) € I such that
for all x € B, and all © € U there exists t € I, t < 7 such
that

ly(t, 2, w)lly <&+ (llully,) -
Definition 16: We say > possesses the output-uniform
limit property (OULIM) if there exists 7 € K such that
for all e,7,s > 0 there exists 7 = 7(g,r,s) € I such that
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TABLE I
LIST OF SYSTEM PROPERTIES AND ABBREVIATIONS

Abbr. Property Def.
BORS bounded output reachability sets 5
FC forward completeness 3
10S input-to-output stability 7
ISS input-to-state stability 8
local OL local output Lagrange stability 10
OBORS output-bounded output reachability sets 22
OCEP output continuity at the equilibrium point 4
OGUAG output-global uniform asymptotic gain property 13
OGULIM  output-global uniform limit property 15
OL output Lagrange stability 10
OLIM output-limit property 14
OOULIM  output-to-output uniform limit property 21
OUAG output-uniform asymptotic gain property 13
OUGS output-uniform global stability 11
OULIM output-uniform limit property 16
OULS output-uniform local stability 11

for all x € B, and all v € B,y there exists t € I, t < 7
such that

ly(t,z, Wy < e+ y(lluly,)-

In the case of OLIM, the approaching speed towards the
ball of radius 7(||ul|,,) depends on input and initial state.
For OULIM, this speed only depends on the norm of the
input and the initial state. And in the case of OGULIM, the
speed of approach is also uniform in the input and does only
depend on the norm of the initial state.

III. MAIN RESULTS

The main result of this paper is summarized in Figure 1.
First, we establish several equivalent characterizations of I0S
in Theorem 17. Then, we will show equivalences for IOS A
OL in Proposition 19. By Example 25, it becomes clear that
the notions of IOS and OL are independent of each other.
Furthermore, from Lemma 18, it follows that IOS implies
OULIM A OUGS, but the converse implication does not hold
true in general as explained in Example 26.

A. 10S superposition theorem

We start by stating the following characterization of 10S.

Theorem 17 (IOS superposition theorem): Let
Y = (I,X,U,¢,Y,h) be a forward complete control
system with outputs. Then, the following statements are
equivalent:

1) ¥ is IOS.

2) ¥ is OUAG, OCEP and BORS.

3) X is OUAG, OULS and BORS.

4) ¥ is OUAG and OUGS.

Next, we present the technical lemmas, which we use in
the proof of Theorem 17.

Lemma 18: Let ¥ = (I,X,U,¢,Y,h) be a forward
complete control system with outputs. Then, the implications
depicted in Figure 2 hold true.

Proposition 19 (I0S N OL superposition theorem): Let
¥ =(I,X,U,¢,Y,h) be a forward complete control system
with outputs. Then the following statements are equivalent:

1) ¥ is IOS and OL.

2) X is OUAG, OL, and h is K-bounded.

3) X is OULIM, OL, and h is K-bounded.
The proofs of the previous results are omitted due to the
restriction of the page limit. Detailed proofs can be found in
the preprint of the journal version [25].

B. Full-state output case

As a corollary of Theorem 17, we obtain the ISS super-
position theorem proved in [2, Thm. 5]. We refer to [2] for
the definition of the corresponding notions.

Corollary 20: Consider a system X with full-state output.
Then the following statements are equivalent:

1) ¥ is ISS.

2) ¥ is UAG A CEP A BRS.

3) ¥ is ULIM A UGS.

4) ¥ is ULIM A ULS A BRS.

Proof: Theorem 17 states the equivalence ISS <=
UAG A CEP A BRS as all of these notions for systems with
outputs reduce accordingly.

Next, OL defines stability on the output-value space which
is equivalent to UGS for systems with full-state output.
As ISS already implies UGS, Proposition 19 is a strict
generalization of the equivalence ISS <= ULIM A UGS
to systems with outputs.

By Lemma 23, we have

OOULIM A local OL A OBORS = OL,

which for systems with full-state output reads precisely as
ULIM A ULS A BRS = UGS. The converse implication
UGS = ULS A BRS follows from Lemma 18. [ |

IV. SUFFICIENT CONDITION FOR OL

In the following, we derive sufficient conditions for the
OL property. To this aim, we introduce a modified version
of OULIM and OGULIM. The difference between the newly
defined OOULIM as compared to OULIM and OGULIM lies
in the choice of the uniformliness with respect to the initial
condition. For OOULIM, the initial condition x is chosen
such that the output (0, x, u) is in a bounded ball whereas
for OULIM and OGULIM the initial state z itself is bounded.
Similarly, we modify BORS.

Definition 21: We say X possesses the output-to-output
uniform limit property (OOULIM) if there exists v € K
such that for all €,7,s > 0 there exists 7 = 7(g,r,s) € I
such that for all x € X and all v € By such that
y(0,z,u) € By, there exists t € I, t < 7 satisfying

[yt 2z, wlly <e+y([ully,)-
In the following, we derive sufficient conditions for the

OL property.

Definition 22: System X is said to have output-bounded
output reachability sets (OBORS) if for all C > 0 and 7 €
it holds that

sup lly(t, z, u)|ly < oo.
2€X, [Jully y(0,2,u)|ly <C, t<T
Lemma 23: Let ¥ = (I,X,U,¢,Y,h) be a forward
complete control system with outputs. Let > be OOULIM,
locally OL and OBORS. Then, ¥ is OL.
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Proposition 19

IOS A OL <= OUAG A OL A h bounded <——= OULIM A OL A h bounded

[ g e

Theorem 17
I10S <—— OUAG A OCEP A BORS <— OUAG A OULS A BORS <—— OUAG A OUGS

Lem. 18 ﬂ'% Ex. 26

OULIM A OUGS

Fig. 1.
OUGS OGUAG
BORS OULS OUAG OGULIM
OCEP OULIM
Fig. 2. Diagram of implications of Lemma 18.

V. COUNTEREXAMPLES

In this section, we provide several counterexamples to
show that certain implications do not hold.

Remark 24: In [2, Ex. 1], it is shown that in general OL
A OLIM =4 1I0S even in the case of full-state output.

Example 25 (I0S =5 OL): Let us consider the following
system with a scalar state and output

y(t,xo) = sin(¢(t, zo)).

where ¢ = ¢(t,x) is the transition map (independent of w)
of system X as given in Definition 1.
This system is IOS since

¥ 1 =-—uzx,

|6(t, 20)] = e™" || -
However, for g = m, u = 0 it follows that y(0,xq) = 0 but
y(1,20) = sin(me™!) # 0. Therefore, the system is not OL.
For systems with full-state output, the notions of OL
and OUGS both reduce to UGS and both OGULIM and
OOULIM become ULIM. However, these notions differ for
general output systems and the implication ISS <= ULIM
A UGS (Cor. 20) cannot be extended to output systems in a
naive way as stated in the following example.
Example 26: We show the following:
OGULIM N OOULIM N OUGS =%~ 10S vV OL. We consider
a two-dimensional uncontrolled system with state z =

ly(t, z0)| = [sin(¢(t, 20))| <

Diagram of implications.

(71,22)T € R? given in polar coordinates r = /22 + 23 =
lz||, and 8 = arg(x1 + iz2) by

L:o0=1, =0, y(t,x)=ei(t )
with transition map (in Cartesian coordinates) ¢(-,xzo) =
(b1(+,20),d2(+,70))T of X corresponding to the initial

condition z( represented by (6y,7) in polar coordinates.
The system X is OGULIM and OOULIM as it holds that

b(t,20) = (ro c9s(t+90)) 7

rosin(t + 6p)

ie., y(t,z9) =0 for t € m (Ng + 3) — 6o.

Hence, we can choose the uniform bound 7 = 7 for which
for any initial condition x( there exists ¢ < 7 such that
y(t, zg) = 0, which implies OGULIM and OOULIM.

Moreover, ¥ is OUGS as |y(t,zo)| < [[¢(t, zo)|ly < 1o
Vt € I but it is not IOS as y(t,xg) = ro for t = 27N — 6.

Furthermore, the system is not OL as for zo = (0,1)7 it
holds that y(0,z0) = 0, but y(37,z) = 1.

Also, the implication ULIM A ULS A BRS = ISS or
even ULIM A ULS A BRS = UGS cannot be generalized
to output systems as stated in the following example.

Example 27 (OGULIM A local OL N\ OBORS =%~ OL):
We consider the uncontrolled system z = (x1,22)7 € R?

with polar coordinates r = /z}+az3 = |z,
0 = arg(x1 + ix2) given by
ézsat(l) 7 = —sat(r),
y(t, o) \/¢1 t,20)? + sat(¢3(t, z9)),
with transition map ¢( -, xq) = (¢1(-,0), P2(,20))T, and

sat: R& — [0,1], sat(r) = min{r,1}. First consider the
following: Due to
7 = —min{r, 1} <0, r >0, 4

lo(t, zo)l|, is strictly decreasing to zero in time and for all
e > 0 and all 7y € [0,1], it holds that

ly(t, xo)| = [o(t, z0)|l, = e lzoll, < € (5)

for all t > 7i(e,79) = max{In(™),0} and all z,
lzol|, < 0. Here, we used (4) and that for o < ¢, the bound
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is already satisfied at ¢t = 0. For ||zo|, > 1, t = [|zo||y—1, it
holds that |y(t, zo)| < ||o(t, z0)||ly < ||@oll, —t = 1. Hence,
OGULIM follows by 7 := 7 + max{||xo|, — 1,0}.

For ||zo]|, < 1, the system is OULS by (5). Therefore,
as ||zolly = y(0,z0) for ||zo]l, < 1 and ||zo||, > 1 implies
y(0,z9) > 1, it follows y(t,x0) < onHg = y(0, z¢) for all
x € By, t €1, i.e. the system is locally OL.

Furthermore, the system is OBORS as due to

_Sat(r)a if |¢2(t,l‘0)| < 1’
y<ta xO) = q _ rcos?(8)+r? cos(d) sin(8) .
\/r2 cos2(0)+1 , if |¢2(t,1‘0)| > 1,
<04 rleos@Ol Isin(6)] < 1- Jsin(6)| < 1,

\/ 72 cos?(0)+1

it holds that y(¢, zo) < y(0,z0) + t.

The system is not OL as for [[zo|, > 1, ¢ < ||zo|l, — 1, it
holds that [[6(t, 7o) |, — [[7oll, — £, 6(t) = B+ In[zol,) -
In(||zol|, — t), and thus for zg = (0,¢), ¢ > €2 and t* :=
lzoll, (1 — e %), it holds that y(0,z¢) = 1, 6(t*) = 5, and
y(t*,20) = |1 (t*, 70)| = ce™% — oo for ¢ — o0.

VI. CONCLUSION

We introduced several notions of stability and attractivity
for infinite dimensional systems with outputs. We gave
superposition theorems for IOS and related the stability and
attractivity notions by implications and counterexamples.
By this, we gave generalizations of the results of [1] for
infinite dimensional systems. It turns out that some of the
characterizations for ODE systems do not hold anymore
in the infinite dimensional setting (e.g., OGUAG =~ 10S).
Moreover, we generalized the characterizations in [2] in
terms of considering systems in which the output is not
necessarily equal to the state. It turns out that the output
equivalent of OULIM in combination with OUGS is not
sufficient to conclude IOS as opposed to the case where the
output equals the state [2, Thm. 5].

We proved a sufficient condition for OL in terms of
OOULIM, local OL and OBORS.

The omitted proofs as well as further results, insights and
counterexamples can be found in the preprint of the journal
version [25].

As the next step, we want to develop a Lyapunov theory
for infinite dimensional systems with outputs and investigate
interconnections of I0S systems with the aim of small-gain
theorems.
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