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Abstract— In this paper, an active fault tolerant control
method for spacecraft against actuator faults, uncertainties
and disturbances is investigated. First, an adaptive iterative
learning observer with improved adaptive law is proposed,
which greatly improves the accuracy and speed of fault
estimation. Then, a novel adaptive finite time prescribed per-
formance fault tolerant controller is proposed, which has flex-
ible performance constraints according to faults and control
references, with better robustness and lower conservatism,
breaking the limitation of fixed performance constraint. Next,
an online optimal control allocation strategy is designed
to achieve high-performance actuator allocation under sat-
uration and fault constraints. Finally, through numerical
simulation, the effectiveness and robustness of the proposed
scheme are illustrated by comparing with existing methods.

I. INTRODUCTION
In recent years, as the attitude control system (ACS)

of spacecraft plays a crucial role in space missions [1],
how to deal with non-fatal failures autonomously and
efficiently has attracted extensive research [2].

The pursuit of high reliability has led to many methods
proposed to achieve fault tolerant control (FTC), which
can usually be divided into passive fault tolerant control
(PFTC) and active fault tolerant control (AFTC) [3], [4].
The PFTC consists of fixed controllers, which has low
complexity, but is conservative in terms of performance
[5]. By contrast, AFTC needs to design the fault diagno-
sis (FD) module and reconfigure the controller according
to the real-time diagnosis results, which has optimal
performance, higher flexibility [6]. But the accuracy and
speed of FD directly determine the control performance,
so more efficient FD methods are needed.

FD methods mainly include extended state observer
[7], Kalman filter [8], iterative learning observer (ILO)
[9], sliding mode observer [10], etc. Compared with other
methods, ILO has a simple structure, easy design and
less computational burden, which is more in line with
engineering requirements. However, further improvement
is needed to improve the convergence speed and accu-
racy. Compared with traditional FTC methods such as
adaptive control and sliding mode control, prescribed
performance control (PPC) can quantitatively design
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transient and steady-state performance a priori, and
has a broader application prospect [11]. When there are
faults or discontinuous references [12], PPC will cause
control singularity problems due to unreachable original
fixed performance, so its self-adaptive ability needs to
be enhanced [13]. However, the current research rarely
considers this problem, especially in the field of fault
tolerant control. Inspired by the above results, the main
contributions of this paper are as follows:

• A novel adaptive ILO (AILO) is proposed for
actuator fault diagnosis, adding a more effective
adaptive law design to deal with uncertainty and
disturbance. The estimation speed and accuracy are
improved compared to other methods.

• An adaptive finite time prescribed performance
control (AFPPC) FTC method combining termi-
nal sliding mode control is proposed, which can
online adjust PPF boundaries. It solves the PPC
singularity problem under uncertainty with reduced
conservatism.

• We introduce an optimization algorithm to allocate
actuators according to actuator faults. The overall
energy consumption is reduced, and the faulty actu-
ators can be optimally configured under remaining
capacity and saturation constraints.

Remark 1: Compared with the ILO in [6], [9], the
proposed AILO greatly improves the accuracy and speed
of fault estimation by constructing a novel adaptive law.
Compared with [14], [15], the proposed AFPPC adds
the ability of adaptively adjusting PPF for faults and
control references, avoiding the problem of unreachable
performance under faults caused by traditional fixed
PPF, and greatly expanding application range. Although
a flexible PPF is designed in [13], the problem of
discontinuous control reference is not considered.

II. SYSTEM DESCRIPTION AND PROBLEM
STATEMENT

This paper uses quaternion q=[q0, qv]
T to describe the

attitude. Let the target quaternion and target angular
rate be qd and ωd, then qe = q−1

d ⊗ q and ωe =
ω−Cboωd are the error quaternion and angular rate error,
respectively. And ⊗ is the quaternion multiplication
and Cbo = (q2e0 − qT

evqev)I3 + 2qevq
T
ev − 2qe0q

×
ev is the

rotation matrix. The kinematics and dynamics model
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of an overactuated spacecraft can be described as:

q̇e0=−1

2
qT
e ωe, q̇ev=

1

2
(q×

e + qe0I3)ωe

Jaω̇e=−(ωe+Cboωd)
×Ja(ωe+Cboωd)+

Ja(ω
×
e Cboωd−Cboω̇d)+(D0+∆D)λτ+τd

(1)

in which Ja=J0+∆J ∈R3×3 is the actual inertia, includ-
ing nominal part J0 and uncertain part ∆J ; D0+∆D∈
R3×n contains the nominal part D0 and the uncertainty
∆D, representing the actuators configuration matrix;
λ=diag{λ1, λ2, · · ·λn}∈Rn×n denotes the health index
matrix of actuators with 0 ≤ λi≤1, i=1, · · · , n; τ ∈Rn

represents the control torque generated by n actuators;
τd denotes the unknown external disturbances. The skew
symmetric matrix for any c= [c1, c2, c3]

T is denoted by
(·)×, and c× is defined as:

c× =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 (2)

In this paper, multiplicative fault modeling (D0 +
∆D)λτ is considered, given that it is mathematically
equivalent to additive fault and facilitates subsequent
control allocation design. Both actuator saturation and
faults are considered, (1) can be rewritten as follows:

J0ω̇e = −ω×J0ω + J0ω∆ +D0λsat(τ ) + d

= −ω×J0ω + J0ω∆ +D0E(t)sat(τ )

d= J̄(−ω×Jaω+uc+τ d)+τ d+∆Dλτ−ω×∆Jω

sat(τi) =

{
τi , if |τi| ≤ τmax

τmax · sgn(τmax) , otherwise

(3)

where ω=ωe+Cboωd, ω∆=ω×
e Cboωd−Cboω̇d, E(t)=λ+

d
D0τ

= diag{e1, e2, · · · en} is the normalized health index
and J̄ = −(J0+J0(∆J)−1J0)

−1; τmax is the maximum
output torque of a single actuator; uc = D0E(t)τ comes
from the top-level controller to be designed.

The first step is to design the FD module to achieve
faster and more accurate fault estimation under un-
certainties and disturbances, laying a good foundation
for FTC. Then we need to design a virtual control
law based on adaptive PPC, which can adjust transient
and steady-state performance constraints according to
faults and commands, and avoid controller singularity.
To resolve faults, saturation constraints, and accuracy
requirements, a virtual control law must be mapped onto
actuators through a novel allocation strategy.

III. ACTIVE FAULT TOLERANT CONTROL
SCHEME DESIGN

Three components make up the AFTC scheme pro-
posed in this paper: AILO-FD, AFPPC-FTC and online
optimal allocation, as shown in Fig.1.
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Fig. 1. Active Fault Tolerant Control Scheme.

A. AILO-based FD Mechanism
Inspired by the existing works in [6], [9], an improved

AILO-based FD scheme is:{
J0 ˙̂ω=−ω̂×J0ω̂+D0Ê(t)τ+k1(t)ω̃+k2(t)sgn(ω̃)

Ê(t)=k3Ê(t− T )+k4(t)ω̃+k5ω̃(t− T )
(4)

where ω̂ and Ê(t) are the estimations of ω and E(t),
respectively; ω̃ = ω−ω̂ is the angular rate estimation
error; Ẽ =E− Ê is the fault estimation error; t−T
represents the value before the time interval T ; k3, k5
are positive-definite gain matrices; k1(t), k2(t) and k4(t)
are the adaptive control gain to be designed as:

k̇1(t)=

{
µ1 ∥ω̃∥ , |ω̃|≤δω
0 , |ω̃|>δω

, k̇4(t)=

{
µ4 ∥ω̃∥ , |ω̃|≤δω
0 , |ω̃|>δω

k̇2(t) =

{
µ2 ∥ω̃∥ sgn(∥ω̃∥ − χ) , k2(t) > k̄

γ , k2(t) ≤ k̄

(5)

in which µ1, µ2, µ4, δω, k̄, χ and γ are positive constants
that need to be chosen reasonably. There are fixed upper
bound value k̄1, k̄2, k̄4 for setting the adaptive gain.

Assumption 1: The angular velocity ω and its deriva-
tive ω̇ are bounded. With a sufficiently small sampling
time and known positive scalar σ,

∥∥ω̂×J0ω̂−ω×J0ω
∥∥≤

σ ∥ω̃∥ is satisfied. Besides, the normalized health index
is bounded and satisfies

∥∥∥E(t)−k3Ê(t− T )
∥∥∥≤σE .

Proof: Choose a positive-definite Lyapunov function
V1 and deriving it gives:

V1=
1

2
ω̃Tω̃+

∫ t

t−T
Ẽ

T
(δ)Ẽ(δ)dδ+

1

2µ2
(k2−k̄2)

2+

1

2µ1
(k1 − k̄1)

2 +
1

2µ4
(k4 − k̄4)

2

V̇1 =ω̃T ˙̃ω+Ẽ
T
(t)Ẽ(t)−Ẽ

T
(t− T )Ẽ(t− T )+

(k2−k̄2)
k̇2
µ2

+(k1−k̄1)
k̇1
µ1

+ (k4−k̄4)
k̇4
µ4

(6)

By combining (3) and (4), the observer error can be
obtained as Ẽ(t) = k3Ẽ(t−T )−k4(t)ω̃−k5ω̃(t−T )+
h(t), ˙̃ω=ω×J0ω−ω̂×J0ω̂+Ẽt−k1ω̃t−k2sgn(ω̃t). Where
h(t)=E(t)−k3E(t− T ). To simplify the representation,
(·)(t) is represented by (·)t. We can get:

Ẽ
T
t Ẽt=k2

3Ẽ
T
t−T Ẽt−T−2k4k3Ẽ

T
t−T ω̃−2k5k3Ẽ

T
t−T ω̃t−T

+2k3Ẽ
T
t−Tht + k2

4ω̃
T
t ω̃t + 2k4k5ω̃

T
t ω̃t−T−

2k4ω̃
T
t ht−2k5ω̃

T
t−Tht+k2

5ω̃
T
t−T ω̃t−T+hT

t ht

(7)
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By Young’s inequality, we can conclude that

2k4k3Ẽ
T
t−T ω̄ ≤ a1k

2
3Ẽ

T
t−T Ẽt−T +

k2
4

a1
ω̄Tω̄

2k5k3Ẽ
T
t−T ω̃t−T ≤a2k

2
3Ẽ

T
t−T Ẽt−T +

k2
5

a2
ω̃T
t−T ω̄t−T

2k3Ẽ
T
t−Tht ≤ a3k

2
3Ẽ

T
t−T Ẽt−T + 1

a3
hT
t ht

2k4k5ω̃
T
t ω̃t−T ≤ a4k

2
5ω̃

T
t ω̃t +

k2
4

a4
ω̃T
t−T ω̃t−T

2k4ω̃
T
t ht ≤ a5k

2
4ω̃

T
t ω̃t +

1
a5
hT
t ht

2k5ω̃
T
t−Tht ≤ a6k

2
5ω̃

T
t−T ω̃t−T + 1

a6
hT
t ht

ω̃T
t Ẽt ≤ a7

2 ω̃T
t ω̃t +

1
2a7

ẼT
t Ẽt

(8)

There exists a constant ζ such that (6) can be further
organized as follows:

V̇1≤[σ+
a7

2
−λmin(k1)+1+(1+ζ+

1

2a7
)b2]∥ω̃t∥2−ζ

∥∥∥Ẽt

∥∥∥2

+[(1+ζ+
1

2a7
)b1−1]

∥∥∥Ẽt−T

∥∥∥2

+[(1+ζ+
1

2a7
)b3−1]

∥ω̃t−T ∥2−k2 ∥ω̃t∥+(1+ζ+
1

2a7
)b4∥ht∥2+(k2−k̄2)

k̇2
µ2

+(k1−k̄1)
k̇1
µ1

+(k4−k̄4)
k̇4
µ4

(9)

where b1=(1+a1+a2+a3)k
2
3, b2=(1+ 1

a1
+a4+a5)k

2
4,b3=

(1+ 1
a2

+ 1
a4

+a6)k
2
5, b4=1+ 1

a3
+ 1

a5
+ 1

a6
. If µ1, µ2, µ4 are

properly selected so that the following relationship holds:
η + a7

2 − λmin(k1) + 1 + (1 + ζ + 1
2a7

)b2 > 0

(1+ζ+ 1
2a7

)b1−1<0 , (1+ζ+ 1
2a7

)b3−1<0
(10)

Then the stability of V1 is satisfied, and the proof
is completed. Increasing µ1, µ2, µ4, γ can increase the
estimation rapidity and the overshoot, while reducing
accuracy; reducing δω, χ can improve the accuracy.

B. AFPPC Fault Tolerant Controller
Traditional PPC makes the system error satisfy ρ1(t)<

qev(t)<ρ2(t), but ρ1(t), ρ2(t) is fixed. However, actuator
faults will degrade the control performance, making the
initial given performance unreachable. In addition, the
control reference is not necessarily continuous, which also
limits the implementation of traditional PPC [16]. In
order to solve the above problems, this paper proposes
a novel adaptive finite time prescribed performance
function (AFPPF) as follows:

ρ1(t) = [sgn(qev(0))− δ1]ρk(t)− ρ∞sgn(qev(0))

ρ2(t) = [sgn(qev(0)) + δ2]ρk(t)− ρ∞sgn(qev(0))

ρk(t)=

{
(ρτk0−τλt)1/τ+ρk∞, t∈ [0,tf ]

ρk∞ , t∈ [tf ,∞]
, k=1, 2, . . .

(11)

among them, ρ1 and ρ2 are the performance lower
bound and upper bound; ρk0, ρk∞ > 0; tf =

ρτ
k0

τλ is
the convergence time chosen by the designer. And k
records the number of times the PPF re-converges when
the system runs to tf . In order to enable the PPF
to be adaptively updated online according to faults
and control references, k records the number of times
the performance function re-converges when the control
system runs to time tf . When the control reference and

fault change, k = k + 1, and update the parameters
according to the following method:

ρk0 = η ·max(qev,i), i = 1, 2, 3

tf = max

[√
κ · π

180
· 4θe,iJii
τmaxÊi

]
, i = 1, 2, 3

(12)

where Jii is the inertia moment of the i-th axis; θe,i is the
Euler angle error under the new control reference, and
qev,i is the error quaternion converted from it; η, κ > 1
are gain margins to increase robustness. Then we intro-
duce error transformation function as (13) to transform
the original system with the constrained tracking error
into an equivalent unconstrained one.

ε = ln

(
qev − ρ1(t)

ρ2(t)− qev

)
(13)

where ε is the transformed error, and we can get ε̇ as:

ε̇=
ρ2−ρ1

(ρ2−qev)(qev−ρ1)

[
q̇ev+

ρ1ρ̇2−ρ̇1ρ2+(ρ̇1−ρ̇2)qev
ρ2−ρ1

]
(14)

Consider a fast terminal sliding surface s ∈ R3×1 as
s = ωe + β1ε + β2sig(ε)

r, where β1, β2 > 0, 0 < r <
1, sig(ε)r = diag(sgn(εi)|εi|r). The time derivative of s
using (3) and (14) yields:
J0ṡ = J0(β1ε̇+ ω̇e + β2rε̇Ge)

= −ω×J0ω +D0E(t)τ + J0β1ε̇+ J0β2rε̇Ge

(15)

where Ge = diag(|εi|r−1
), i = 1, 2, 3. Following is the

proposed fast terminal sliding mode control (FTSMC)
law:

uc=−ω×J0ω−J0β1ε̇−J0β2rGeε̇−β3s−β4sig(s)
r (16)

where β3, β4 are positive-definite gain matrices; and the
actuator torque can be obtained by τ = [D0Ê(t)]†uc.

Theorem 1: Consider the system (3) and the sliding
mode surface s. The proposed AFPPC fault tolerant
controller (AFPPC-FTC) (16) can guarantee s and qe

converge in finite time. In addition, the proposed strategy
ensures that the system is always under prescribed
performance constraints (11). The stability and perfor-
mance of FTC can be satisfied by properly selecting
β1, β2, β3, β4 so that the following inequality holds.

Proof: Firstly, we demonstrate the stability of the
sliding surface s, and the Lyapunov function is selected
as V1 = 1

2s
TJ0s, and its derivative V̇1 is:

V̇1=s
TJ0ṡ=s

T
[
−ω×J0ω+D0Eτ+β1J0ε̇+β2J0rε̇Ge

]
(17)

Substituting uc from (16) into (17) gives:
V̇1 =sT[D0(E(t)− Ê(t))τ − β3s− β4sig(s)

r]

≤ −β3∥s∥2 − ∥s∥Tβ4∥s∥r + ζ ∥s∥

≤ −(∥s∥Tβ4∥s∥r−1−ζ) ∥s∥≤−
3∑
i=1

Ki(∥si∥2)
r+1
2

(18)

where
∥∥∥D0(E(t)−Ê(t))τ

∥∥∥≤ζ; Ki is the diagonal element
of the matrix ∥s∥Tβ4∥s∥r−1−ζ. According to β4 >
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ζ/∥s∥r, design the appropriate β3, β4 to ensure negative
definiteness. Then we can get:

V̇1 ≤ −min{Ki}2
r+1
2 V

r+1
2

1 (19)

Let α= r+1
2 , then the system can reach s=0 within a

finite time T ≤ V 1−α
1 /min{Ki}2

r+1
2 (1− α).

We further prove that the stability of qe as s ap-
proaches 0. Consider the following new Lyapunov func-
tion V2=

1
2ε

Tε. As s→0, we have ω=−β1ε−β2sig(ε)
r,

and substitute (14) to get:

V̇2=εT ε̇=−εTAβ1Qε−εTAβ2Qsig(ε)r+εTAB (20)

where A= ρ2−ρ1

(ρ2−qev)(qev−ρd)
, B= ρ1ρ̇2−ρ̇1ρ2+(ρ̇1−ρ̇2)qev

ρ2−ρ1
and

Q = 1
2 (q

×
v + q0I3). Furthermore, ρ2 − ρ1 is positive and

bounded. Due to the nature of ρ(t), it can be deduced
that A ·B is positive definite. It is not difficult to see
that Q determines whether the first two terms in (20)
are positive definite. The principal minor values of Q are
q0, q

2
0 +q23 , 0.5q0. When the system enters a steady state,

qev will will converge to a neighborhood of 0. Therefore,
by proving V̇1 < 0 and V̇2 < 0, it is certain that the
system will converge in a finite time.

C. Online Fault Tolerant Optimal Allocation
For overactuated systems, the control law generated by

the controller needs to be assigned to actuators. However,
pseudo-inverse method cannot handle optimal allocation
under additional constraints. This section introduces
second-order cone programming (SOCP) [15] to allocate
actuators. Considering that Ê(t) from FD cannot be
completely accurate, the relationship between uc and τ is
uc=D0(In−E∆)Êτ , where E∆=diag(Eδ1, Eδ2, · · · , Eδn)
is the estimation error. Further considering actuator
faults and capability constraints, the optimization prob-
lem involves uncertainties is as follows:

τ=arg min
∥τi∥≤Êiτmax

∥E∆∥≤Ē
max {τTPτ+h

∥∥∥D0(In−E∆)Êτ−uc
∥∥∥2

} (21)

where the constant h > 0, Ē is known positive scalar,
and P is a positive definite weight matrix. For the
SOCP in (21), the second term represents the process of
minimizing the worst-case residuals to obtain the optimal
uc. In this way, the worst residual to control allocation is
able to establish some robustness against the fault esti-
mation error. In addition, SOCP represents a secondary
objective aimed at minimizing energy consumption, as
embodied in the first term.

τ=arg min
∥τi∥≤Êiτmax

{τTPτ+h(
∥∥∥D0(In−E∆)Êτ−uc

∥∥∥+Ē)2} (22)

SOCP formulation can be solved as follows to obtain
the solution to the aforementioned problem:

min
τ,yk

y1, s.t.


∥col(y2, y3)∥ ≤ y1∥∥P 1/2τ

∥∥ ≤ y2∥∥∥D0(In − E∆)Êτ − uc

∥∥∥≤ y3√
h
−Ē

∥τ∥ ≤ Êiτmax

(23)

where yi, i = 1, 2, 3, 4 are intermediate variables, and
col(y2, y3) is a column vector composed of y2 and y3.
The above problems can be solved by using numerical
optimization software to obtain the optimal τ .

IV. SIMULATION
To verify the effectiveness of the proposed AFTC

scheme, numerical experiments based on fixed-step
Runge–Kutta (T = 0.01s) are performed for a rigid
spacecraft with the inertia and disturbances taken as:

J0 =

 43 0.3 1.2
0.3 52 −0.5
1.2 −0.5 40

 kg ·m2,∆J = 0.1J0

τdϕ=10−3[0.6 cos(0.05t) sin(0.11t)]N ·m
τdθ=10−3[1+3 sin(0.06t)]N ·m
τdψ=10−3[1+cos(0.07t) cos(0.21t)]N ·m

(24)

The angular rate gyro noise is selected as white noise
with a variance of 0.001 degrees. And the actuators
configuration matrix is selected as:

D0 =

 1 0 0 1/
√
3

0 1 0 1/
√
3

0 0 1 1/
√
3

 ,∆D = 0.01D0 (25)

(90 110 ) 0.8

(90 120 ) 0.9 (170 200 ) 0.1sin( 0.033 ) 0.6

(110 200 ) 0.2cos(0.1 ) 0.1sin(0.3 ) 0.6

(150 200 ) 0.05sin(0.1 ) 0.1cos(0.3 ) 0.7

u t

actuator fault

1(80 100 ) 0.5s sl - =

2 (90 110 ) 0.8s sl - =

3(90 120 ) 0.9s sl - =

1(130 200 ) 0.9s sl - =

2 (150 200 ) 1.1 0.3cos(0.004 )cos(0.001 )s s t tl - = -

3(170 200 ) 0.1sin( 0.033 ) 0.6s s tl - = - +

1(80 100 ) 0.5s sl - =

2 (90 110 ) 0.8s sl - =

3(90 120 ) 0.9s sl - =

1(130 200 ) 0.9s sl - =

2 (150 200 ) 1.1 0.3cos(0.004 )cos(0.001 )s s t tl - = -

3(170 200 ) 0.1sin( 0.033 ) 0.6s s tl - = - +
0.005

1(70 200 ) 0.4t
s s el - = +

2 (110 200 ) 0.2cos(0.1 ) 0.1sin(0.3 ) 0.6s s t tl - = + +

3(150 200 ) 0.05sin(0.1 ) 0.1cos(0.3 ) 0.7s s t tl - = + +

0.005

1(70 200 ) 0.4t
s s el - = +

2 (110 200 ) 0.2cos(0.1 ) 0.1sin(0.3 ) 0.6s s t tl - = + +

3(150 200 ) 0.05sin(0.1 ) 0.1cos(0.3 ) 0.7s s t tl - = + +
(b)

(a)

0

0

0

é ù
ê ú
ê ú
ê ú
ë û

5

7

3

é ù
ê ú
ê ú
ê ú
ë û

0

5sin(0.05 )

0

t

é ù
ê ú
ê ú
ê ú
ë û

5

4

10

é ù-
ê ú
-ê ú

ê ú-ë û

1

1

sin(0.25 )t

é ù
ê ú
ê ú
ê ú
ë û

sin(0.1 )

12

25

té ù
ê ú
ê ú
ê ú
ë û

150-200s130-150s90-130s60-90s30-60s0-30s

é ù0
ê ú
0

é ùé ù0

ê ú0
ê úê úê ú
0

ê ú0
ê úê ú

ë û0ê úê úê úê ú0

é ùé ùé ùé ùé ù5
ê úê úê úê úê ú
7

é ùé ùé ùé ùé ùé ùé ùé ù5

ê úê úê úê úê ú7
ê úê úê úê úê úê ú
7

ê úê úê ú3
ê úê úê úê úê úê ú

ë ûë ûë ûë ûë û3ê úê úê úê úê úê úê úê ú3

é ùé ùé ùé ùé ùé ùé ùé ùé ùé ùé ùé ù000
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Fig. 2. Actuator Faults Scenario and Control Reference setting.

Four actuators are installed in a three-orthogonal
and one-oblique configuration and the 4th redundant
actuator is activated after the first detection of fault.
In order to verify the proposed AILO algorithm, two
scenarios as shown in Fig.2 are set up to verify its
ability to track abrupt faults and fast time-varying faults.
Considering that in practice the fault will not change as
fast as (b), the AFPPC verification will be based on (a).
Fig.2 shows the Euler angle time sequences for verifying
AFPPF’s adaptive adjustment ability.

As shown in Fig.3, comparisons are made in two fault
scenarios. Among them, the above is the proposed AILO,
and the below is the traditional ILO [6], [9]. It is easy
to see that the improved AILO proposed in this paper
not only improves the estimation accuracy, but also has
a significantly faster speed, which can better meet the
real-time requirement and directly improve the AFTC
performance. In terms of algorithm complexity, the
simulation process takes 3.5411s for AILO and 3.2365s
for ILO, which shows that the improved AILO slightly
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Fig. 3. Actuator Fault Diagnostic Result Ê(t) Based on AILO and ILO.

Fig. 4. Time Response of qev with performance constraints.

Fig. 5. Euler angle Time Response under AFPPC-FTC.

TABLE I
Comparison of estimation RMSE of AILO and ILO

Method Scenario RMSE E1 RMSE E2 RMSE E3

AILO (a) 3.69e− 05 2.43e− 04 1.49e− 04
(b) 1.01e− 04 2.63e− 04 6.11e− 05

ILO (a) 0.0084 0.009 0.0093
(b) 0.0107 0.0092 0.0091

increases the complexity of the algorithm. Table I shows
the comparison of the RMSE values of the two methods
under different fault conditions. It can be seen that the
improved AILO with adaptive law has higher accuracy.

Based on the AILO-FD, the accurate diagnosis results
of actuators are given, and then the proposed AFPPC-
FTC generates virtual control law according to the
health status of the actuators to offset the faults.

Fig. 6. Virtual Control Law and SOCP Fault Tolerant Allocation.

Fig.4 illustrates qev output responses based on AF-
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Fig. 7. Comparison of Energy Consumption.

PPC and traditional FTSMC respectively. Traditional
controllers do not have prescribed performance, and
therefore cannot be quantitatively designed, resulting
in the inability to fully utilize the capabilities of the
system. PPC can directly correlate transient and steady-
state performance with controller parameters, reduc-
ing conservatism. However, the traditional PPC cannot
handle discontinuous control commands, and the initial
parameters are fixed, which limits the application.

The improved AFPPC can adaptively adjust the per-
formance constraint and dynamically update it according
to the control command and the health status of the
actuator. In addition, it also solved the problem that
traditional PPC cannot be applied to non-continuous
control sequences. Fig.5 demonstrates the Euler an-
gles time response and the corresponding commands
more clearly and intuitively. With the proposed AFTC
scheme, the system can still achieve prescribed accuracy
and transient performance. Compared with the tradi-
tional PPC, the improved AFPPC hardly increases the
computational complexity.

Next, the actuator saturation is considered in simula-
tion, τmax of actuators is set as 0.25Nm. As shown in
Fig.6, the virtual control law uc generated by AFPPC-
FTC and the actuator torque allocated online by SOCP
are given respectively. As a comparison, the SOCP can
not only achieve precise allocation, but also find the opti-
mal solution within the limit constraints according to the
health status of actuators. To examine the effectiveness,
we use

∫ t

0
∥τ(δ)∥2dδ as an indicator to evaluate energy

consumption. It is not difficult to see from Fig.7 that
the SOCP method mentioned in (21-23) is also slightly
better than the pseudo-inverse allocation.

V. CONCLUSIONS
In this study, an AFTC scheme applied to attitude

maneuvers is proposed. Among them, AILO has im-
proved the adaptive law with higher estimation accuracy
and convergence speed. Meanwhile, the robustness to
uncertainty and disturbance is guaranteed. AFPPC-FTC
can adaptively adjust the transient and steady state
performance according to the faults and commands.

There is no need to repeatedly design controller param-
eters, avoid singularity in PPC caused by unreachable
performance, and reduce the conservatism. The SOCP
based online optimal allocation algorithm can realize the
fault tolerant allocation of actuators with better perfor-
mance under the constraints of saturation and faults. In
addition, numerical simulations are used to demonstrate
the effectiveness and superiority of the proposed method.
Moreover, how to handle faults when the system enters
a steady state and without new discontinuous reference
needs to be further studied in the future.
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