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Abstract— Stable polarization of multi-agent systems has
been shown to exist over Rn and highly symmetric nonlinear
spaces, especially the n-sphere Sn. Toward a more generalized
setting without assuming linearity or symmetry, our previous
work established the same type of emergent behavior over
general hypersurfaces, subsuming the n-sphere case. In this
paper, we discuss our ongoing work of extending our previous
hypersurface results to study the stability of polarized equilibria
of multi-agent gradient flows evolving on general Riemannian
manifolds. The aim is to provide sufficient conditions in terms
of the manifold geometry. Special attention is paid to two
nonlinear manifolds of interest, the Stiefel manifold and the
Grassmannian. While the polarization of the former share
similar traits to that of the n-sphere, the latter is shown to
have distinct polarization behaviors.

I. INTRODUCTION

The main appeal of studying multi-agent synchronization
is the bottom-up philosophy: simple computation and local
communication give rise to emergent global phenomena.
Given the simple agent assumption, we typically refrain from
incorporating too much nonlinearity in the agent dynamics
that increases complexity. This practice is in line with
the broader philosophy, and additionally makes theoretical
analysis tractable. Therefore, the most studied multi-agent
synchronization models have agent state-space residing in
simple manifolds, such as the linear diffusive coupling model
in the Euclidean space Rn and the Kuramoto model on the
circle S1.

Synchronization over other manifolds exist, often with
specialized use cases and are predominantly focused on
homogeneous spaces. Spheres Sn for generalized higher di-
mensional Kuramoto models [1], Lie groups for cooperative
motion control [2] and quantum synchronization [3], Stiefel
manifolds and Grassmannians [4] for matrix optimization
algorithms. However, as computational power increases, it
makes sense to increase the agent complexity for more
modeling power, see e.g., the increasing sophistication of
nonlinear opinion dynamics [5]. With the trending of cus-
tomized solutions such as personalized medicine [6], rapid
phenomenological modeling is required. Extending multi-
agent systems to arbitrary manifolds may be one way to
answer the call.

Previous works of synchronization over general manifolds
mainly focused on consensus [7, 8]. Our contribution to this
topic is to shed light on another type of emergent syn-
chronization behavior over Riemannian manifolds, namely,
polarization. The agent dynamics are governed by gradient
flows constrained on Riemannian manifolds, which are sim-
ple enough to facilitate theoretical guarantee, while maintain-
ing the flexibility to accommodate nonlinearity by shaping

the agent state-space. There are two modes of interactions
between agents: attraction and repulsion. These features have
been previously incorporated in the Kuramoto model to
study polarized oscillations [9] and equilibria [10]. Such
modeling choices are inspired by real world phenomena,
such as activation and inhibition of metabolites, cooperative
and antagonistic social interactions. This study shows that the
interplay between agent interaction modes and the manifold
geometry is a rich source of stable polarization behavior.

The sufficient conditions for local stability in this paper
are extended from our previous work on hypersurfaces [11].
Compared to [11], the extension to general Riemannian man-
ifold removes the restrictive modeling assumption that the
hypersurface dimension is lower than that of the ambience
space by only one. This is advantageous for practice as
meaningful data representation methods extract low dimen-
sional manifolds from extremely high dimensional spaces.
Another improvement is in the case of purely attractive
dynamics, where we state cleaner Lyapunov stability condi-
tions. The revised formulation better reflects the mechanism
contributing to polarization, eliminating spurious artifacts
of hypersurfaces. The performance of these conditions are
illustrated on manifolds with special structures, which in
some cases allow us to significantly increase the basin of
attraction to almost the entire space.

II. SETUP

A. Geometric features on the Riemannian manifold

Consider a closed Riemannian manifold M embedded
in the Euclidean space Rn�p , which can always be done
for sufficiently large n and p by the Whitney embedding
theorem. The metric tensor is the Euclidean inner product on
the tangent space TxM at x. The normal space is denoted
NxM, whose elements are normalized �.x/0�.x/ D Ip for
convenience.

To define the geometric features on the manifold, we intro-
duce the height function. The height function h�.x/ WM! R
of a point y 2 M with respect to a chosen point x 2 M
and a chosen normal vector �.x/ 2 NxM is

h�.x/.y/ WD h�.x/; yi:

Definition 1 (Dimple): If for some x 2 M and some
�.x/ 2 NxM, y D x is a strict local minimizer of h�.x/.y/
in a neighborhood Ix D fy 2 M j ky � xk < �g, then
Ix is referred to as a dimple with respect to �.x/, written
D�.x/ and x the bottom of the dimple. Similarly, if for some
x 2 M, y D x is a strict local maximizer of h�.x/.y/ in
Ix , then Ix is referred to as a pimple with respect to �.x/,
written P�.x/ and x the bottom of the pimple.
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The same Ix may be considered as a dimple or a pimple
with respect to different choices of normal vectors, e.g.,
�1.x/ 2 NxM or �2.x/ D ��1.x/ 2 NxM.

Remark 2: Generally, Riemannian manifolds are non-flat;
otherwise it would just be the usual Euclidean (sub)spaces.
So the existence of dimples/pimples are to be expected.

B. Multi-agent gradient flows

Evolving on the Riemannian manifold are N homoge-
neous agents forming an undirected, connected, and weighted
graph G D .V; E ; A/. The adjacency matrix A D Œaij �

is symmetric and has non-negative entries. The vertices V
are divided into two groups Vu D f1; 2; : : :M g and Vl D

fMC1; : : : N g for 1 �M < N . The edge set E is partitioned
into intragroup and intergroup sets EC D ffi; j g 2 E j i; j 2
Vu or i; j 2 Vlg and E� D ffi; j g 2 E j i 2 Vl; j 2 Vug.

Such a partition is introduced to enforce different coupling
rules over edges in EC and E�. The couplings are positive
over all edges in EC, whereas those over E� can be either
all positive or all negative. This “edge coloring” equivalently
generates a structurally balanced graph [12] if we allow the
graph to be signed such that edge weights on elements in
EC are all positive, and edge weights on elements in E� are
either all positive or all negative. Properties of structurally
balanced networks allow us to make stronger stability claims
in certain homogeneous manifolds.

Let � WD .xi /NiD1 denote the collection of agent positions.
The dynamics of each agent is governed by the gradient flow
of a disagreement function V WMN ! R

Pxi D � gradV.�/ D �˘iriV.�/; (1)

where grad is the intrinsic gradient on the tangent space,
which can be calculated using the second equality in (1) once
the manifold embedding is defined. In the second equality
of (1), ˘i is the orthogonal projection on the tangent space
TiMN , ri is the extrinsic gradient in the ambient space with
respect to xi , and it is understood that ri is applied to the
extension of V in Rn�p .

The two interaction rules correspond to two quadratic
disagreement functions based on the Euclidean distance. The
one for attractive-repulsive interactions is

V�.�/ D
1
2

X
fi;j g2EC

aij kxj�xik
2
�
1
2

X
fi;j g2E�

aij kxj�xik
2; (2)

whereas the one for purely attractive interactions is

VC.�/ D
1

2

X
fi;j g2E

aij kxj � xik
2: (3)

The gradient flows corresponding to the two interaction
rules are then

Pxi D ˘i

0@X
j2Vu

aij .xj � xi / �
X
j2Vl

aij .xj � xi /

1A ; i 2 Vu

Pxi D ˘i

0@X
j2Vl

aij .xj � xi / �
X
j2Vu

aij .xj � xi /

1A ; i 2 Vl

(4)

and

Pxi D ˘i
X
j2V

aij .xj � xi / 8i 2 V (5)

Remark 3: It is readily seen from (4) and (5) that agent
i does not need to know the position of all other agents in
the system, as aij ¤ 0 only for j connected to i , i.e., for j
in the neighborhood of i .

C. Gradient flows on Riemannian manifolds

Summarizing the aforementioned ingredients in �II-A and
�II-B, we have a multi-agent gradient flow system with
repulsive (4) or attractive (5) intergroup interactions evolving
on a manifold MN with geometric features. We assume
that the manifold is outfitted with a pair of dimples and
pimples, each containing one of the two groups of agents
Vu and Vl. We are interested in possible polarization arising
in this setting as a result of the interplay between the graph
couplings and the geometry of the underlying nonlinear
space.

Definition 4 (Polarization): The agents are said to be po-
larized if xi D xj for all fi; j g 2 EC and xi ¤ xj for all
fi; j g 2 E�.

It follows that a polarized configuration must be of the
following form

�� WD f� 2MN
jxi D xu 2M; i 2 Vu;

xi D xl 2M; i 2 Vl; xu ¤ xlg:
(6)

We focus on polarization as an equilibrium (set) and
its stability properties, as equilibria are the only possible
attractor for gradient flows on manifolds [13, App. C.12].
For polarization to occur, a necessary condition is that there
exists �u 2 NxuM and �l 2 NxlM such that �u and �l are
aligned, as implied by the following result.

Proposition 5: If the gradient flow system (5) or (4)
converges to a polarized equilibrium, then xu�xl 2 NxuM\
NxlM.

Proof: Consider the system (5). At a polarized equilib-
rium (6), the aggregate attraction ui WD

P
j2V aij .xj � xi /

for agent i 2 Vu is equal to
P
j2Vl

aij .xl�xu/. It is nonzero
since xl ¤ xu and belongs to ker˘u by (5). Likewise,
0 ¤ ui D

P
j2Vu

aij .xu � xl/ 2 ker˘l for agent i 2 Vl.
The kernel space of a projection operator on TxM is equal
to the normal space NxM, whereby the conclusion follows.
The reasoning for system (4) is identical.

In certain geometrical conditions, this necessary condition
also becomes sufficient for the stability of the polarized
equilibrium, to be shown in �III-A.

Before we proceed, we collect a few previous results
and associated definitions that will pave the way for the
development of our main results. The definitions of concepts
such as stability and a local minimizer of a real function
are well known. Here, we clarify their meanings when a
set rather than a point is in question, which is perhaps less
standard.
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Consider two sets in the Euclidean space Y;Z � Rn�p

when using the Hausdorff distance to define stability

dH.Y;Z/ WD maxfsup
y2Y

inf
´2Z
ky � ´k; sup

´2Z
inf
y2Y
ky � ´kg:

Definition 6 (Stability): A set of equilibria S is Lyapunov
stable if, for each � > 0, there is ı D ı.�/ such that
dH.x;S/jtD0 < ı implies dH.x;S/jt < � for all t � 0;
is asymptotically stable if it is stable and ı can be chosen
such that dH.x;S/jtD0 < ı implies limt!1 dH.x;S/ D 0.

Definition 7 (Local minimizer): A set S � M is said to
be a local minimizer of a real function f WM! R from a
metric space .M; dH/ if for some � > 0, there is an open
neighborhood N .S/ D fx 2 M j dH.x;S/ < �g such that
f jS � f .x/ for all x 2 N .S/. Moreover, if the inequality
is strict for all x 2 N .S/nS, then S is said to be a strict
local minimizer.

Definition 8 (Isolated critical): A set S � M of critical
points of a real function f WM ! R from a metric space
.M; dH/ is said to be isolated critical if for some � > 0, there
is an open neighborhood N .S/ D fx 2M j dH.x;S/ < �g

such that N .S/nS is void of critical points.
Proposition 9 (Manifold Lyapunov theorem): Let M be a

closed manifold and take any V WM! R that is C 2. Let S
be a compact set of local minimizers of V . If S is a strict
local minimizer, then S is a Lyapunov stable equilibrium set
of Px D � gradV . If S is also isolated critical, then it is
asymptotically stable.

III. MAIN RESULTS

Though the geometric features defined in Definition 1
can be considered ubiquitous as mentioned in Remark 2,
not every pair admits the existence of an equilibrium for a
given gradient flow, let alone a stable one. In this section, we
present and discuss sufficient conditions for the existence of
polarized equilibria and their stability properties. They arise
in different combinations of attractive/repulsive interactions
with dimple/pimple geometric features.

A. Dimple pairs with attractive intergroup couplings

Assumption 10: For all i 2 Vu, xi 2 D�u.xu/; for all i 2 Vl,
xi 2 D�l.xl/.

Proposition 11: For system (5) under Assumption 10, the
polarized configuration �� defined in (6) is a strict local
minimizer of VC if

1) hxu � xl; �ui D kxu � xlk and
2) �u D ��l.

Proof: We examine the disagreement terms kxj �xik2

over E� and EC in (3) separately. For fi; j g 2 E�, suppose
without loss of generality that j 2 Vu and i 2 Vl, then

pkxj � xik
2
� hxj � xi ; �ui

2
D
�
h�u.xj / � h�u.xi /

�2
� .h�u.xu/ � h�u.xl//

2;

The first lower bound due to Cauchy-Schwartz (mind that
k�uk

2 D p) is achieved only when xj � xi is parallel to �u.

To show the last inequality, note that

h�u.xj / � h�u.xu/; 8j 2 Vu (7a)
h�l.xi / � h�l.xl/; 8i 2 Vl (7b)

as per Assumption 10. Equation (7b) leads to

�h�u.xi / � �h�u.xl/; 8i 2 Vl (8)

due to condition 2. Combining (7a) and (8) to obtain
h�u.xj /�h�u.xi / � h�u.xu/�h�u.xl/ > 0, where the second
inequality is a result of condition 1. Therefore, squaring both
sides does not change the direction of the inequality. The
second lower bound is achieved only when xj D xu and
xi D xl.

For fi; j g 2 EC, the lower bound is trivially zero and
is achieved only when xi D xj . In summary, the only
configuration to simultaneously achieve all the lower bounds
above is �� in (6).

Applying the first part of Prop. 9 to Prop. 11 thus
establishes when the necessary condition in Prop. 5 becomes
sufficient for stable polarization in the Lyapunov sense. We
next provide a local asymptotic stability result by imposing
a further requirement on the manifold to satisfy the second
condition of Prop. 9.

Theorem 12: For system (5) under Assumption 10, if the
conditions in Prop. 11 are satisfied, and the manifold is
analytic, then �� defined in (6) is an asymptotically stable
polarized equilibrium.

The proof hinges on a variant [14, Sec. 9] of the
Łojasiewicz inequality valid on analytic Riemannian man-
ifolds. The proof steps for the corresponding hypersurface
result [11, Thm. 14] can be applied in the Riemannian
manifold case; a repetition is unnecessary.

B. Pimple pairs with repulsive intergroup couplings

Assumption 13: For all i 2 Vu, xi 2 P�u.xu/; for all i 2 Vl,
xi 2 P�l.xl/.

Although the setting in this subsection mirrors that in �III-
A, reusing the same conditions in Prop. 11 would not work,
because here we need to upperbound rather than lowerbound
the disagreement terms over E�. To state the alternative
condition, we denote by Bro.xo/ the closed ball centered at
xo D

1
2
.xuCxl/ with radius ro D 1

2
kxu�xlk. The equilibrium

we are interested in is the following set

Clem WD f� 2MN
jxi D x; i 2 Vu;

xi D y; i 2 Vl; .x; y/ 2 Y g;
(9)

where Y WD f.x; y/ 2 P�u.xu/�P�l.xl/ j kx�yk D 2ro > 0g.
Of course, each element of (9) conforms to the form in (6).

Proposition 14: For system (4) under Assumption 13, the
polarized configuration Clem defined in (9) is a strict local
minimizer of V� if P�u.xu/ and P�l.xl/ are entirely contained
in Bro.xo/ with ro > 0.

Proof: We shall minimize V�, which is the sum
of disagreement terms kxj � xik2 among agents. Under
Assumption 13, the bounds on the disagreement terms differ
for agents belonging to the same or opposing groups. For all
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fi; j g 2 E�, assume without loss of generality that i 2 Vu
and j 2 Vl. The term kxj �xik2 in (2) is upper bounded by

kxj � xik � 2ro D kxu � xlk:

The inequality is because both pimples are entirely contained
in Bro.xo/. The upper bound is achieved when xi D x and
xj D y for every pair .x; y/ 2 P�u.xu/ � P�l.xl/ such that
kx � yk D 2ro, an example of which is x D xu and y D xl.

For all fi; j g 2 EC,

kxj � xik
2
� 0;

where the equality is achieved when xi D xj , of which a
special case is xi D xj D xu for i; j 2 Vu and xi D xj D xl
for i; j 2 Vl. Therefore,

V�.�/ � �
1
2

X
fi;j g2E�

aij kxj � xik
2
� �2r2o

X
fi;j g2E�

aij :

The minimum is achieved only when xi D x; i 2 Vu and
xi D y; i 2 Vl for every pair of .x; y/ 2 P�u.xu/ � P�l.xl/

such that kx � yk D 2ro.
Again, Lyapunov stability can be concluded for Clem by

applying Prop. 9 to Prop. 14.
Theorem 15: For system (4) under Assumption 13, if the

conditions given in Prop. 14 is satisfied, and in addition,
the manifold is analytic, then Clem defined in (9) is an
asymptotically stable set of polarized equilibria.

The proof of Theorem 15 is more involved, as it concerns
the asymptotic stability of an equilibrium set, rather than
an equilibrium point as the singleton set �� in Theorem 12.
The first part of the proof is to show that pointwise, there are
no equilibrium points other than those in Clem in the neigh-
borhood of each � 2 Clem. That is, if another equilibrium
set Q exists on the manifold such that Q \ Clem D ;, each
� 2 Clem is isolated from Q. This is again done by invoking
the Łojasiewicz inequality as in the proof of Theorem 12.
In the second part, we show that Clem is isolated critical by
proving no sequence in Q can approach Clem arbitrarily close
using the Bolzano-Weierstrass theorem. For details, we refer
the readers to the proof of [11, Thm. 18].

Since we can freely choose any normal vector in the
normal space, making the opposite choices for �u and �l
brings us the following corollaries.

Corollary 16: For system (4) under Assumption 10, the
polarized configuration Clem defined in (9) is a strict local
minimizer of V� if D�u.xu/ and D�l.xl/ are entirely contained
in Bro.xo/ with ro > 0, and is additionally asymptotically
stable if M is analytic.

Corollary 17: For system (5) under Assumption 13, the
polarized configuration �� defined in (6) is a strict local
minimizer of VC if hxu�xl; �ui D �kxu�xlk and �u D ��l,
and is additionally asymptotically stable if M is analytic.

IV. EXAMPLES

A. The Stiefel manifold

The compact real Stiefel manifold St.n; p/ is the set of
p-frames in n-dimensional Euclidean space Rn [15]. It can

be embedded in Rn�p as an analytic matrix manifold

St.n; p/ D fU 2 Rn�p j U 0U D Ipg:

The inner product and the norm are the trace operator and
the Frobenius norm, respectively. Two useful projections
when dealing with the Stiefel manifold are sym W Rp�p !
SO.p/? W X 7! .X C X 0/=2 and skew W Rp�p ! SO.p/ W
X 7! .X �X 0/=2.

Every point on the Stiefel manifold can be seen as a pimple
bottom. To see this, start with the normal space at a point
U 2 St.n; p/

NUSt.n; p/ D fU symU 0X jX 2 Rn�pg:

The normal vector corresponding to the choice of X D U

is U . The height function of U with respect to U0 and the
particular choice of normal vector U0 2 NU0

St.n; p/ is then

hU0
.U / D hU0; U i

D trU 0U0 < trU 00U0 D p D hU0
.U0/; 8U ¤ U0:

Thus, we have shown the existence of an X , e.g., X D U0
such that U D U0 is a strict local maximizer of h�.U0/.U /

on St.n; p/, as required by the pimple definition in Def. 1.
In fact, this choice of the normal coincides with the (unique)
normal of the Sn�p�1 at a point vecU0, which is known to
be everywhere pimple [11, �3.3] and of which St.n; p/ is a
subset.

On St.n; p/, choose Uu and Ul such that Uu D �Ul to
define the closed ball Bro.Uo/, where Uo D 1

2
.UuCUl/ D 0

and ro D 1
2
kUu � Ulk D

p
p. A polarized configuration on

the Stiefel manifold is

CSt WD f� 2 St.n; p/N j Ui D Uu; 8i 2 Vu;

Ui D Ul; 8i 2 Vl; Uu D �Ulg: (10)

It can be verified that this configuration is an equilibrium of
the Stiefel version of (4), where ˘i .X/ D Ui skewU 0iX C
.I � UiU

0
i /X .

It can be verified that every point on St.n; p/ is on the
boundary of the ball @Bpp.0/, and therefore Prop. 14 ap-
plies. In this respect, St.n; p/ resembles the sphere of radius
p
p. Moreover, for certain .n; p/ pairs, the equilibrium set

CSt is almost global asymptotically stable (AGAS), by which
we mean

Definition 18 (almost global asymptotic stability): A set
of equilibria D � MN is almost globally attractive if for
all initial conditions except a measure-zero set, it holds that
limt!1 �.t/ 2 D. Moreover, if D is stable, D is almost
globally asymptotically stable.

The measure-zero set is with respect to the Lebesgue
measure.

Proposition 19: For p � 2
3
n� 1, the polarized configura-

tion CSt is an AGAS equilibrium set of the gradient descent
flow (4) on St.n; p/.

The proof exploits the symmetry of St.n; p/ and employs
a coordinate transform that turns the polarization problem
into a consensus one that was already solved. The coordinate
transform is akin to the gauge transformation noted in [12,
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Lem. 1] that brings a structurally balanced signed graph to a
nonnegative one.

Proof: Apply a coordinate transformation Vi D Ui for
all i 2 Vu and Vi D �Ui for all i 2 Vl. The gradient descent
flow (4) on St.n; p/ becomes a consensus seeking system

PUi D Ui skew.U 0i
X
j

aijUj /

C .I � UiU
0
i /
X
j

aijUj ; 8i 2 V : (11)

This system was considered in [16, Thm. 4], which guaran-
tees the AGAS property of the consensus set

C D f� 2 St.n; p/N jUi D Uj 8i; j 2 Eg:

The consensus set C is mapped to the polarization set CSt by
reversing the bijective coordinate transform. Therefore, ap-
plying [16, Thm. 4] to (11) and then reversing the coordinate
transformation, we obtain the desired conclusion.

The AGAS property of polarization on the n-sphere for
n > 1 is shown in [11, Thm. 24]. Thus, the Stiefel manifold
shares similarities with the sphere in terms of polarization
properties. However, the next example cautions that not all
manifolds that are a subset of the sphere exhibit comparable
polarization behaviors.

B. The Grassmannian manifold
A point on the Grassmannian Gr.n; p/ is a p-dimensional

linear subspace U in Rn [15]. Since Gr.n; n� p/ is isomor-
phic to Gr.n; p/, we identify orthogonally complementary
subspaces and assume without loss of generality [17, �2.2]
that p � n=2. Points on the Grassmann manifold can be
represented in various ways. We prefer a unique representa-
tion for unique identification of each agent in the multi-agent
gradient flow systems. We therefore choose to represent each
Grassmannian point as an orthogonal projector P 2 Rn�n

onto U . It can be uniquely represented by P D UU 0, where
the columns of U 2 Rn�p form an orthonormal basis of
U [18]. The projector representation of the Grassmannian
can thus be viewed as

Gr.n; p/ WD fP 2 Rn�n jP 2 D P;

rank.P / D p;P D P 0g: (12)

The inner product of P and Q is trQ0P , and thus we have
the Frobenius norm kP k D

p
trP 0P . For all P 2 Gr.n; p/,

we have trP 0P D trUU 0 D trU 0U D tr Ip D p, implying
that Gr.n; p/ is a subset of a sphere of radius

p
p.

Again, we can regard the Grassmanniann as everywhere
pimple. The normal space at a point P 2 Gr.n; p/ is [19,
(2.17)]

NPGr.n; p/ D fX � ŒP; ŒP;X�� jX D X 0g;

where we use the matrix commutator bracket ŒA; B� D AB�
BA. The height function of P with respect to P0 and a
normal vector �.P0/ 2 NP0

Gr.n; p/ is

h�.P0/.P / D hX � ŒP0; ŒP0; X��; P i

D tr.X � P0X C 2P0XP0 �XP0/P:

Choose X D P0, then the normal vector corresponding to
the choice X D P0 is P0 and

h�.P0/.P / D trP0P < trP0 D h�.P0/.P0/; 8P ¤ P0:

Thus, we have shown the existence of an X , e.g., X D P0
such that P D P0 is a strict local maximizer of h�.P0/.P / on
Gr.n; p/, as required by the pimple definition in Def. 1. This
choice of the normal corresponds to the (unique) normal of
the Sn2�1 at a point P0, which is known to be everywhere
pimple.

For Gr.n; p/, the disagreement term satisfies kPj�Pik2 D
tr.Pj � Pi /0.Pj � Pi / D 2.p � trP 0jPi /. The Grassmannian
version of (4) then reads

PPi D
X
j2Vu

aij .PiPjP
?
i C P

?
i PjPi /

�

X
j2Vl

aij .PiPjP
?
i C P

?
i PjPi /; 8i 2 Vu

PPi D
X
j2Vl

aij .PiPjP
?
i C P

?
i PjPi /

�

X
j2Vu

aij .PiPjP
?
i C P

?
i PjPi /; 8i 2 Vl;

(13)

where P? D I � P . The distance between two subspaces
can also be measured using principal angles [20], denoted
�i , so that trQ0P D

Pp
i cos2 �i . They can be thought of as

the angles between the orthonormal bases of P and Q.
On Gr.n; p/, choose Pu and Pl such that P 0uPl D 0 to

define the closed ball Bro.Po/, where we emphasize that
Po D

1
2
.Pu C Pl/ does not belong to Gr.n; p/ but rather to

Gr.n; 2p/. A polarized configuration on Gr.n; p/ is

CGr WD f� 2 Gr.n; p/N j Pi D Pu; 8i 2 Vu;

Pi D Pl; 8i 2 Vl; P
0
uPl D 0g: (14)

It can be checked that this is an equilibrium of (13).
Proposition 20: Every point P 2 Gr.n; p/ is on the

boundary @Bro.Po/ for n even and p D n=2. Otherwise,
for p < n=2, there exists P 2 Gr.n; p/ … Bro.Po/.

Proof: The radius of the ball is

r2o D .
1
2
kPu�Plk/

2
D

1
4

tr .Pu � Pl/
2
D

1
4

tr.PuCPl/ D
1
2
p:

The distance between any point P and Po is

kP � Pok
2
D tr.P 2 � 2PPo C P 2o /

D trP � trP.Pu C Pl/C
1
4

tr .Pu C Pl/
2

D p � trP.Pu C Pl/C
1
4

tr.Pu C Pl/

D
3
2
p � trP.Pu C Pl/:

For p D n=2, Pu and Pl are orthogonal complements of each
other in Rn, which implies that PuCPl D In, as Rn itself is
represented by the projection matrix In. (To see this, form
the matrix U whose columns are n orthonormal bases so
that U 0U D I . But U 0U D UU 0 because U is full rank, so
UU 0 D I is the projector representation of Gr.n; n/.) Thus

kP � Pok
2
D

3
2
p � p D 1

2
p D r2o :
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This is proves the first statement.
Otherwise, for p < n=2, the term trP.Pu C Pl/ is upper-

bounded by p. To see this, we state the maximization
problem as

max trP.Pu C Pl/ Dmax
pX
i

�
cos2 �u;i C cos2 �l;i

�
subject to PuPl D 0;

where �u;i and �l;i are one of the principal angles between P
and Pu and between P and Pl, respectively. Note that there
is an ordering in the definition of the principal angles [20],
but it is not essential here. This form suggests that the
maximization can be done for each i independently, since
the choice of each basis of P does not depend on other
bases. We can restate the maximization problem as

max cos2 �u;i C cos2 �l;i ; 8i

subject to �lu;i D �=2;

where �lu;i is one of the p principal angle between Pu and Pl
and is equal to �=2 as implied by the constraint PuPl D 0.
Roughly speaking, to maximize the cosine’s is to minimize
the � ’s, and the minimizing solution must be found on the
plane defined by the i th bases of Pu and Pl. Any solution on
this plane must satisfy �u;iC�l;i D �=2, and in turn achieves
the maximum as max cos2 �u;i C cos2.�=2 � �u;i / D 1.
Consequently, max trP.Pu C Pl/ D p and so for p < n=2,
kP �Pok

2 � 1=2p, meaning that there exists P 2 Gr.n; p/
outside Bro.Po/.

The first part of Prop. 20 admits the application of
Prop. 15, as Gr.n; p/ is analytic. Therefore we can conclude
that CGr is an asymptotically stable polarized equilibrium.
The ball argument in Prop. 14 only applies to Grassmannian
polarization with CGr for p D n=2, nevertheless, it is still
true that CGr is a stable polarized equilibrium of (13) for
general .n; p/ pairs.

Proposition 21: For system (13), the global minimum of
V� is �p

P
fi;j g2E� aij and is achieved only by CGr.

Proof: For all fi; j g 2 E�,

1
2
kPj � Pik

2
D p � trPiPj D p �

pX
mD1

cos2 �m � p:

The upper bound is achieved iff all principal angles are �=2
iff P 0jPi D 0. For all fi; j g 2 EC, the usual zero lower
bound applies and is achieved iff Pi D Pj . Therefore V� �
�p

P
fi;j g2E� aij is the global minimum achieved only by

CGr.
Remark 22: In our previous work on hypersurface polar-

ization [11, Prop. 21], we showed the loss of stability when
the two pimples are entirely outside Bro.xo/ except for the
bottoms xu and xl. The proof relies on the existence of a
perturbation Qxu ¤ xu and Qxl ¤ xl such that k Qxu � Qxlk > 2ro
and that Qxu � Qxl “passes through” xo. Or to put the latter
more formally, there exists � 2 R such that � Qxu C .1 �

�/ Qxl D xo. In contrast, Prop. 21 implies that on Gr.n; p/
for p < n=2, there cannot exist QPu; QPl … Bro.Po/ such

that QPu � QPl passes through Po and its norm greater than
2ro. In fact, even the first requirement alone cannot be met.
As noted, Po 2 Gr.n; 2p/. For QPu to be outside Bro.Po/,
the subspace it represents must contain at least one basis
outside the plane defined by every pair of bases from the
2p bases representing Po (see the arguments following the
second maximization problem in the proof of Prop. 20).
Consequently, rank.Po � � QPu/ > p and there is no such
.1 � �/ QPl D Po � � QPu for QPl 2 Gr.n; p/.
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