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Abstract— This paper addresses the challenge of overfitting
in the learning of dynamical systems by introducing a novel ap-
proach for the generation of synthetic data, aimed at enhancing
model generalization and robustness in scenarios characterized
by data scarcity. Central to the proposed methodology is the
concept of knowledge transfer from systems within the same
class. Specifically, synthetic data is generated through a pre-
trained meta-model that describes a broad class of systems to
which the system of interest is assumed to belong. Training
data serves a dual purpose: firstly, as input to the pre-trained
meta model to discern the system’s dynamics, enabling the
prediction of its behavior and thereby generating synthetic
output sequences for new input sequences; secondly, in con-
junction with synthetic data, to define the loss function used for
model estimation. A validation dataset is used to tune a scalar
hyper-parameter balancing the relative importance of training
and synthetic data in the definition of the loss function. The
same validation set can be also used for other purposes, such
as early stopping during the training, fundamental to avoid
overfitting in case of small-size training datasets. The efficacy
of the approach is shown through a numerical example that
highlights the advantages of integrating synthetic data into the
system identification process.

I. INTRODUCTION

The performance of system identification algorithms, as
well as other machine learning tools, is greatly dependent on
the amount and quality of the training data. This dependence
becomes challenging in situations where data is scarce and
expensive to acquire, leading to overfitting when complex
models are adopted.

In the machine learning literature, two main strategies have
been developed to address this challenge: data augmentation
and the use of synthetic data [1], [2], each with its own bene-
fits. Data augmentation is a widely used technique in various
domains, such as image and natural language processing.
It involves modifying existing data samples to create new
variations. This technique helps to enrich the dataset and
introduce diversity, which improves the model’s ability to
generalize from a limited number of samples. However, data
augmentation is limited by the scope and characteristics of
the original data. On the other hand, the production and ap-
plication of synthetic data offers a broader solution. Synthetic
data goes beyond simply modifying existing data. It entails
generating completely new, artificial datasets that mimic the
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statistical characteristics of real-world data. This approach
not only overcomes the constraints of data augmentation
but also provides a method to generate large and diverse
datasets. However, generating reliable synthetic data might
be challenging and may not be always possible.

To the best of our knowledge, only few contributions are
available for data augmentation/synthetic data generation in
system identification. The work [3] addresses identification
of dynamical systems described in terms of nonlinear finite
impulse response, where synthetic regressors (with no cor-
responding outputs) are created by slightly perturbing the
original regressors, and manifold regularization is applied
using these new synthetic regressors. The contribution [4]
proposes data augmentation by modifying the original time
sequences through jittering and slicing, with application to
estimation of dynamical model describing harbor manouvers
in maritime autonomous surface ships.

The popular physics-informed deep learning paradigm,
introduced by Raissi et al. in [5], can be seen as a method
for working with synthetic datasets. Indeed, physical laws
are integrated into the training procedure to restrict the set
of admissible solutions or to enforce known dynamics, thus
enhancing model robustness, generalization, and explain-
ability, even in the case of small-sized training datasets.
Essentially, a regularization term is added to the fitting loss
of the available training data. This regularization is formed
by considering collocation points (distributed in the spatio-
temporal domain), where the available Partial Differential
Equation (PDE) describing the system should be satisfied.

In this paper, we leverage the power of synthetic data
in scenarios of small-size training data. We exploit the
new modeling paradigm recently proposed by some of the
authors in [6] in order to derive a meta-model (describing
a broad class to which the query system1 is assumed to
belong) that is used to generate a set of synthetic data. As
discussed in [6], such a meta-model is trained on a potentially
infinite stream of synthetic data, generated by simulators
with randomly generated settings. The proposed approach
harnesses the power of Transformers, commonly used for
Natural Language Processing [7] and representing the key
technology behind Large Language Models [8], [9]. At the
inference time, a (typically short) input-output sequence gen-
erated by the query system (namely, available training data)
is used as a context for the Transformer, which implicitly
discerns the dynamics of the system, enabling predictions of

1We refer to the system to be identified as a “query system”. Measured
data generated by the query system is used as a context for the meta-model.
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its behavior. By querying the meta-model with different new
input sequences, a potentially infinite stream of synthetic data
is then constructed. From a different perspective, since the
available training data are used as context to the meta model
to generate synthetic output samples, the technique can also
be seen as a data augmentation strategy, as the training data
are manipulated to form new data. Overall, synthetic data for
the query system is generated leveraging knowledge transfer
from systems within the same class, all integrated within
the pre-trained Transformer. Once the synthetic input/output
sequences become available, a model (either gray or black
box) of the query system, fitting both the training and the
synthetic data, is estimated using any system identification
tool.

The paper is organized as follows: The problem addressed
is described in detail in Section II. The generation of
synthetic data is discussed in Section III, which includes a
description of the encoder-decoder Transformer architecture
used for synthetic data generation and describing the class
of systems. Parametric system identification with synthetic
data is described in Section IV. A numerical example is
reported in Section V to demonstrate the effectiveness of the
approach and to show the advantages of using synthetic data
in identification problems with small datasets. Concluding
remarks and directions for future research are presented in
Section VI.

II. PROBLEM DESCRIPTION

We consider a dataset Dtr containing a sequence of input-
output pairs generated by a dynamical system So, denoted as
Dtr = {(ut, yt)}Tt=1, where ut and yt respectively represent
the input and output of So at time step t, with t = 1, . . . , T .
For simplicity, and without loss of generality, we assume
that the system So is single-input single-output (SISO), i.e.,
ut, yt ∈ R.

Our focus is on a standard system identification problem,
aiming to fit a parametric causal dynamical model M(·; θ)
to the training dataset Dtr. Here, θ denotes the parameters
describing the model M(·; θ), which maps an input sequence
u1:t up to time t to an output ŷt, as defined by:

ŷt(θ) = M(u1:t; θ), (1)

where the dependence of ŷt(θ) on u1:t is omitted to simplify
the notation.

Additionally, our goal is to augment the training dataset
Dtr by generating a potentially infinite-dimensional set of

synthetic input-output trajectories
{
ũ
(i)
t , ỹ

(i)
t

}T̃

t=1
, where the

superscript i = 1, 2, . . . is used to denote the i-th synthetic
trajectory, and T̃ is the length of the synthetic trajectories,
which are all assumed to have the same length just to keep
the notation simple. The trajectories ũ

(i)
1:t, ỹ

(i)
1:t are assumed

to be drawn from a probability distribution P (ũ, ỹ) which
ideally should be the same underlying distribution generating
the training dataset Dtr.

In the following section we show how to generate the
synthetic output sequence ỹ(i) for given input trajectories
ũ(i).

III. SYNTHETIC DATA GENERATION

In order to generate the synthetic input-output sequences
ũ(i), ỹ(i), we assume that: (i) the system So we aim to model
belongs to a broad class of dynamical systems; (ii) the meta-
model, which describes the behavior of this class and is used
to generate synthetic data, has been pre-trained using data
from systems within the class. This approach is based on
the system class modeling paradigm developed by some of
the authors in [6], which is briefly reviewed in the following
for self-consistency of the paper.

A Transformer with an encoder-decoder architecture, il-
lustrated in Fig. 1, is used for generating synthetic data of
the system So. It is basically the standard Transformer archi-
tecture with attention mechanism proposed in [7], adapted in
[6] to process sequences of real input/output data, and further
modified in [10] with positional encoding used instead of
positional embedding.

The encoder processes an input/output sequence
u1:m, y1:m (typically referred to as ‘context’) and generates
an embedding sequence ζ1:m, which is processed by the
decoder along with a test input um+1:N (the latter subject
to causal restriction) to produce the sequence of predictions
ŷm+1:N up to step N . The parameters ϕ of the Transformer
are obtained by randomly sampling systems from the class,
and then minimizing over ϕ the empirical loss according to
a supervised learning paradigm:

J =
1

b

b∑
i=1

∥∥∥y(i)m+1:N − Tϕ(u(i)
1:m, y

(i)
1:m, u

(i)
m+1:N )

∥∥∥2 , (2)

where: Tϕ(u(i)
1:m, y

(i)
1:m, u

(i)
m+1:N ) denotes the output ŷm+1:N

of the Transformer when fed with a context {u(i)
1:m, y

(i)
1:m}

and query test input u(i)
m+1:N ; and b denotes the number of

randomly generated systems, each providing an input/output
sequence {u(i)

1:N , y
(i)
1:N}, split to form the context and to create

the empirical loss J in (2). Mini-batch gradient descent is
then used to minimize J , with b new systems and sequences
resampled at each iteration. It should be noted that, in
practical scenarios, simulators can be employed to produce
the input/output sequences {u(i)

1:N , y
(i)
1:N} for pre-training the

Transformer. Consequently, it becomes possible to create a
diverse range of datasets for estimating the Transformer’s pa-
rameters by adjusting software configurations (for instance,
physical parameters) based on insights from the application
domain.

The Transformer, pre-trained on data simulated from sys-
tems randomly selected from a particular class, serves as
an extensive meta-model for that class. It gains the ability
to infer the behavior of a specific query system So directly
(specifically, through zero-shot in-context learning) from the
existing training dataset Dtr, which implicitly contains the
main characteristics of the system So. The training dataset
provides context for the pre-trained Transformer, enabling
it to generate synthetic outputs ỹ1:T̃ for any query input
sequence ũ1:T̃ . Consequently, this approach allows the gener-
ation of a potentially infinite stream of synthetic input/output
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Fig. 1: Encoder-decoder Transformer model for the class of systems, used to generate synthetic data. The Transformer is
characterized by: number of layers (nlayers), model dimensionality per layer (dmodel), number of attention heads (nheads), and
context window length (m).

data, by implicitly leveraging knowledge transfer from sys-
tems within the same class.

IV. LEARNING WITH AUGMENTED DATA

The parameters θ characterizing the model M(·; θ) of
the query system So are then estimated by minimizing the
following expected loss, which considers both actual training
data (from So) and artificially generated synthetic data (from
the pre-trained Transformer):

θ̂ = argmin
θ∈Θ

1

T

T∑
t=1

ℓ (yt, ŷt(θ))+

+ γEP (ũ,ỹ)

 1

T̃

T̃∑
t=1

ℓ
(
ỹt, ˆ̃yt(θ)

) (3)

where ˆ̃yt(θ) represents the model’s output at time t for a
synthetic input sequence ũ1:t, and ℓ denotes a chosen loss
function, such as the squared error defined by:

ℓ (yt, ŷt(θ)) = (yt − ŷt(θ))
2
. (4)

The term γ is a non-negative regularization hyperparame-
ter that balances the influence of training and synthetic data
in the model fitting process. A value of γ = 0 focuses the
model on fitting the training data alone, potentially leading to
overfitting, especially with overly complex models or small
datasets. Increasing γ elevates the significance of synthetic

data, which might introduce biases from the synthetic data
generation process. The choice of γ should ideally be deter-
mined by the quality and amount of real training data and
the reliability of synthetic data. In this paper, γ is selected
through hold-out validation, using a portion of the training
dataset Dtr or a separate validation dataset Dval to regulate
the balance between real and synthetic data influences. As
discussed in the example in Section V, we employ early stop-
ping criteria to prevent overfitting, especially when relying
on a small training dataset and when synthetic data is not
utilized. Consequently, the same validation dataset used for
early stopping can also be adopted to adjust γ, ensuring that
no additional data is required beyond what is already used
for model estimation with early stopping.

The expected value in (3) is approximated by applying q
synthetic sequences ũ(i) (with i = 1, . . . , q) as input of the
decoder and then generating corresponding output sequences
ỹ(i). The estimation problem (3) thus becomes:

θ̂ = argmin
θ∈Θ

1

T

T∑
t=1

ℓ (yt, ŷt(θ))+

+ γ
1

q

1

T̃

q∑
i=1

T̃∑
t=1

ℓ
(
ỹ
(i)
t , ˆ̃y

(i)
t (θ)

)
. (5)

The optimization problem (5) is then solved through mini-
batch stochastic gradient descent by generating, at each
iteration, q new synthetic input/output sequences.
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Fig. 2: The Wiener-Hammerstein system structure.

V. EXAMPLE

In this section we illustrate the effectiveness of the pro-
posed method with a numerical example focused on the
identification of Wiener-Hammerstein models, which pro-
vide a block-oriented representation for numerous nonlinear
dynamical systems encountered in practice [11]. The pre-
trained meta model, along with the Python scripts for syn-
thetic data generation, are available in the GitHub repository
associated with this paper [12].

A. Data-generating system

For data generation, we consider a SISO stable Wiener-
Hammerstein dynamical system So, as visualized in Fig. 2,
with the structure G1–F–G2, where G1 and G2 are Linear-
Time-Invariant (LTI) blocks, and F is a static non-linearity
sandwiched between G1 and G2. The LTI blocks G1 and
G2 are randomly chosen, with dynamical order between 1
to 10, and poles randomly generated and constrained to have
magnitude and phase in the range (0.5, 0.97) and (0, π/2),
respectively. The non-linear block F is a feed-forward neural
network with one hidden layer of size 32, and parameters
randomly drawn from a Gaussian distribution.

A training dataset Dtr and a validation dataset Dval, of
lengths T = 250 and Tval = 100 respectively, are generated
by exciting the system with a white input signal drawn from
a normal distribution with zero mean and unit variance. The
output samples are corrupted by white Gaussian noise with a
standard deviation of σe = 0.35, corresponding to a Signal-
to-Noise Ratio (SNR) of 9.1 dB.

A test dataset Dtest consisting of 4, 000 samples is also
generated. For simplification in evaluating the model’s per-
formance, the test outputs are considered without noise. It
is important to note that, in practical applications, the size
of the test dataset should ideally not be 16 times larger
than that of the training dataset. Nevertheless, employing a
large test dataset enhances the statistical significance of the
results obtained. To further increase the statistical reliability
of these results, a Monte Carlo study comprising 100 runs
is conducted, with new data-generating system So, training,
validation, and test datasets being generated for each run.

B. Synthetic Data Generation

The Transformer Tϕ describing the considered class of
systems was pre-trained as described in [6] using an Nvidia
RTX 3090 GPU. The Transformer, which comprises 5.6
million weights, is characterized by nlayers = 12 layers,
dmodel = 128 units in each layer, nheads = 4 attention heads,
and an encoder’s context window length of m = T = 400.
Such a pre-trained Transformer describes the class of SISO
Wiener-Hammerstein systems with LTI blocks of dynamical
order up to 10.

The context provided to the encoder is the input-output
training sequence. Synthetic output samples are generated
by applying query input sequences ũ1:T̃ of length T̃ = 200,
which share the same statistical distribution as the training
input.

C. Parametric model

We aim at estimating a parametric model M(·; θ) describ-
ing the behavior of the query Wiener-Hammerstein data-
generating system So.

As a structure for the parametric model M(·; θ) we
consider a Wiener-Hammerstein one, where the LTI blocks
have a dynamical order of 10. The non-linear block F is a
feed-forward neural network with one hidden layer of size
32. Overall, the considered model structure is characterized
by 137 parameters. Such a parametric model M have the
same structure of the class of systems described by the
pre-trained Transformer Tϕ. Therefore, the prior information
about the class to which the query system is supposed to
belong has been used to both generate synthetic data and
select the structure of the parametric model M.

The loss (5) is minimized through stochastic gradient
descent for maximum 6000 iterations, with batch size q = 1,
and by generating at each iteration new synthetic input-
output sequences. In minimizing the loss, we exploited
the approach in [13] for fast differentiation of the linear
dynamical blocks. An early stopping criterion [14] is also
adopted to avoid overfitting, which mainly occurred when
no synthetic data was used (i.e., for hyperparameter γ = 0)
or for small values of γ (i.e., γ ≤ 1).

The hyperparameter γ is selected through a
coarse grid search, considering the following values:
0, 0.1, 1, 10, 20, 30, 50, 100, 200 and by minimizing the
mean squared error (MSE) over the validation dataset Dval,
which is defined as:

MSE =
1

Tx

Tx∑
t=1

(yt − ŷt(θ))
2
, (6)

where Tx is the length of the dataset where the MSE is
computed (Tx = Tval = 100 for validation set), yt denotes
the true output at time step t, and ŷt(θ) indicates the
predicted model’s output. We remark that the same validation
dataset is adopted both for early stopping and to select the
hyperparameter γ.

D. Results

Fig. 3 shows the boxplots of the Mean Squared Error on
the training (left panel) and validation dataset (right panel)
obtained for different values of the hyperparameter γ, with
γ = 0 corresponding to fit only the available training data.
To illustrate the presence of overfitting, the MSE on training
data is not the one obtained by the model estimated with
early-stopping, but the one achieved when the maximum
number of iterations is reached. Results in the figure show
the regularization role played by synthetic data. Indeed, for
γ = 0 the MSE in the validation data is about 5 times larger
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(a) MSE vs γ on training data.
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Fig. 3: Impact of regularization hyparameter γ on mean squared error in training (left panel) and validation (right panel)
dataset. Boxplots of average squared error over 100 Monte Carlo runs. In the right panel, the vertical limit is set to 4 for a
better visualization of the boxplots associated to γ ̸= 0.

than the one in training, while similar MSEs are achieved in
training and validation when the relevance of synthetic data
w.r.t. training data is significant (i.e., for γ ≥ 10). We also
notice a benefit in validation performance when synthetic
data is used (γ > 0). Improvement is visible, although we
observe that when the ratio of synthetic data in the loss is
more than 10 times larger than training data, performance in
validation decreases, intuitively due to the fact that measured
training data, although affected by noise, are more reliable
than synthetic data generated by the meta-model, which can
be affected by epistemic uncertainty.

Fig. 4 shows results obtained on the test dataset Dtest. For
a better interpretation of the performance, the R2 coefficient
is plotted in the figure instead of the MSE, where the R2 is
defined as:

R2 = 1−
∑Tx

t=1 (yt − ŷt(θ))
2∑Tx

t=1 (yt − ȳ)
2

(7)

where ȳ is the mean output and Tx = 4, 000 is the length
of the test dataset. In the test, we only considered (and
thus reported) a comparison between performance achieved

without
synthetic data

with
synthetic data

0.00
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1.00

R
2

in
d
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Fig. 4: Impact of synthetic data on R2 performance in test
dataset. Boxplots of R2 coefficients over 100 Monte Carlo
runs: without using synthetic data (left); using synthetic data
(right).

without using synthetic data and performance achieved using
synthetic data, with regularization hyperparameter γ selected,
at each Monte Carlo run, through hold-out validation. As
expected from the results in validation, also test results
show a significant improvement in the model performance
thanks to the usage of synthetic data, with a median of the
R2 coefficient which improved from 0.889 (in case of no
synthetic data) to 0.956.

VI. CONCLUSIONS

In this paper, we demonstrate the feasibility of generating
an extensive stream of synthetic data for system identification
by employing knowledge transfer from analogous systems.
This allows to mitigate the challenges posed by data scarcity,
offering enhancements in model performance and generaliza-
tion capabilities. A practical numerical example highlights
the efficacy of the methodology, showcasing an increasing
of the R2 coefficient when synthetic data is integrated with
traditional training datasets.

Current research directions are focused on:
• Refinement and scaling-up of the meta-model to en-

compass a broader spectrum of dynamical systems. This
ensures its applicability across a diverse range of system
identification scenarios.

• Estimation of the uncertainty associated with the meta-
model’s outputs. This allows to reformulate the mini-
mization of the loss with synthetic data as a Maximum
Likelihood estimation problem. This advancement will
allow for a proper weighting of synthetic data based
on their reliability, ensuring that less certain synthetic
samples exert a smaller influence on the model estima-
tion process compared to more reliable ones and actual
training data.

• Enhancing Bayesian estimation algorithms, such as
Gaussian Process Regression, by incorporating the
meta-model’s output as a prior. This strategy is par-
ticularly beneficial in areas of the input space lacking
observations, where the model increasingly relies on the
prior. This incorporation seeks to utilize the knowledge
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derived from analogous systems, encapsulated by the
meta-model, to make more informed inferences in do-
mains with few observations.
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