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Abstract— Nonlinear estimation is ubiquitous in control and
signal processing. It aims to estimate the most probable state
of a system and its range of uncertainty by fusing data from
multiple sensors over time using a filter. Although many efficient
filters exist in the literature, their computational cost may
increase when the set of data to process is significant. Besides,
some data can be redundant or bring little information to
the estimation of the state. In that case, their processing is
costly and does not contribute to the filter’s estimation. This
paper introduces a semi-heuristic method to select a relevant
subset of observations from a more extensive set of available
data, using a cost function based on the approximation of
the Cramer-Rao Lower Bound. This approach is adopted on
an angles-only optimal navigation scenario where an extensive
signal set is available. The results show that the filter achieves
close-to-optimal accuracy for a lower computational cost.

I. INTRODUCTION

Data fusion algorithms are critical to the functioning
of autonomous systems. They define numerical methods
that estimate kinematic variables, environment maps, or
structural parameters commonly used for control, path
planning, and decision-making. In the case of a nonlinear
estimation problem, a data fusion algorithm typically
estimates hidden variables in real-time by merging the
time-integrated prediction of a dynamical model with the
measurements of aiding sensors. Nonlinear state estimation
is still an active field of research. Among a vast ecosystem
of methods, the most popular approaches are based on
Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF), and Particle Filter (PF) [1]–[3].
However, new applications often involve strongly nonlinear
sensors producing large data sets that must be processed in
real-time. Such an amount of data can lead to a prohibitive
computational cost for embedded systems where the
hardware resources are limited.
Recent works address this problem by adding a
pre-processing step that selects the relevant observation
for the filter. Previous works on tracking applications
investigated this idea in [4]. Besides, a recent study showed
that a well-chosen combination of measurements leads to
a suitable estimation accuracy on a navigation problem
[5]. Both works involve the Cramer-Rao Lower Bound
(CRLB), defined as the asymptotic minimum variance of
an unbiased estimator. In practice, the CRLB characterizes
the quantity of information from a set of observations
given prior knowledge of the estimated state. Moreover,
[5] introduced a cross-entropy algorithm to perform the
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combinatorial optimization required to select the relevant
observations. This approach obtained close-to-optimal
accuracy with a small subset of measurements. However,
cross-entropy algorithms can be computationally intensive
for real-time embedded applications. Besides, computing the
Cramer-Rao Lower Bound online is challenging in practice.
Therefore, [5] performs with offline computations where the
system’s trajectory is known, and computing resources are
not limited.
The approach developed in this paper addresses this problem
by using a scalable combinatorial optimization method in
which the cost function uses an approximation of the
Cramer-Rao Lower Bound. The rationale of this approach
is gradually detailed and compared with optimal solutions.
Section II provides information theory concepts and states
the estimation problem with the cost function to be
optimized. Then, Section III presents the main contribution
of this paper. It details the proposed filtering architecture
and focuses on two optimization algorithms: Brute Force
which is a reference providing optimal selections, and
Variable Neighborhood Search (VNS), a meta-heuristic
suited to large-dimension problems. Section IV explains the
simulated navigation scenario, and Section V presents the
numerical results, which investigate the validity and benefits
of the approach. Eventually, Section VI concludes the paper.

II. PROBLEM STATEMENT

This section introduces the problem addressed in this
paper. It describes the Extended Kalman Filter and the
Cramer-Rao Lower Bound, which defines the dynamic
decision.

A. State Estimation

Let the discrete-time hidden state {xk}k∈N ∈ Rd be
a Markov process according to a set of observations
{yk}k∈N ∈ Rm:{

xk+1 = f(xk, uk+1, n
q
k+1),

yk+1 = h(xk+1, n
r
k+1),

(1)

where {yk}k∈N are mutually independent measurements, uk

is a control input vector, (nq
k+1, n

r
k+1) are centered noise

vectors, and (f, h) two possibly nonlinear smooth functions.
Extended Kalman Filter (EKF), based on Kalman Filter
[6], is a popular method to estimate the state’s probability
density function when the noises are mutually independent
and Gaussian:

nq
k ∼ N (0, Qk), nr

k+1 ∼ N (0, Rk+1) and E
[
nq
kn

r
k
T
]
= 0.
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To that extent, EKF tracks the conditional expectation x̂ and
covariance matrix P with a propagation step:

x̂k+1|k = f(x̂k|k, uk+1),
Pk+1|k = FkPk|kF

T
k +Qk+1,

(2)

and an update step:

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1,

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1,

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k,
x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk+1 − h(x̂k+1|k)

)
,

(3)

where Fk and Hk+1 are the Jacobian matrices of f and h
respectively computed at x̂k|k and x̂k+1|k:

Fk =
∂f(x)

∂x

∣∣∣∣
x=x̂k|k

; Hk+1 =
∂h(x)

∂x

∣∣∣∣
x=x̂k+1|k

. (4)

B. Cramer-Rao Lower Bound
Let xk ∈ Rd be a random vector and x̂k|k be an unbiased

estimator of xk from the observation vector yk ∈ Rp. The
posterior Cramer-Rao Lower Bound (CRLB) [7] is a positive
semi-definite matrix defined as the inverse of the Fisher
information matrix Jk and verifies the inequality:

Pk|k ≥ J−1
k , (5)

in the sense that the eigenvalues of Pk|k − J−1
k are positive,

and Jk is computed from the joint probability density
function p(xk, yk):

Jk ≜ −E
[
∂2 log p(xk, yk)

∂x2
k

]
. (6)

Assume that x and y verify the discrete-time system (1). The
approach proposed in [8] enables a recursive computation of
the Fisher information matrix at time k denoted Jk:

Jk+1 = D22
k −D12

k

(
Jk +D11

k

)−1
D21

k , (7)

where: 
D11

k = −E
[
FT
k Q−1

k Fk

]
,

D12
k = −E

[
FT
k Q−1

k

]
= D21

k
T
,

D22
k = −Q−1

k − E
[
HT

k+1R
−1
k+1Hk+1

]
,

(8)

with Fk and Hk+1 defined in (4).

C. Dynamic Decision Problem
Let Yk = {y1k, · · · , yNk } be a set of N available

observations from different measurement sources and Sk ⊂
Yk be a subset of K ≤ N selected vectors. The subset Sk is
characterized by the selection vector sk ∈ {0, 1}N , which is
a binary sequence of the selected observations. If yik ∈ Sk,
then sik = 1. Otherwise, if yik /∈ Sk : sik = 0.
The decision problem addressed in this paper is to find at
every time step k the subset Sk ⊂ Yk of K observations,
which brings the best contribution to an estimation filter.
Once the observations are selected, the measurement model
of (1) is modified accordingly to the selected observations:{

xk+1 = f(xk, uk+1, n
q
k),

ỹk+1 = h̃(xk+1, n
r
k+1),

(9)

where ỹ and h̃ are taken only for the corresponding non-zero
values of sk.

Fig. 1: Illustration of the filtering with selected
measurements. In this example, the selection vector is
sk =

[
0 1 1 0 1

]
.

D. Optimization Criterion
The criterion to be optimized should reflect the quantity

of information brought by a selection. Hence, the approach
described in this paper is based on an approximation of
the CRLB conditionally to the selection vectors sk. The
Fisher Information Matrix associated to a selection is denoted
Jk(sk), and computed with the recursive process (7) where
Hk+1 is replaced with H̃k+1 defined from (9):

H̃k+1 =
∂h̃(x)

∂x

∣∣∣∣∣
x=x̂k+1|k

. (10)

The cost function ϕ for a selection at a time k is the
determinant of approximated CRLB, which is positive since
CRLB is a semi-definite positive matrix:

ϕ(sk) = det(Jk(sk))
−1. (11)

The choice of using the determinant of CRLB in the
cost function is motivated by its link with the Fisher
Information Matrix, which translates as the maximum
information available. Besides, the determinant accounts
for the non-diagonal and diagonal terms of CRLB without
need for weighting according to each variable since it is
multiplicative. Moreover, it is homogeneous of degree d.
Other approaches use the trace of CRLB as cost function
[4] [9]. Although this approach is mathematically relevant,
it implies summing variables of different types and overlooks
the impact of the correlation of the state variables.
Considering a discrete finite sequence of T steps, with N
measurement sources at disposition and K ≤ N measures
to be selected, the problem to solve is formalized as: arg min

s1,··· ,sT

T∑
k=0

det(Jk(sk))
−1,

s.t. ∀k ≤ T, ∥sk∥1 ≤ K.

(12)

III. MEASUREMENT SELECTION AND FILTERING

This section represents the main contribution of this
paper. It aims to solve the dynamic decision problem
with a pragmatic combinatorial optimization method. First,
the decision problem (12) is developed with the Bellman
equation and discussed with different levels of assumptions.
Then, two algorithms are discussed, leading to the resolution
method proposed in this paper.

A. Dynamic programming
The Bellman dynamic programming equation introduced

in [10] subdivides this problem into several simpler ones:
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∀k ≤ T :

{
sk = argmin

s
Bk(s),

Bk(s) = det(Jk(s)
−1) + min

w
Bk+1(w).

(13)
According to Bellman, solving (13) is equivalent to

solving (12). However, the term min
w

Bk+1(w) depends on
future states and observations, which are unknown at time k.
Hence, this paper considers a simplified approach consisting
in minimizing only the first term - i.e., considering that
if sk minimizes det(Jk)

−1, it minimizes min
w

Bk+1(w).
This assumption prioritizes the present selection over the
future one, which is reasonable when the future trajectory
is unknown.
This assumption rewrites the problem (12) as, for all k ≤ T :{

sk = argmin
s

det(Jk(s))
−1,

s.t. ∥s∥1 ≤ K.
(14)

B. Solving algorithms
The sequel presents two methods that solve the Bellman

equation.
1) Brute Force: The Brute Force method solves the

optimization problem by computing the objective value for
each possible selection and returns the best one. At each
selection step, there are

(
N
K

)
subsets of size K to be

processed. Thus, the computational complexity of the Brute
Force approach for a selection is O(KNK).

This method is suitable for small problem instances, and it
is optimal. However, it becomes computationally intractable
for extensive instances due to its complexity. In that case,
the meta-heuristic presented in the sequel is more adapted,
given its complexity.

Algorithm 1: Brute Force
Result: sk
Selection:
- Compute the cost (11) for each selection vector.
- Return the selection vector with the lowest cost.

2) Variable Neighborhood Search: The Variable
Neighborhood Search is a combinatorial optimization
algorithm introduced in [11], which consists of improving
a feasible selection by local research. This algorithm needs
an initial feasible selection and a definition of a family
of neighborhoods depending on a size parameter l. The
neighborhoods considered in this paper will be for a size
l ∈ J0,KK:

Vl(sk) =
{
wk ∈ {0, 1}N ; ∥wk − sk∥1 = 2l

}
, (15)

that is to say, the selection vectors of K sources with exactly
K − l of them differing from sk.
The parameters of VNS are:

• lmax: the maximum size for a neighborhood;
• ∀l ∈ J1, lmaxK, Ml: the maximum number of selections

generated for each size l.

At each iteration, the algorithm disposes of a reference
selection srefk (initially the one given as input) and a current
size l, initiated at 1. It generates a random selection in the
neighborhood of srefk by exchanging l selected sources with
l unselected sources: w ∼ U(Vl(s

ref
k ). Then, the selection

with the smallest cost becomes the new reference.
If the reference selection has stayed the same for Ml

iterations, the size of the neighborhood is incremented
l← l + 1, making the algorithm more exploratory. The
process stops when l reaches lmax + 1; the output is the
last reference selection.

Fig. 2: Illustration of the Variable Neighborhood Search,
iteratively evolving towards improving selections. Increasing
the size of the neighborhood allows to escape terminating
on a local minimum. The cost function is represented as
continuous here for a better visualization.

Algorithm 2: Variable Neighborhood Search
Result: sk
Input: initial selection s
Parameters: lmax;M1, · · · ,Mlmax

Selection:
l := 1; # current size of the neighborhood
j := 0 # number of iterations at current size
While l < lmax:

Randomly sample w ∈ Vl(s)
If f(w) < f(s):
s← w ; l← 1; j ← 0

Else:
j ← j + 1
If j > Ml:

l← l + 1; j ← 1
sk := s

The VNS algorithm improves the input selection
iteratively, and its performance depends on the quality of the
initial selection, which can be obtained with an appropriate
heuristic. A suitable choice is to take the output of the
previous selection assuming the state has had little change
between selections. The first selection at k = 0 can be
obtained with any heuristic based on prior knowledge and
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sensor models of the system. Otherwise, using Brute Force
determines the optimal initial selection, which is acceptable
for the computational load as it occurs only once. The
computational complexity of one selection made by VNS
is O(NK).

C. Selection-Based Filtering

This paper introduces a measurement selection step
between an estimation filter’s propagation and update steps.
Algorithm 3 details the proposed approach based on the
Extended Kalman Filter.

Algorithm 3: Extended Kalman Filter with Selection
Result: (x̂k|k, Pk|k), k ∈ [1, N ]
Propagation step:
x̂k+1|k = f(x̂k|k)
Pk+1|k = FkPk|kF

T
k +Qk+1

Selection step:
Get sk+1 from Algorithm 1 or 2
Compute ỹk+1, h̃ and H̃k+1 from (9)(10)
Update step:
Kk+1 = Pk+1|kH̃

T
k+1

(
H̃k+1Pk+1|kH̃

T
k+1 +Rk+1

)−1

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
ỹk+1 − h̃(x̂k+1|k)

)
Pk+1|k = (I −Kk+1H̃k+1)Pk+1|k

However, the selection step requires the Cramer-Rao Lower
Bound to build the cost function for the optimization
algorithm. The online estimation of the CRLB can be
costly and difficult to implement in practice. Hence, the
key approximation made in Algorithm 3 is to use the
estimated covariance matrix P instead of the CRLB. This
approximation holds, assuming that estimation errors remain
small, which is often the case for EKF.
Besides, the filtering process’s complexity is expected to
decrease with the selection step performed with VNS.
Indeed, the EKF update step has a cubic complexity with
the dimension of the measurement vector [12].

IV. APPLICATION TO ANGLES-ONLY NAVIGATION

A. Context

This testing scenario describes the optimal navigation of
an Unmanned Aerial Vehicle (UAV) which trajectory is
shown in Figure 3. The ground frame [e] has a fixed origin
with respect to the Earth, and its axes point East, North, and
Up. Also, [e] is assumed to be inertial in this study. The
frame attached to the vehicle is denoted [b], and its axes
points forward, rightward, and downward. The notations and
conventions of this section related to navigation variables are
detailed in [12].
This navigation problem is to use an EKF to estimate the
UAV’s position xe

eb, velocity veeb, and attitude Euler angles
θeb given a kinematics model and the measurements of
an antenna carried by the UAV. This sensor observes the
angles-of-arrival of signals emitted from a set of N = 30
known landmarks, which positions are denoted [pen]n∈[1,Nl].
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Fig. 3: True trajectory in the (x, y) plan with the position of
the landmarks and several selections.

The measurement model is yk where the measurement model
for the nth beacon is:

yn =

[
arctan2

(
∆n

y ,∆
n
x

)
arctan2 (∆n

z , ρ
n)

]
. (16)

with: {
ρn =

√
(∆n

x)
2 + (∆n

y )
2,

∆n = Cb
e(p

e
n − xe

eb),
(17)

and (∆n
x ,∆

n
y ,∆

n
z ) denote the components of ∆b

n. Note that
∆n is the relative distance between a landmark and the UAV
resolved in the body frame [b], Cb

e is the rotation matrix
obtained from the attitude Euler angles, and arctan2 is such
that ∀(x, y) ̸= (0, 0):

arctan2(y, x) =

 sign(y) arctan
∣∣ y
x

∣∣ x ≤ 0,
sign(y)π2 x = 0,
sign(y)(π − arctan

∣∣ y
x

∣∣) x ≤ 0.
(18)

B. Measurement model Jacobian matrix

The Jacobian matrix for the full measurement model is
calculated with respect to every beacon:

H =
[
H1T · · · HNT

]T
, (19)

where, the Jacobian matrix for the nth beacon is:

Hn = Ψn
[
[∆n]× 03 −I3

]
, (20)

with Ψn such that:

Ψn =

 −
∆n

y

(ρn)2
∆n

x

(ρn)2
0

∆n
x∆

n
z

ρn||∆n||2
∆n

y∆
n
z

ρn||∆n||2
−ρn

||∆n||2

 . (21)
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Sensor Parameters
Sensors rate (Hz) 10 Hz
IMU noise (1σ) Gyrometer: 2◦/h, Accelerometer: 10−3m/s2

AOA noise (1σ) Azimuth: 0.6◦, Elevation: 0.6◦

Model Parameters
Init. error (1σ) Attitude: 0.6◦, Velocity: 1m/s, Position: 50m
Model noise (1σ) Azimuth: 0.6◦, Elevation: 0.6◦

Selection Parameters
Observations N = 30 available landmarks
Selection K = 2 selected landmarks
Monte Carlo 100 Simulations

TABLE I
Simulation and filters parameters.

C. Landmarks Selection Problem

In the simulation scenario illustrated in Figure 3, the
vehicle observes the angles of arrival from N = 30 beacons.
Hence, the dimension of the measurement vector y is 2N =
60, which can lead to prohibitive computational costs in
a filtering process. This problem is addressed with the
developments from Section III by selecting a subset of
landmarks at every time step and only using their signals
to update an EKF.

Hence, Algorithm 3 is applied for the state estimation and
landmarks selection with the parameters of Table I.

V. SIMULATIONS METHODOLOGY AND RESULTS

This section details the numerical results for the Section
IV scenario. It focuses on the Cramer-Rao Lower Bound and
Algorithm 3, both tested with three selection approaches:

• With all the measurements available ;
• With two measurements selected from Brute Force ;
• With two measurements selected from VNS.

These tests focus on the accuracy of the estimation filter
executed with the selection step performed by the VNS
method. Given the low complexity of VNS, this approach
is expected to be suitable for real-time implementation. The
Brute Force method gives optimal selections, which will be
used to assess the accuracy of VNS, and estimation using
all the available measurements is used as a lower bound to
evaluate the highest possible accuracy.

A. Instantaneous Cost Function

Figure 4 displays the plots of the instantaneous cost
function from (11). As expected, the cost function is minimal
when the 30 landmarks are considered. Besides, VNS and
Brute Force cost functions are close, meaning that VNS
selections are close-to-optimal with respect to Brute Force.
Hence, VNS is relevant to the selection step and provides
accurate solutions to the optimization problem.

B. Cramer-Rao Lower Bound

Figure 5 presents the Cramer-Rao Lower Bound plots.
During the simulation, the bounds corresponding to
VNS and Brute Force selections are close to the ones
computed with all the measurements available. Therefore,
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Fig. 4: Illustration of the evolution of the optimization
criterion in the calculus of CRLB. Brute Force and VNS
show similar accuracy.
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Fig. 5: Cramer-Rao Lower Bound (CRLB) for the L2 norm
of the position vector for 30 landmarks, two landmarks
selected with Brute Force and two landmarks selected with
VNS. The small subset of selected observations provides
most of the information. Besides, VNS and Brute Force
lead to similar results. Hence, in this scenario, VNS returns
close-to-optimal selections with respect to Brute Force.

in this scenario, the selection has a limited impact on the
information received by the filter.
Besides, given the strong convergence CRLB in every case,

the filtering process based on EKF is expected to perform
well, as it receives sufficient information from the selected
measurements.

C. Filtering and Selection
The results of the selection and filtering process from

Algorithm 3 are displayed in Figure 6. The Root Mean
Square Error (RMSE) plots show that the different selection
steps lead to comparable accuracy for Brute Force and VNS.
This result was expected since their CRLB displayed in
Figures 5 and their instantaneous cost functions displayed in
Figure 4 are close. Hence, in this scenario, VNS is suitable
to perform the selection step since it is accurate compared
to Brute Force, leading to good filtering process accuracy.
This result is confirmed by the proximity of the plot of the
RMSE with the CRLB calculated for 30 landmarks.
Besides, Figure 3 displays a few of the selections computed
by Brute Force. It illustrates that the selection can be
counter-intuitive due to non-diagonal terms in the CRLB and
prior uncertainties on the state.
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Fig. 6: Root Mean Square Error (RMSE) for the L2 norm of
the position vector estimated with Extended Kalman Filter
for 30 landmarks, two landmarks selected with Brute Force
and two landmarks selected with VNS. The filters running on
the selected subset of measurements present good accuracy
compared to the bound calculated for the 30 landmarks.

Selection Algorithm VNS Brute Force None

Avg. Execution Time 1.53 ms 4.81 ms 4.44 s

TABLE II: Average duration of a single selection for
different methods. A time step lasts 100 ms between two
IMU measurements.

The RMSE of each method is consistent with the
CRLB, showing that the efficient data selection allows
similar accuracy. Besides, the selection leads to a lower
computational cost, as detailed in Table II. This result was
expected given the computational complexity of the selection
algorithms discussed in Section III and the complexity of
EKF without the selection step. It can be seen that the Brute
Force is not suitable for a real-time implementation since its
execution time is higher than the time step and would result
in the creation of a delay. On the opposite, the VNS runs
faster and allows finding the selection in a reasonable time.
It is then suitable for real-time implementation. Moreover,
since for K fixed, the Brute Force computational complexity
is O(NK) and the VNS is O(N), the computation time of the
Brute Force would increase drastically with K. In contrast,
the VNS would be expected to run for an adequate duration.

VI. CONCLUSION

This article introduces a method to select a relevant
measurement subset among an extensive amount of data
for the update step of an estimation filter. This approach
is based on the Bellman dynamic programming equation. It
involves an optimization problem in which the cost function
is defined from an approximation of the Cramer-Rao Lower
Bound. Two resolution algorithms were studied: Brute Force,
which provides optimal selections, and VNS, which is a
metaheuristic. These methods were applied to an angles-only
navigation problem addressed with an Extended Kalman
Filter. The simulation results show that the VNS performs
faster than the Brute Force approach with similar results.
Besides, adding a selection step with VNS in Extended
Kalman Filter maintains the estimation accuracy. Therefore,
this paper provides a generic method to alleviate the

computation when dealing with an intractably large data set.
By solving or simplifying adequately the Bellman equation,
this approach can be applied on a large variety of estimation
problems.

In future works, alternative metrics for the cost function
will be investigated. Besides, a resolution of the partial or
complete Bellman equation will also be explored in problems
where future states are partially predictable at any given time.
Moreover, other types of filters (e.g., Unscented Kalman
Filter and Particle Filter) can be tested on more realistic
scenarios.
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