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Abstract— This study addresses the problem of frequency
control in a power system with the participation of demand
response (DR). The pricing-based controller is applied to the
power system so that DR participants and suppliers can
contribute to the frequency regulation via electricity price.
However, the high frequency of communication between fre-
quency dynamics and pricing-based controllers is thought to be
a problem. To address this problem, we derive event-triggered
conditions that reduce the communication frequency while
maintaining stability based on the passivity property of the
system, and the asymptotical stability around the equilibrium
point of the overall system is derived under the proposed
event-triggered conditions. Furthermore, numerical simulation
with simplified power network system is conducted so the
effectiveness of the proposed system design and system stability
is confirmed.

I. INTRODUCTION
Renewable energy resources have been introduced into

intermittent power systems and their generations are difficult
to predict, which can result in severe power fluctuations.
Therefore, load frequency control (LFC), the method of
adjusting the energy balance via frequency regulation, is
essential to suppress the fluctuations. Meanwhile, demand
response (DR) where consumers control their electricity con-
sumption and adjust the balance between supply and demand
attracts attention to the development of distributed energy
resources. DR aims to make effective use of distributed
energy resources.

These situations lead to numerous studies on the optimal
operation of power systems with controllable loads such as
DR and generators. For example, in [1], frequency control
has been proposed for power systems, including electric
vehicles and DRs. In addition, studies on optimal frequency
control based on generation costs also take into account
consumer utility [2].

However, in the literature, the electricity consumption
of DR participants is determined by the controller of the
power system. In the case of actual operation, consumers
should make their own decisions. One method to solve this
issue is to use the pricing-based control method [3]. The
concern of pricing-based control for LFC systems is that
the power systems will become complex and heterogeneous,
integrating physical systems and human systems. This means
that stability analysis is necessary for such a heterogeneous
system. Additionally, differences in timescales between phys-
ical systems and human systems also need to be addressed.
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One of the methods to analyze the stability of such
complex systems is to use passivity and passivity-short,
which is a relaxation of passivity [4]. Passivity is deeply
related to the system stability and its modularity makes it
possible to analyze the passivity and stability of the whole
system by analyzing its subsystem. There have been many
studies on the control of power systems using passivity [5],
[6]. In [7], the passivity framework is performed for an LFC
system that considers the profit of the consumer and supplier,
the difference in time scale is not discussed. For practicality,
it is desirable to reduce the frequency of demand/supply
updates.

The objective of this paper is to reduce the frequency of
decision updating for DR participants’ and suppliers’ model
while ensuring system stability. To achieve this objective, we
design a pricing-based controller using event-based triggers
to control DR participants and suppliers.

The main contributions of this paper are as follows: i)
Design the LFC system considering the DR so that the
system stability and the optimality of the profit maximization
problem of each area are guaranteed. ii) Derive the event-
triggered conditions that guarantee the asymptotical stability
of the equilibrium for the proposed load-frequency control
system through the passivity property, thereby reducing the
decision-making frequency in the pricing-based controller.

II. PROBLEM FORMULATION

Fig. 1 shows a model of a power network system including
DR participants in this study. Suppose that multiple suppliers,
who have generators, and DR participants, who behave as en-
ergy consumers, exist in each area connected by transmission
lines. Those players determine their electricity operations via
electricity price provided by an Independent system operator
(ISO) serving as a power grid manager in each area. LFC is
done through these electricity operations by suppliers and DR
participants. Note that, in the rest of this paper, A denotes a
set of areas in this power network system, E denotes a set of
links between each area, Gi and Li denote a set of suppliers
and DR participants in area i ∈ A respectively. Also, ∥ · ∥
denotes the number of elements of an arbitrary set.

In this study, the following assumptions are made for the
power network systems:

Assumption 1: The power grid is assumed to satisfy the
following properties: i) The transmission lines are lossless. ii)
The voltage of each node is approximately equal to 1 [p.u.].
iii) Reactive power flows do not affect bus voltage phase
angles and frequencies. iv) The voltage phase difference
between each node is sufficiently small.
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Fig. 1: Structure of Power System with DR

These assumptions are widely used in studies in the field of
frequency regulation such as [8].

Under the above assumptions, the power network system
is formulated as follows:

Miω̇i = −Diωi +
∑
k∈Gi

P k
M,i −

∑
k∈Li

P k
DR,i + Ptie,i +∆PL,i,

(1)
η̇ij = ωi − ωj , ∀(i, j) ∈ E , (2)

Ptie,i = −
∑

j∈Ni

Tijηij , ∀i ∈ A. (3)

Equations (1)–(3) represent the swing dynamics where ωi is
the deviation from the nominal value of the frequency in area
i. The time-dependent variable P k

M,i and P k
DR,i represent

the mechanical power input of k–th supplier in area i and
the electricity consumption of k–th DR participant in area
i respectively. Ptie,i represents the tie-line power from area
i’s neighbor, where the set of neighbors being defined as Ni,
and ∆PL,i indicates load change in area i. Mi and Di are
inertia constant and damping constant of area i’s generator
respectively. ηij represents the power angle difference and
Tij is transmission coefficient.

Each generator is supposed to be equipped with a governor
controller, hence we use first-order turbine model for each
supplier such that:

τki Ṗ
k
M,i = −P k

M,i + uk
G,i −

1

Rk
i

ωi, ∀k ∈ Gi∀i ∈ A (4)

where τki and Rk
i represent time constant and droop gain of

the governor operation respectively. uk
G,i is the variable of

k–th supplier’s input command to the turbine.

III. PRICING-BASED CONTROLLER DESIGN

In the study of optimal frequency control, generator
operation cost for suppliers should be minimized and the
profit of consumers should be maximized [9]. Therefore, the
following optimization problem is considered while letting

cki (·) be the cost function of k–th supplier in area i and vki (·)
be the utility function of k–th DR participant in area i.

max
Pk

DR,i,u
k
G,i

∑
k∈Li

vki (P
k
DR,i)−

∑
k∈Gi

cki (u
k
G,i), ∀i ∈ A, (5)

s.t.
∑
k∈Gi

uk
G,i −

∑
k∈Li

P k
DR,i = −∆PL,i, ∀i ∈ A, (6)

P k,min
DR,i ≤ P k

DR,i ≤ P k,max
DR,i , ∀k ∈ Li ∀i ∈ A, (7)

uk,min
G,i ≤ uk

G,i ≤ uk,max
G,i , ∀k ∈ Gi ∀i ∈ A. (8)

The constraint given by (6) indicates energy balance con-
straints. Observing that, load change ∆PL,i is supplemented
by both suppliers and DR participants. The inequality con-
straints (7) and (8) indicate the lower/upper bounds of
supplier’s generation and DR electricity consumption. For
the cost function and utility function, we assume:

Assumption 2: Utility function vki (·) of k–th consumer in
area i is in C2[0, P k,max

L,i ] and is αk
v,i–strongly concave

Assumption 3: Cost function cki (·) of k–th supplier in area
i is in C2[0,∞] and is αk

c,i–strongly convex.
These assumptions make (5) a convex optimization problem.

Generally, by using the dual decomposition method, op-
timization problem (5) can be solved separately as a con-
sumer’s problem, a supplier’s problem, and Lagrange multi-
pliers update. Especially, in the study of the power market
design, it is well known that Lagrange multiplier for the
energy balance is equivalent to electricity price [6], [8]. This
study also utilizes this pricing-based method as the LFC
to consider both DR participants’ and suppliers’ decision-
making problems as shown in many kind of literatures [10].
The following Fig. 2 shows the structure of one area LFC
system implementing pricing-based controller. As shown in
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Fig. 2: One area model description

Fig. 2, the plant, called “physical system”, includes the
governor-turbine model and the generator model described in
(1),(4). Tie-line power flow Ptie,i is also modeled according
to (2),(3). The controller, called “dynamic pricing system”,
consists of an update of the electricity price λi by ISO, the
demand decision systems by DR participants and the supply
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decision systems by suppliers. Each DR participant and sup-
plier determines its electricity consumption and generation
depending on the electricity price and state of the physical
system. Additionally, the input to the dynamic pricing system
is updated according to the event-triggered condition as
shown in Fig. 2, where t indicates the current time, and tk
is the event time, when the trigger condition is satisfied.

We propose the following dynamic pricing system to
ensure that its equilibrium point satisfies the optimal solution
of (5) and to guarantee the stability of the system under the
physical dynamics (1)–(4).

A. DR participants’ demand decision system

The behavior of k–th DR participant is formulated as
follows:

Ṗ k
DR,i = αk

DR,i

(
∇vki (P

k
DR,i)− λi + µk,−

DR,i − µk,+
DR,i

+ βi∆fi

)
, k ∈ Li i ∈ A,

(9)

µ̇k,−
DR,i = kµk,−

DR,i

(
P k,min
DR,i − P k

DR,i

)+

µk,−
DR,i

, k ∈ Li i ∈ A,

(10)

µ̇k,+
DR,i = kµk,+

DR,i

(
P k
DR,i − P k,max

DR,i

)+

µk,+
DR,i

, k ∈ Li i ∈ A

(11)
where αk

DR,i, βi, kµk,−
DR,i

and kµk,+
DR,i

are positive gains. µk,−
DR,i

and µk,+
DR,i are the Lagrange multipliers, respectively, for the

lower and upper bounds on the electricity consumption. In
equation (10) and (11), the operator (·)+x is defined, with
arbitrary functions f(x), x ≥ 0, as follows:

(f(x))+x :=

{
f(x), if x > 0, or x = 0 and f(x) ≥ 0,

0, if x = 0 and f(x) < 0.
(12)

B. Supplier’s power generation decision system

The behavior of k–th supplier is formulated as follows:

u̇k
G,i =− αk

G,i

(
∇cki (u

k
G,i)− λi − µk,−

G,i + µk,+
G,i

− βiR
k
i u

k
G,i + βiR

k
i P

k
M,i

)
, k ∈ Gi i ∈ A,

(13)

µ̇k,−
G,i = kµk,−

G,i

(
uk,min
G,i − uk

G,i

)+

µ−
G,i

, k ∈ Gi i ∈ A, (14)

µ̇k,+
G,i = kµk,+

G,i

(
uk
G,i − uk,max

G,i

)+

µk,+
G,i

, k ∈ Gi i ∈ A (15)

where αk
G,i, kµk,−

G,i
and kµk,+

G,i
are positive gains. µk,−

G,i and

µk,+
G,i are the Lagrange multipliers, respectively, for the lower

and upper bounds on the power generation.

C. ISO electricity price updating system

The electricity price updating algorithm by ISO is de-
scribed as follows:

λ̇i = −
(∑

k∈Gi

uk
G,i −

∑
k∈Li

P k
DR,i +∆PL,i

)
. (16)

Remark 1: In equation (9) and (13), the terms of βi∆fi
and βiR

k
i P

k
M,i are added to general gradient method dynam-

ics so that a closed-loop is formed between the physical

system and the dynamic pricing system. An advantage of
this design is that it does not disturb the convergence of the
equilibrium point, which is the same as the optimal solution
guaranteed by the gradient method.

IV. PASSIVITY ANALYSIS

In this section, passivity analysis is performed for the LFC
system considering DR and the pricing-based control scheme
described in the previous sections. Firstly, we establish
the passivity of the physical system through the following
lemma. Note that, in the following the optimal solution for
each variable is represented using a respective superscript
(·)∗. Additionally, (̃·) indicates difference between an arbi-
trary variable from its optimal solution such as x̃ := x−x∗.

Lemma 1: Physical system in area i ∈ A described by (1)
and (4) is output strictly passive under the inequality (18)
with positive definite storage function Vphy,i, input uphy,i ∈
R∥Gi∥+1 and output yphy,i ∈ R∥Gi∥+1, defined as follows:

uphy,i=


−
∑

k∈Li

P̃ k
DR,i+P̃tie,i

ũ1
G,i
...

ũ
∥Gi∥
G,i

 ,yphy,i=


βi∆f̃i

βiR
1
i P̃

1
M,i

...
βiR

∥Gi∥
i P̃

∥Gi∥
M,i

 .

(17)

V̇phy,i ≤ u⊤
phy,iyphy,i −

Di

βi
(βi∆f̃i)

2 −
∑
k∈Gi

1

βiRk
i

(βiR
k
i P̃

k
M,i)

2.

(18)
Proof: Consider the storage function Vphy,i as

Vphy,i =
βi

2

(
Mi∆f̃2

i +
∑

k∈Gi

Rk
i τ

k
i P̃

k2

M,i

)
. (19)

Calculating its derivative along the trajectory yields (18).
Lemma 2: Suppose that Assumption 2 holds. The k–th

DR participant’s demand decision system (9)–(11) is output
strictly passive under the equation (20) with positive definite
storage function V k

DR,i, input −λ̃i +∆f̃i and output P̃ k
DR,i.

V̇ k
DR,i ≤P̃ k

DR,i

(
−λ̃i + βi∆f̃i

)
− αvP̃

2
DR,i. (20)

Proof: Consider the storage function as

VPk
DR,i

=
1

2αk
DR,i

P̃ k2

DR,i. (21)

Its derivative is calculated as follows taking into account
Assumption 2:

V̇Pk
DR,i

≤ P̃ k
DR,i

(
−αk

v,iP̃
k
DR,i − λ̃i + µ̃k,−

DR,i − µ̃k,+
DR,i + βi∆f̃i

)
.

(22)
In addition, it is also known that the inputs and outputs P̃ k

DR,i

and −µ̃k,−
DR,i are passive [6]. Similarly for inputs and outputs

P̃ k
DR,i and µ̃k,+

DR,i. Therefore, inequality (20) is proven to
hold under the positive definite storage function V k

DR,i.
Lemma 3: Suppose that Assumption 3 holds. The k–th

supplier’s power generation decision system (13)–(15) is
output strictly passive or output passivity-short under the

5779



equation (23) with positive definite function V k
G,i, input

−λ̃i + βiR
k
i P̃

k
M,i and output −ũk

G,i.

V̇ k
G,i ≤− ũk

G,i

(
−λ̃i + βiR

k
i P̃

k
M,i

)
− (αk

c,i − βiR
k
i )ũ

2
G,i.

(23)
This lemma can be proven similar to Lemma 2.

Lemma 4: Suppose that Assumptions 2,3 hold. The dy-
namic pricing system in area i ∈ A described in (9)–(16)
is passive or output passivity-short under the equation (25)
with positive definite storage function Vdp,i, input udp,i and
output ydp,i, described in (24).

udp,i =


βi∆f̃i

βiR
1
i P̃

1
M,i

...
βiR

∥Gi∥
i P̃

∥Gi∥
M,i

 ,ydp,i =


∑

k∈Li
P̃ k
DR,i

−ũ1
G,i

...
−ũ

∥Gi∥
G,i

 .

(24)
V̇dp,i = u⊤

dp,iydp,i −
∑
k∈Gi

(αk
c,i − βiR

k
i )ũ

k2

G,i −
∑
k∈Li

αk
v,iP̃

k2

DR,i.

(25)
Proof: Consider the storage function Vdp,i as

Vdp,i =
1

2
λ̃2
i +

∑
k∈Li

V k
DR,i +

∑
k∈Gi

V k
sup,i. (26)

Calculating the derivative of Vdp,i yields (25) with (24).
We can get the following lemma for passivity of the power

flow model indicated in (2) and (3) as shown in [11]
Lemma 5: Power flow model described in (2) and (3)

is passive under the equation (27) with positive definite
storage function Vnet, input β∆f̃ and output −P̃tie, where
∆f̃ , P̃tie ∈ R∥A∥, β = diag(βi, · · · , β∥A∥).

V̇net ≤
(
−P̃tie

)⊤
β∆f̃ . (27)

The results of the above passivity analysis indicate that the
physical system is output strictly passive, while the dynamic
pricing system is passive or output passivity-short, depending
on the strong concavity and strong convexity of the utility
and cost functions of each of DR participants and suppliers.
In the next section, we use the results of this passivity
analysis to design event-triggering conditions.

V. EVENT-TRIGGERED CONDITION

In general, frequency control is performed on a shorter
time scale than consumer or supplier behavior models.
Therefore, in this study, we derive a trigger condition that
reduces the number of information updates while maintaining
the stability of the system. Specifically, we design a system
in which the input to the dynamic pricing system from
the physical system is updated according to its triggering
conditions as shown in Fig. 2.

To design the trigger conditions, strictly passivity is re-
quired for both the physical system and the dynamic pricing
system. Therefore, the following assumption is considered.

Assumption 4: LFC system considering DR described by
(1),(4), (9)–(16) satisfies the following inequalities for each
area i ∈ A.

αk
c,i − βiR

k
i > 0, i ∈ A (28)

where the gain βi is a hyperparameter, indicating that βi

must be designed to satisfy Assumption 4.
The input udp,i to the dynamic pricing system is updated

only at the time tk when the trigger condition is satisfied.
Accordingly, the input to the dynamic pricing system is given
using zero-order hold as follows:

udp,i(t) = yphy,i(tk), ∀t ∈ [tk, tk + 1). (29)

In the rest of this paper, a variable without an argument
is indicated to be a value at time t, and the argument is
written as yphy,i(tk) when it is a value at event time tk. The
trigger condition for the LFC system with DR is given by
the following lemma [12].

Lemma 6: Suppose that Assumptions 2–4 hold. The event
time tk is determined when the event-triggered condition (30)
is satisfied, then the LFC system of the area given by (1),(4),
(9)–(16) is passive with input P̃tie,i and output βi∆f̃i.

y⊤
phy,i(t)Qiyphy,i(t) < e⊤phy,i(t)Siephy,i(t) (30)

where,
ephy,i = yphy,i(t)− yphy,i(tk), (31)

Qi = diag
(Di

βi
,

1

βiR1
i

, · · · , 1

βiR
∥Gi∥
i

)
, (32)

Si=diag
(∑
k∈Li

1

4αk
v,i

,
1

4(α1
c,i − βiR1

i )
, · · · , 1

4(α
∥Gi∥
c,i − βiR

∥Gi∥
i )

)
.

(33)
Proof: First, consider the storage function as:

Vi = Vphy,i + Vdp,i (34)

and its time-derivative along the trajectories is given as
follows:

V̇i ≤ u⊤
dp,iydp,i + u⊤

phy,iyphy,i −
∑
k∈Gi

(αk
c,i − βiR

k
i )ũ

k2

G,i

−
∑
k∈Li

αk
v,iP̃

k2

DR,i −
Di

βi
(βi∆f̃i)

2 −
∑
k∈Gi

1

βiRk
i

(βiR
k
i P̃

k
M,i)

2

=− e⊤
phy,iydp,i + P̃tie,iβi∆f̃i −

∑
k∈Gi

(αk
c,i − βiR

k
i )ũ

k2

G,i

−
∑
k∈Li

αk
v,iP̃

k2

DR,i − y⊤
phy,iQiyphy,i

≤ P̃tie,iβi∆f̃i + e⊤
phy,iSiephy,i − y⊤

phy,iQiyphy,i.
(35)

Therefore, while the inequality,

y⊤
phy,iQiyphy,i ≥ e⊤phy,iSiephy,i (36)

holds, the system can maintain its passivity with input P̃tie,i

and output βi∆f̃i. The trigger condition is thus derived as
in (30).

The stability of an overall event-triggered LFC system is
guaranteed by the following theorem, using Lemma 5 and 6.

Theorem 1: Suppose that Assumptions 2–4 hold. The
LFC system considering DR described by (1)– (4), (9)–(16)
is asymptotically stable with respect to the equilibrium point
when the dynamic pricing system in each area i ∈ A updates
its inputs according to the event trigger conditions in (30).
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Proof: Let the Lyapunov function for the overall LFC
system be:

VLFC := Vnet +
∑

i∈A
Vi. (37)

Then, asymptotical stability is proven by calculating the time
derivative of VLFC along the trajectory with event-triggered
condition (30).

Given the above results, we design the following event-
triggered condition for the numerical simulation.

σy⊤
phy,iQiyphy,i(t) < e⊤phy,iSiephy,i (38)

where σ ∈ (0, 1] is a coefficient indicating the strictness
of the inequality condition. The closer sigma is to 0, the
more frequently the dynamic pricing system is updated, and
also the gradient of the Lyapunov function can be kept
with a negative larger value, which is supposed to improve
convergence to the equilibrium point.

VI. SIMULATION VERIFICATION

This section shows the numerical simulation results to
verify the effectiveness of the method proposed in this paper.

A. Simulation conditions

rea 

Fig. 3: Network Struc-
ture

Fig. 4: Load Change

As a simplified model, we assume the power network
structure shown in Fig. 3, where the number of areas ∥A∥ =
4, links ∥E∥ = 3, suppliers in each area ∥Gi∥ = 1 , and DR
participants in each area ∥Li∥ = 3.

The system-rated capacity is 1[pu] = 1000[MW], and the
utility function of each DR participant and the cost func-
tion of each supplier in each area are considered quadratic
functions as shown below.

vki (P
k
DR,i) = akDR,iP

k2

DR,i + bkDR,iP
k
DR,i, ∀i ∈ A,∀k ∈ Li,

(39)
cki (u

k
G,i) = akG,iu

k2

G,i + bkG,iu
k
G,i + ckG,i, ∀i ∈ A,∀k ∈ Gi.

(40)
Each coefficient is given so that Assumptions 2–4 are satis-
fied.

[a1
DR,1 a2

DR,1 a3
DR,1] = [−6.06 − 6.03 − 6.08],

[b1DR,1 b2DR,1 b3DR,1] = [7.85 7.60 8.10],

[a1
DR,2 a2

DR,2 a3
DR,2] = [−6.54− 6.52− 6.56],

[b1DR,2 b2DR,2 b3DR,2] = [5.655.405.90],

[a1DR,3 a2DR,3 a3DR,3] = [−17.3− 20.3− 16.9],

[b1DR,3 b2DR,3 b3DR,3] = [5.60 5.85 6.10],

[a1DR,4 a2DR,4 a3DR,4] = [−5.71− 5.67− 5.74],

[b1DR,4 b2DR,4 b3DR,4] = [7.40 7.15 7.65]

[a1G,1 a1G,2 a1G,3 a1G,4] = [0.127 0.400 0.830 0.700],

[b1G,1 b1G,2 b1G,3 b1G,4] = [5.37 2.85 2.00 0.996],

[c1G,1 c1G,2 c1G,3 c1G,4] = [0.780 0.117 0.200 0.550].

For simplicity, the upper and lower bound constraints are not
considered in this simulation. Other parameters are decided
as:

Mi = 7.0, τk
i = 9.0, Ri = 0.05, Di = 4.0, ∀i ∈ A,

Ti,j = 1 ∀(i, j) ∈ E .

The hyper parameters are set as follows:

βi = 3, αk
DR,i = αk

G,i = 2,

k
µ
k,−
DR,i

= k
µ
k,+
DR,i

= k
µ
k,−
G,i

= k
µ
k,−
G,i

= 10, ∀i ∈ A.

In order to observe the system stability from the equilibrium,
we assume the situation where the load changes shown by
Fig. 4 occur in each area.

B. Simulation results

A comparison of the simulation results with and without
event-triggered condition is shown in Fig. 5. The results of
frequency deviation, input to the generator and the electricity
price are described. Note that, all these results represent
the state around the equilibrium point. Fig. 6 shows the
time when the event-triggered condition is satisfied. When
the event-triggered condition is not designed, the frequency
oscillates due to the load change, and DR participants and
suppliers behave with extremely high frequency. In contrast,
when the event-triggered condition is designed, the output of
the physical system is not communicated with the dynamic
pricing system at high frequency, while the behavior of DR
participants, suppliers, and electricity price updates are sta-
ble. Discussing control performance, the system with event-
trigger is worse than that without event-trigger as shown in
Fig. 5d and 5c. The numerical simulations show that system
states are not diverging even when the load fluctuations
change the system equilibrium, also these are converging
to constant values, thus asymptotical stability of the system
equilibrium is satisfied and the effectiveness of the proposed
design is demonstrated.

VII. CONCLUSION

This study deals with an LFC system with DR participants
using a pricing-based controller. The objective of this study is
to reduce the communication frequency between the physical
system and the pricing-based controller. Specifically, the pas-
sivity of the physical system and the dynamic pricing system
are analyzed to derive the passivity and output strict passivity,
and the triggered condition is derived by using this passivity
index. Simulation verification shows that the proposed trig-
gered condition reduces the communication frequency and
is asymptotically stable around the equilibrium point. Future
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(a) Frequency deviation (b) Frequency deviation

(c) Input to Generator (d) Input to Generator

(e) Price (f) Price

Fig. 5: Simulation results where the left and right columns show the results without and with event-triggering, respectively.

Fig. 6: Triggering time

work is to derive a lower bound for the update frequency of
the triggered condition, which will guarantee the reduction
of the update frequency of the proposed method.
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