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Abstract— We investigate the state estimation problem under
a decentralized observation architecture. More specifically, we
consider a discrete event system, modeled by a nondeterministic
finite automaton, whose behavior is partially observed and
recorded at a set of observation sites with distinct capabilities.
When prompted, these observation sites send their sequences
of observations to a coordinator that fuses and analyzes this
information to estimate the specific system states of inter-
est (current- and initial-states). The notion of S-builder is
introduced to systematically infer possible (totally ordered)
sequences of observations and an algorithm is proposed for
constructing a synchronizer in a breadth-first search manner
to efficiently perform current-state estimation. With slight
extensions, the synchronizer construction algorithm can be also
applied towards initial-state estimation.

I. INTRODUCTION

The state estimation problem is important in many applica-
tions. For a discrete event system (DES), the state estimation
problem was first introduced in [1], where the notion of
observability was formally defined in the presence of un-
observable events. In a partially observed DES, verification
of properties, such as diagnosability [2]–[5], detectability
[6], [7], and opacity [8], [9], as well as supervisory con-
trol strategies [10], [11], have been systematically studied.
Determining the exact state or estimating a set of possible
states [12], [13] (which necessarily includes the true state of
the system) is fundamental for achieving these objectives.

Depending on the time instant at which the set of system
states is needed, different notions have been proposed and
studied, such as current-state estimation, delayed-state esti-
mation and initial-state estimation [14]. Dealing with these
estimation tasks depends on the observed system behavior. In
decentralized observation settings, the system is observed by
a set of local sites, each of which includes an observation site
and a computational unit. Local sites occasionally send local
information or decisions to a coordinator; such a procedure
is called synchronization [14].

The decentralized information processing we adopt in this
work is as follows. During the system evolution, each local
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site, based on its own observations, decides whether or not
its preserved observation sequence should be sent to the
coordinator. If a local site decides to send its observation
sequence, it signals its intention to the coordinator, which
immediately initiates synchronization globally by requesting
information from all local sites. Then, the coordinator uses
all received information to estimate the state of the system.

Each synchronization is assumed to happen instanta-
neously following the request from the coordinator, i.e., there
are no occurrences of events between signaling and synchro-
nization. We refer to the local observation sequences that the
local sites send, as well as the rule that the coordinator adopts
to process the local information it receives at each synchro-
nization step, as the protocol for decentralized observation-
based information processing (DO-based protocol). In the
remainder of this work, we will refer to observation sites
(OSs) instead of local sites, since local sites simply report
their sequences of observations.

The main contributions of this paper are as follows. First,
compared with the earlier work in [16], we relax the require-
ment that the sets of local observable events are disjoint (i.e.,
we allow the sets of local observable events to be incompa-
rable). Second, after characterizing the DO-based protocol
formally, we propose the notion of S-builder whose marked
language contains all possible system behavior that matches
the reported (partially ordered) observation sequences. The
S-builder can encode all possible totally ordered sequences
in a systematic way, without having to explicitly enumerate
them, in order to estimate system states. Then, based on
the S-builder, an algorithm to construct a synchronizer via
a breadth-first search is presented to estimate the states
of the system. Finally, with a slight modification of the
synchronizer, we argue that initial-state estimation can also
be addressed.

II. PRELIMINARIES

Let Σ be a finite set of events. A string over Σ is a
sequence of n symbols, i.e., s = α1α2 . . . αn, αi ∈ Σ,
i ∈ {1, 2, . . . , n}. The length of s is the number of symbols
in the sequence and is denoted by |s|. We denote by Σ∗ the
set of all finite-length strings over Σ, including the empty
string ε with |ε| = 0. A language L ⊆ Σ∗ is a set of strings
[14], [17]. Given two strings s, t ∈ Σ∗, the string s · t (or
simply st) denotes the concatenation of s and t. We also
write t ∈ s if string t is a sub-string of s, i.e., s = utv for
some strings u, v ∈ Σ∗. Also, for any σ ∈ Σ, s ∈ Σ∗, we
use σ ∈ s to denote that σ occurs in s, i.e., s = uσv for
some strings u, v ∈ Σ∗. We let s̄ be the prefix-closure of s,
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i.e., s̄ = {t ∈ Σ∗|∃t′ ∈ Σ∗, tt
′

= s}, and use s/t to denote
the symbol sequence after t in s, i.e., for t ∈ s, we have
t · (s/t) = s (note that t/t = ε).

A DES is modeled as a nondeterministic finite automaton
(NFA) G = (X,Σ, δ,X0), where X is the finite set of
states, Σ is the finite set of events, δ : X × Σ → 2X is
the nondeterministic state transition function, and X0 is the
set of possible initial states. For a set Q ⊆ X and σ ∈ Σ, we
define δ(Q, σ) =

⋃
q∈Q δ(q, σ); with this notation at hand,

the transition function δ can also be extended recursively
to δ∗ (denoted by δ for the sake of brevity) whose domain
is X × Σ∗ instead of X × Σ: δ(x, σs) = δ(δ(x, σ), s) for
any x ∈ X , σ ∈ Σ, and s ∈ Σ∗. The system execution
(or behavior) of G starting from state x is captured by
L(G, x) = {s ∈ Σ∗|δ(x, s) 6= ∅}. Then, the system behavior
generated by G is L(G) =

⋃
x0∈X0

L(G, x0). If there exists
a set of marked states Xm, Xm ⊆ X , the marked behavior
of G is Lm(G) = {s ∈ Σ∗|∃x0 ∈ X0, δ(x0, s) ∩Xm 6= ∅}.

A state mapping mp ∈ 2X
2

is a subset of X2. The
composition operator ◦ : 2X

2 × 2X
2 → 2X

2

is defined as
follows: for any mp

1,m
p
2 ∈ 2X

2

,mp
1 ◦m

p
2 = {(x1, x3)|∃x2 ∈

X, s.t., (x1, x2) ∈ mp
1, (x2, x3) ∈ mp

2}. We denote the set
of starting (ending) states of mp as mp[0] = {xs|(xs, xe) ∈
mp} (mp[1] = {xe|(xs, xe) ∈ mp}).

III. DECENTRALIZED OBSERVATION-BASED
INFORMATION PROCESSING

We assume that there are m observation sites Oi and let
I = {1, 2, . . . ,m} denote the index set where i ∈ I. We
denote by Σoi and Σuoi the set of observable events and the
set of unobservable events for OS Oi, respectively, such that
Σoi ∩ Σuoi = ∅ and Σoi ∪ Σuoi = Σ. For any Oi, i ∈ I,
the natural projection function PΣoi

: Σ∗ → Σ∗oi is defined
recursively as

PΣoi
(ε) = ε and PΣoi

(sσ) =

{
PΣoi

(s)σ if σ ∈ Σoi
PΣoi

(s) if σ /∈ Σoi .

For the sake of notational simplicity, PΣoi
and Σoi will be

denoted by Pi and Σi, respectively. The domain of Pi is also
extended to 2Σ∗ , i.e., Pi(L) = {ω ∈ Σ∗i |∃s ∈ L,Pi(s) = ω}.

For each event σ ∈ Σ, we use I(σ) = {i ∈ I|σ ∈ Σi} to
denote the index set of local sites that can observe σ. For an
event σ ∈

⋃
i∈I Σi, we define for i ∈ I(σ), Ωi(σ) = {σω ∈

Σ∗i |∃x ∈ X,σω ∈ Pi(L(G, x))} to be the set of sequences
of observations that can be observed by Oi and start with
event σ. For any sequence of events t, t 6= ε, we use tf to
denote the last symbol of t.

We assume all OSs have no knowledge of the system
model. The coordinator knows the system model and is
aware of Σi, i ∈ I. We use the notation PI to denote the
natural projection function with respect to (w.r.t.) the set of
observable events ΣI =

⋃
i∈I Σi. Next, we introduce the

DO-based protocol which contains three ingredients:
1) The kind of information Oi sends to the coordinator:

Each Oi uses its local projection function Pi : L(G,X) →
Σ∗i to record the sequence of observations. The stored obser-
vation sequence can be forgotten after each synchronization.
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Fig. 1. An NFA model G. The subscripts of events in ΣI match the
indices of OSs that observe the specific events.

2) Synchronization strategy: Each Oi has its own decision-
making policy as to whether or not to initiate a synchroniza-
tion. In this paper, we do not specify a particular strategy
since we focus on the state estimation task using the se-
quences of observations (which is independent of the specific
synchronization strategy). The only thing that is needed is the
subset of OSs that initiate a synchronization at a particular
synchronization step (termed as critical index set and denoted
by Ic), since this information can be used to improve the
accuracy of the state estimation process.

3) The coordinator utilizes the information received from
OSs to obtain possible (totally ordered) sequences of ob-
servations. This task can be viewed as a synchronization
function:

S : Σ∗1 × · · · × Σ∗m → 2Σ∗I .

We refer to the observation sequences provided by OSs at
each synchronization as partially ordered sequences of obser-
vations (PO-sequences) [14]. The coordinator can reconstruct
the possible system observation sequences ωI ∈ Σ∗I based on
PO-sequences, τ (i) ∈ Pi(L(G,X)). In particular, we would
like the following property for the synchronization function,

ωI ∈ S(τ (1), · · · , τ (m))

if and only if Pi(ωI) = τ (i), for i ∈ I.
Example 1: Let us consider system G shown in Fig. 1.

Suppose that there are three OSs, i.e., I = {1, 2, 3}, where
Σ1 = {α12, β13}, Σ2 = {α12, γ2}, and Σ3 = {γ3, β13}.
Suppose that the system starts from state 0 and reaches state
8 via the sequence of events t = υ1α12β13γ2. Then, OS O1

records the sequence τ (1) = P1(t) = α12β13, OS O2 records
the sequence τ (2) = P2(t) = α12γ2, and OS O3 records the
sequence τ (3) = P3(t) = β13. If, at this time, O2 initiates a
synchronization, then we have Ic = {2}.

IV. CURRENT STATE ESTIMATION UNDER PARTIALLY
ORDERED OBSERVATION SEQUENCES

A. DO-based Current-State Estimation

Given a system G = (X,Σ, δ,X0), suppose that a se-
quence of events t is executed by the system such that
OS Oi preserves the sequence of observations Pi(t). The
synchronization information state (SI-state) is defined based
on the observation sequences recorded by the m OSs:
SI(t) = (P1(t), . . . , Pm(t)). The SI-state describes the
PO-sequences recorded by OSs upon the system behavior
between two consecutive synchronizations. Note that the SI-
state becomes (ε, . . . , ε) after each synchronization.

Definition 1: (DO-based Current-State Estimation (DO-
CSE)) Given G = (X,Σ, δ,X0), the coordinator knows G
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is initially in the set of states Q. Following a string t ∈ Σ∗,
which occurs in the system and results in a synchronization,
the current-state estimate after the coordinator receives the
SI-state SI(t) = (P1(t), . . . , Pm(t)), is defined as
Ec(SI(t), Q) = {x ∈ X|∃q ∈ Q,∃u ∈ L(G, q),

(∀i ∈ I)[Pi(u) = Pi(t)] ∧ x ∈ δ(q, u)}.
B. Implementation of DO-based Current-State Estimation

In order to simplify the notation, we use T to denote the
set of SI-states and τ ∈ T to denote τ = (τ (1), . . . , τ (m)) ∈
Σ∗1 × · · · × Σ∗m (since the SI-state comprises combinations
of sequences of observations).

Definition 2: An SI-state τ = (τ (1), . . . , τ (m)) is said to
be a critical SI-state (CSI-state) if there exists a critical index
set Icτ ⊆ I, such that |Icτ | > 0.

Definition 2 provides the natural state of m OSs at one
synchronization step where OSs indexed by Icτ initiate a
synchronization. Therefore, given a CSI-state τ , for the
purpose of obtaining a better estimate of states, we have
the following properties: A1) ∀i, j ∈ Icτ , τ

(i)
f = τ

(j)
f ; A2)

∀t ∈ S(τ (1), . . . , τ (m)),∀i ∈ Icτ , tf = τ
(i)
f .

The first property indicates that sequences of observations
of the OSs which initiate a synchronization share the same
last symbol. We use [Icτ ]f to denote this last symbol. The
second property indicates that the matching sequences of
system observation should end with [Icτ ]f .

Definition 3: (TO-Sequences) Given a system G, a se-
quence of events t occurs in G such that the SI-state is a CSI-
state τ = (τ (1), . . . , τ (m)). The totally ordered sequences
(TO-sequences) upon τ with Icτ , denoted by T O(τ, Icτ ), are
defined as a subset of sequences of events in Σ∗I , i.e.,
T O(τ, Icτ ) = {ω ∈ Σ∗I |∀i ∈ I, Pi(ω) = τ (i) ∧ ωf = [Icτ ]f ]}.

Intuitively, T O(τ, Icτ ) summarizes each OS’s knowledge
about the order of its own observable events within the
(unknown) system behavior t. It is obvious that T O(τ, Icτ ) is
non-empty since it necessarily contains the sequence PI(t).
Under these circumstances, we have the following result.

Lemma 1: Consider a system G that is known to be in
a set of possible states Q. Also, consider that a sequence
of events t occurs in the system such that the CSI-state is
τ = (τ (1), . . . , τ (m)) and the set of critical indices is Icτ .
The DO-CSE of the coordinator after receiving τ is given
by
Ec(τ, Icτ , Q) = {x ∈ X|∃q ∈ Q,∃u ∈ L(G, q),

PI(u) ∈ T O(τ, Icτ ) ∧ x ∈ δ(q, u)}.
At first sight, we need to enumerate all possible sequences

of observations that match the given PO-sequences.1 This
could be done by re-ordering the events occurring in the
CSI-state into one sequence. Thus, the key to dealing with
this question is how to arrange the events that could be

1Note that, if each OS initiates a synchronization every time it observes
a new event, the resulting state estimates will align with that of centralized
observation, in which the global observer views ΣI . For example, if event
σ ∈ ΣI occurs, the CSI-state is τ = (P1(σ), . . . , Pm(σ)). Then, it is
obvious that Ec(τ, Icτ , Q) = {x ∈ X|∃q ∈ Q, ∃u ∈ L(G, q), PI(u) =
σ∧x ∈ δ(q, u)}, which is the result of standard centralized state estimation
following each observation.

observed by multiple OSs. In a DO-based protocol, each
synchronization could be viewed as the computation of TO-
sequences and DO-CSE. Next, we define the notion of
sequence-builder (S-builder) which provides (but does not
enumerate) all possible TO-sequences given an SI-state τ .

Definition 4: (S-builder) Given a CSI-state τ0 with Icτ0
being the set of critical indices, an S-builder is a 5-tuple
transition system B = (T,Σs, T0, Te, h) where
• T ⊆ Σ∗1 × · · · × Σ∗m is the set of SI-states;
• Σs = {σ|∃i ∈ I, σ ∈ τ (i)

0 } ⊆ ΣI is the set of events
appearing in the initial state T0;

• T0 ∈ T is the initial state where T0 = τ0;
• Te ∈ T is the ending state where Te = (ε, . . . , ε︸ ︷︷ ︸

m times

);

• h : T × Σs → T is the event release transition
function, which is defined as follows: for any τ =
(τ (1), . . . , τ (m)) ∈ T , τ ′ = (τ ′(1), . . . , τ ′(m)) ∈ T , and
σ ∈ Σs, it holds
h(τ, σ) = τ ′ ⇒ (∀i ∈ I(σ))(∀j ∈ I/I(σ))

[τ (i) ∈ Ωi(σ) ∧ τ ′(i) = τ (i)/σ ∧ τ ′(j) = τ (j)

∧ (I(σ) = Icτ0 ⇒ (τ ′(i) = ε⇒ τ (j) = ε))]
Any path from the initial state to the ending state in

the S-builder describes a potential TO-sequence which may
form the SI-state τ0. In order to infer the total orders of
events occurring in SI-state τ0, transition function h builds
the state space of the S-builder recursively by releasing the
events in τ0. This could be viewed as the reverse process of
OSs capturing and preserving their observations. Therefore,
from the initial state τ0, the construction of a transition
σ from τ to τ ′ is called the procedure of releasing σ,
i.e., h(τ, σ) = τ ′. The event σ can be released only if σ
appears in the leftmost of all components provided by the
OSs whose sets of observable events contain σ (described
by the proposition (∀i ∈ I(σ))[τ (i) ∈ Ωi(σ)]), and τ ′

will be the remaining part of τ after removing the σ in
these leftmost positions (described by the proposition (∀i ∈
I(σ))(∀j ∈ I/I(σ))[τ ′(i) = τ (i)/σ ∧ τ ′(j) = τ (j)]). We use
the proposition (I(σ) = Icτ0 ⇒ (τ ′(i) = ε ⇒ τ (j) = ε)) to
describe the scenario where OSs indexed by Icτ0 will release
their last event only if other sites have already released all
their events. One can omit this proposition if the critical
index set is not available in some scenario.

Theorem 1: Given a CSI-state τ = (τ (1), . . . , τ (m))
with critical index set Icτ and its corresponding S-builder
Bτ = (T,Σs, T0, Te, h) with the marked state Te, it holds
T O(τ, Icτ ) = Lm(Bτ ).

Example 2: Consider again the system in Fig. 1. Suppose
that since the last time a synchronization occurred, sequence
of events t = υ1α12γ3α12υ2β13γ2 occurs and assume that a
synchronization is initiated by O2 such that the coordinator
will receive CSI-state τ0 = (P1(t), P2(t), P3(t)) = (α12

α12β13, α12α12γ2, γ3β13) with Icτ0 = {2}. The S-builder
Bτ0 of τ0 is shown in Fig. 2. At initial state τ0, α12 appears in
the leftmost of τ (1)

0 and τ (2)
0 provided by O1 and O2 which

are indexed by I(α12) such that α12 could be released in
τ0 and h(τ0, α12) = τ1. The same procedure can be easily
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adapted to obtain the rest of the structure of the S-builder
Bτ0 . According to Bτ0 , we know T O(τ0) = Lm(Bτ0)
= {α12α12γ3β13γ2, α12γ3α12β13γ2, γ3α12α12β13γ2}. Note
that the release of γ2 in SI-states τ3 and τ5 is not possible
(denoted by dotted transitions) since the synchronization is
applied by O2, indicating that the last symbol recorded by
O2 should be the last event released, i.e., h(τ6, γ2) = Te.

Fig. 2. The S-builder given CSI-state τ0 with Icτ0 = {2}.

Remark 1: Consider an S-builder Bτ = (T,Σs, T0, Te, h)
w.r.t. an SI-state τ , where Te is marked. An intuitive method
to perform state estimation is to compute the product of
the S-builder and the observer of the original system w.r.t.
observable event set ΣI [17]. However, this approach needs
to construct the S-builder and observer beforehand which
suffers from high computational complexity. Next, we for-
mally introduce a structure called synchronizer, which can
be used to estimate the possible states of the system while
building the S-builder.

We first introduce some notions which can be used to
serve as the “state computation” part and properly prune
states in the S-builder in order to reduce the computational
complexity. Given system G = (X,Σ, δ,X0), the state
mapping induced by σ is defined as M(σ) = {(x1, x2) ∈
X ×X|∃x1, x2 ∈ X,∃t ∈ Σ∗, PI(t) = σ ∧ x2 ∈ δ(x1, t)}.
The non-standard state estimation function δN : 2X ×ΣI →
2X is defined as follows: for any Q ∈ 2X , σ ∈ ΣI ,
δN (Q, σ) = {x ∈ X|∃q ∈ Q ∩M(σ)[0], (q, x) ∈ M(σ)}.
We are now ready to define the synchronizer by the construc-
tion in Algorithm 1, which essentially asynchronously infers
the TO-sequences and simultaneously estimates the system
states.

Consider a system G (known to be in a set of possible
states Q ⊆ X). A synchronizer S w.r.t. a set of initial system
states Q ⊆ X , and a CSI-state τ0 with set of critical indices
Icτ0 is of the form S(τ0, Icτ0 , Q) = (T,Σs, T0, Te, hs, c, C)
with Te being the marked state. S(τ0, Icτ0 , Q) describes a
process of releasing the events in τ0 and estimating the states
of the system, where the component (T,Σs, T0, Te, hs) is a
sub-structure capturing the S-builder; c : T → 2X is the
state-estimation function; C simply summarizes this mapping
for each state of the S-builder.

The whole structure of the S-builder given τ0 is not
constructed beforehand. Therefore, Algorithm 1 builds the
state space of the synchronizer recursively by adding the

Algorithm 1 Construction of a synchronizer
Input: State set Q, CSI-state τ0 with critical index set Icτ0 .
Output: S(τ0, Icτ0 , Q) = (T,Σs, T0, Te, hs, c, C)

1: T0 = τ0, T = {T0}, Σs = {σ|∃i ∈ I, σ ∈ τ (i)
0 }, c(τ0) =

Q, C = {c(τ0)}, Te = (ε, . . . , ε), and c(Te) = ∅;
2: assign tag “release” to τ0;
3: while c(Te) == ∅ do
4: Ttag is the set of states with tag “release”;
5: Release(Ttag);
6: update the set Ttag;
7: Estimation(Ttag);
8: end while
9: procedure Release(T1)

10: for τ ∈ T1 do
11: for e ∈ {σ|∀i ∈ I, τ (i) ∈ Ωi(σ)} do
12: if h(τ, e)! ∧ δN (c(τ), e) 6= ∅ then
13: add transition (τ, e, h(τ, e)) and h(τ, e) to hs and

T , respectively;
14: assign tag “release” to h(τ, e);
15: end if
16: end for
17: remove tag “release” from τ ;
18: end for
19: procedure Estimation(T1)
20: for τ ∈ T1 do
21: c(τ) =

⋃
(τ1,e,τ)∈hs

δN (c(τ1), e);
22: C = C ∪ {c(τ)};
23: end for

transition into the structure in a breadth-first search like
process. From initial state τ0, procedure Release concentrates
on the states with tag “release” and applies the function h
with the restriction “δN (c(τ), e) 6= ∅” which indicates that e
is admissible to match the possible system behavior. After all
events matching the restriction are released from τ , τ ’s tag
will be removed and the next-state h(τ, e) will be assigned a
tag. In line 6, we update the set in order to estimate the states
and release the events in the next-depth level. In procedure
Estimation, we use function c to estimate the states under the
SI-state τ . It is noteworthy that for an SI-state τ , function
c needs to collect all its preceding states and transitions
and takes the union of their possible state-estimates. This
algorithm will end at state Te and the final state-estimate of
the system is c(Te).

Theorem 2: Consider a system G that is known to be
in a set of possible states Q. Suppose that a sequence of
events t occurs in the system such that CSI-state τ =
(P1(t), . . . , Pm(t)) with critical index set Icτ is reached,
and S(τ, Icτ , Q) = (T,Σs, T0, Te, hs, c, C) with the marked
state Te is the corresponding synchronizer. We have that
Ec(τ, Icτ , Q) = c(Te).

Example 3: Consider the S-builder presented in Exam-
ple 2. If the coordinator knows that the system is initially
in the set of states {0, 2}, according to Algorithm 1, the
synchronizer S(τ0, {2}, {0, 2}) is shown in Fig. 3 surrounded
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Fig. 3. Synchronizer S(τ0, {2}, {0, 2}).

by dotted lines. The oval states stand for the state estima-
tion part related to the corresponding SI-states. Note that
c(τ4) = δN (c(τ1), γ3) ∪ δN (c(τ2), α12) indicates that τ1
and τ2 are constructed before τ4. SI-state τ3 is excluded
from the synchronizer since δN (c(τ1), α12) = ∅ in this
system. Finally, the coordinator concludes that DO-CSE is
c(Te) = {0, 1, 5}.

C. Analysis of Computational Complexity for DO-based
Current-state Estimation

While there exist various alternative strategies to address
the DO-CSE problem, the method proposed in this paper can
reduce the corresponding computational complexity. Given a
synchronizer S(τ, Icτ , Q), we use κi to denote the length of
the observation sequence recorded by Oi, i.e., |τ (i)| = κi. In
the worst scenario, S contains

∏m
i=1(κi + 1) states and its

number of transitions is bounded by
∏m
i=1(κi+1) ·m (a τ (i)

has at most κi symbols to be released and an SI-state can
release at most m symbols at a time). The complexity of the
state estimation part at an SI-state is O(|X|2). Therefore, the
entire complexity for DO-CSE is O(|X|2 ·

∏m
i=1(κi+1) ·m).

With the above analysis, we can deduce that performing
the current-state estimation at the coordinator has polynomial
complexity of

∏m
i=1(κi + 1). However, this bound actually

treats the situation where the set of local observable events
are disjoint. Next, we use an example to illustrate that this
bound could be significantly reduced when there exist events
observed by more than one OS (termed as shared-observable
events).

Example 4: Consider an NFA observed by two OSs,
where I = {1, 2}. Suppose that the sequence of events
t occurs in the system such that τ = (P1(t), P2(t)). We
consider the following two cases:

(1) Σ1 ∩ Σ2 = ∅ where we assume Σ1 = {α, γ},
Σ2 = {β, γ}, and τ = (ααγα, βγββ). The corresponding
S-builder is shown in Fig. 4(a). There are (|ααγα| + 1) ×
(|βγββ|+1) = 5×5 = 25 SI-states in this case. The release
procedure at each SI-state only removes one event since this
event is unobservable by the other OS.

(2) Σ1 ∩ Σ2 = {γ} where we assume Σ1 = {α, γ},
Σ2 = {β, γ}, and τ = (ααγα, βγββ). The corresponding S-
builder is shown in Fig. 4(c). The event γ divides the release
procedures of τ into two parts: the part before γ which is
(αα, β) and the part after γ which is (α, ββ); the number

of corresponding SI-states is (|αα|+ 1)× (|β|+ 1) + (|α|+
1)× (|ββ|+ 1) = 3× 2 + 2× 3 = 12.

If we assume γ ≡ γ, 13 SI-states (more than half of the
size of the S-builder in Case 1) are reduced, as shown in
Fig. 4(b) surrounded by the dotted rectangles; this is due to
the existence of shared-observable event γ. From the above
example, we see that the bound

∏m
i=1(κi+1) does not specif-

ically describe the cases when there are shared-observed
events, which always break the bound of multiplications of
lengths of several strings into the sum of multiplications of
lengths of several sub-strings. Therefore, the bound on the
size of an S-builder can be reduced depending on the number
of shared-observable events and the time instants at which
these events occur in an SI-state. This constitutes the primary
distinction between the approach presented here and the work
in [16]. Actually, in a real system, these situations could be
more complex depending on how many events are shared
and among which subsets of observation sites.

V. INITIAL-STATE ESTIMATION UNDER PARTIALLY
ORDERED OBSERVATION SEQUENCES

Definition 5: (DO-based Initial-State Estimation (DO-
ISE) Consider G = (X,Σ, δ,X0). Following a string t ∈ Σ∗

which occurs in the system and results in a synchronization
step, the initial-state estimate after the coordinator receives
the SI-state τ = (P1(t), . . . , Pm(t)) is defined as
E∞(τ,X0) = {x0 ∈ X0|∃u ∈ L(G, x0),

(∀i ∈ I)[Pi(u) = Pi(t)]}.
Similar to DO-CSE, DO-ISE depends on the inference of

TO-sequences associated with the corresponding CSI-state.
Thus, we have the following result.

Lemma 2: Consider a system G and a sequence of
events t that occurs in G such that the CSI-state is τ =
(τ (1), . . . , τ (m)) and the set of critical indices is Icτ . The
DO-ISE of the coordinator after receiving τ is given by
E∞(τ, Icτ , X0) = {x0 ∈ X0|∃u ∈ L(G, x0),

PI(u) ∈ T O(τ, Icτ )}.
Next, we review and redefine the notions that will be used

to realize DO-ISE. Given system G = (X,Σ, δ,X0) and
σ ∈ ΣI , the DO-ISE transition function δ∞obs : 2X

2 × ΣI →
2X

2

is defined as: for mp ∈ 2X
2

, σ ∈ ΣI , δ∞obs(m
p, σ) =

mp ◦ M(σ). With these notions, we only need to slightly
modify Algorithm 1 to perform DO-ISE.

Algorithm 2 Computation of DO-ISE based on Algorithm 1
Input: Initial-state mappings X2

0 = {(q, q)|q ∈ X0}, a CSI-
state τ0, and the corresponding critical index set Icτ0

Output: S(τ0, Icτ0 , X
2
0 ) = (T,Σs, T0, Te, hs, c

∞, C)
1: Run Line 1 to Line 23 of Algorithm 1 where the

state transition function δN (·, ·) is changed into DO-ISE
transition function δ∞obs(·, ·) and notation of function c(·)
is changed into c∞(·) globally;

Proposition 1: Consider a system G = (X,Σ, δ,X0) and
a sequence of events t that occurs in the system such that
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(a) (b) (c)

Fig. 4. (a) is the S-builder for Case 1, (c) is the S-builder for Case 2, and (b) shows difference between the S-builders for (a) and (c) when γ ≡ γ.

CSI-state τ0 = (P1(t), . . . , Pm(t)) with critical index set Icτ0
is reached. DO-ISE can be estimated based on Algorithm 2,
i.e., E∞(τ0, Icτ0 , X0) = c∞(Te)[0].

The complexity analysis of DO-ISE is similar to that of
DO-CSE since, given an IS-state, both procedures share the
same S-builder. The difference relies on the state estimation
part at each state of the S-builder. Each time an event is
released in the synchronizer, the complexity of updating state
mappings can be bounded by O(|X|2), i.e., the complexity
of the computation of each δ∞(·, ·). Therefore, the entire
complexity for DO-ISE is O(|X|2 ·

∏m
i=1(κi + 1) ·m).

Remark 2: Similar to the modification of the synchronizer
used to estimate the initial states, K-delayed-state estima-
tion could also be realized by using the corresponding K-
delayed-state transition function [19] in the state estimation
part at each state of the S-builder. We do not present this en-
hancement here in order to avoid dense notations. It is worth
noting that “K” is not required to be smaller than the length
of PI(t) where t is the system behavior during one synchro-
nization since, if we have sequential synchronizations, the
delayed-state estimation obtained at the last synchronization
will also be input at the next synchronization.

VI. CONCLUSIONS

In this paper, we have considered the problem of state
estimation in a DES. The notion of S-builder was proposed
to construct a synchronizer. Depending on different inputs
and state estimation functions, current-state and initial-state
estimation can be realized. The complexity of the algorithm
relies on the shared-observable events and the lengths of
observation sequences provided by OSs, which is related
to the synchronization policy. In the future, we plan to
incorporate communication delay and time synchronization
abnormalities [20], [21] in the decentralized architecture,
especially for the state estimation task using an appropriately
modified S-builder.
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