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Abstract— In this study, the bipartite containment control
problem of fractional-order multi-agent systems with nonuni-
form time delays is addressed. An in-depth analysis of the
system stability and bipartite containment control performance
from a delay margin perspective is provided. Theoretically, the
corresponding delay margin (maximum allowable time delay)
over undirected and directed signed networks is obtained in the
presence of nonuniform time delays, respectively. In addition,
numerical relationships between the delay margin and the
control coefficients, fractional order, and topology parameters
are established, thus enabling easy and direct calculation of
the maximum allowable time delay and facilitating distributed
controller design and controller parameter tuning. Finally, some
simulation examples are given to verify the effectiveness of
the proposed bipartite containment controller and the obtained
delay margin.

I. INTRODUCTION

Over the past two decades, distributed cooperative control
of multi-agent systems (MASs) has received much attention
due to its wide applications, such as multi-robots [1], multi-
UAVs [2], smart grid systems [3] and others. Consensus
as the fundamental research topic of distributed cooperative
control has drawn an increasing interest. In particular, the
consensus problem can be divided into average consensus,
leader-following consensus tracking, and containment con-
trol depending on the number of leaders in the network.
Among these cooperative behaviors, containment control of
MASs under multiple leaders has attracted extensive interest
from researchers. A common application of containment
control is to prevent a group of autonomous vehicles from
exploring potentially dangerous regions. Some classic refer-
ences on containment control can be found in [4]–[7].
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Remarkably, the above results of containment control
concentrate on the cooperative control of networked agents.
Nevertheless, the coexistence of competition and cooperative
interactions between agents is realistic in some practical
applications and scenarios, like opinion dynamics of so-
cial networks and multi-robot systems [8], [9]. This also
means that traditional interaction networks are unable to
describe complex relationships between agents. Fortunately,
signed networks are introduced to represent positive weights
as cooperative relationships between agents, and negative
weights as competitive relationships between agents [10],
[11]. Particularly, Altafini [10] designed the classic bipartite
consensus protocol. Inspired by this work, the bipartite
containment control problem was well defined in [12] and
it was demonstrated therein that followers can converge
together at the convex hull that contains the trajectory of each
leader. More important results on the bipartite containment
control of MASs can be found in [13]–[15].

In practical applications, due to the limited speed of signal
transmission over long distances, time delays in informa-
tion exchanges between agents and the presence of state
measurements of agents themselves are often unavoidable.
The existing methods for analyzing the stability conditions
of MASs in the presence of time delays are mainly the
Lyapunov method and the frequency domain method. The
work in [16] investigated the bipartite containment control
problem of MASs with input delay over switching signed
directed typologies. According to the fractional Razumikhin
and Lyapunov method, a practical strategy was suggested
to address those issues caused by time delays. Moreover, a
follower-based observer was designed to achieve bipartite
containment control of MASs with mixed time delays in
[17]. However, usually the Lyapunov-based method can only
prove whether a closed-loop error system is stable or not,
and cannot give an explicit maximum allowable time delay.
In contrast, the frequency domain method in the classic
control theory can provide an explicit upper bound on the
allowable time delay by analyzing the delay margin of the
system, despite that it also has a significant drawback in its
application, i.e., it is only applicable to linear systems.

In addition, most studies on bipartite containment control
focus on integer-order systems. Notably, several physical
processes that occur in the actual world can naturally be
described by fractional-order MASs [18], for example, the
multi-vehicle system in the form of a desert or multiple
individuals moving on nonuniform snow. Until now, there
have been few reported works on MASs with nonuniform
delays and fractional-order dynamics, which encourages us
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to initiate the present study.
According to the above discussion, this paper addresses

the bipartite containment control problem of fractional-order
MASs with nonuniform time delays over signed networks.
The distributed bipartite containment controller is designed
for each follower agent to achieve the convergence to the
(symmetric) convex hull of multiple leaders. The main con-
tributions of this paper are summarized as follows.

1) With the help of the frequency domain method, the
delay margin (maximum allowable time delay) of fractional-
order MASs with nonuniform time delays is obtained, which
is related to the controller parameters, the fractional order,
and the eigenvalues of the Laplacian matrix. Using the
direct delay margin easily facilitates the distributed controller
design and controller parameter tuning.

2) The bipartite containment control convergence condi-
tions of the delayed fractional-order agents in undirected or
directed signed networks are respectively generated. These
conditions are presented simply in the form of inequalities
which are easy to calculate.

The rest parts of this paper are organized as follows. In
Section II, the preliminaries of graph theory and fractional-
order derivatives are introduced. Section III describes the
bipartite containment control problem of fractional-order
MASs over signed networks. Section IV provides the main
results for the distributed bipartite containment control con-
troller and the delay margin of MASs with undirected and
directed topologies, respectively. In Section V, some simu-
lation results are given for validation of the delay margin.
Section VI concludes the whole paper and provides some
future research topics.

II. PRELIMINARIES

In this section, some notations of matrix and vector
are defined. Then the preliminaries of graph theory and
fractional-order derivatives are introduced.

A. Notations

A diagonal matrix is identified by the notation diagni [αi] ,
diag{α1, α2, . . . , αn}, and colni [αi] , [αT1 , α

T
2 , . . . , α

T
n ]T

or coln[α] , [αT , αT , . . . , αT ]Tn defines a column vector.
All one vector 1n is expressed as 1n , coln[1]. In ad-
dition, the identity matrix is defined as In = diagni [1] ,
diag{1, 1, . . . , 1}.

B. Graph theory

Consider the connected signed network topology G includ-
ing n followers indexed as VF = {1, 2, ..., n} and m leaders
indexed as VL = {n + 1, n + 2, ..., n + m} in this paper.
The information exchange relationship among agents can be
represented as the corresponding topology G = {V, E ,A}.
Here V indicates the node set and satisfies V = VF ∪ VL, E
denotes the edge set with the condition (j, i) ∈ E indicating
that there exists information interaction between agent j and
agent i, and A = [aij ]

(n+m)×(n+m) is a weighted adjacency
matrix with aij 6= 0 if (j, i) ∈ E and aij = 0 otherwise.
In addition, if the graph G is an undirected topology, then

A is a symmetric matrix, that is aij = aji. In general,
assume that the leaders in the connected networks have
no neighbour. Hence, the corresponding Laplacian matrix
L ∈ R(n+m)×(n+m) is expressed as L = D − A , where
the degree matrix D = diagn+m

i [di] with the elements
di =

∑n+m
k=1 aik.

Assumption 1: Consider the undirected or directed sub-
graph of the topology G being composed of n followers. For
each of the n followers, there exists at least one leader with
a directed path to this follower.

Based on the relationship between the leaders and the

followers, one has L =

[
LF LL

0m×n 0m×m

]
, where LF ∈

Rn×n and LL ∈ Rn×m.
Assumption 2: The signed graph G is structurally bal-

anced. Moreover, the leaders are cooperative with a group of
followers and the corresponding node set is V1; otherwise,
they are competitive with the other group of followers and
the corresponding node set is V2.

If Assumption 2 holds, then a diagonal matrix of the
structurally balanced signed graph W = diagn+m

i = [wi]
can be formed, where wi = 1 if i ∈ V1, and wi = −1
if i ∈ V2. Thus, the corresponding Laplacian matrix is

L =

[
LF LL

0m×n 0m×m

]
.

Lemma 1 ([19]): Under Assumptions 1 and 2, the matrix
LF is a nonsingular M-matrix. In addition, each row sum of
the matrix −L−1

F LL equals one, that is, −L−1
F LL1m = 1n,

and all entries of this matrix are nonnegative.

C. Fractional-Order Derivatives

In this subsection, we introduce the fractional calculus
theory and present two commonly used symbols. The notable
Euler’s Gamma function is initially described as Γ(q) =∫∞

0
e−ttq−1dt, where the parameter q is an arithmetic value.

Besides, the binomial coefficient of the generalized Newton
formula is Cqk = Γ(q+1)

Γ(k+1)Γ(q−k+1) .
Based on the two definitions above, the widely used

Caputo fractional-order derivative is given below.
Definition 1 ([20]): For q ∈ R, the common q-order

Caputo fractional-order derivative is defined as

C
aD

q
tf(t) =

1

Γ(m− q)

∫ t

a

(t− τ)m−q−1f (m)(τ)dτ,

where a is the Caputo derivatives’ base point and m is the
integer with m− 1 < q ≤ m.

For the fractional-order derivative C0D
q
tf(t) presented with

respect to time t previously, we use Dq
tf(t) in the following

parts for notational simplicity. Then the Laplace transform
of the fractional-order derivative Dq

tf(t) is:
1) when the fractional order 0 < q ≤ 1,

L{Dq
tf(t)} = sqL{f(t)} − sq−1f(0);

2) when the fractional order 1 < q < 2,

L{Dq
tf(t)} = sqL{f(t)} − sq−2ḟ(0)− sq−1f(0).

Definition 2 ([21]): A subset K ⊂ Rn is said to be
convex if (1 − β)x + βy ∈ K for x ∈ K, y ∈ K and
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0 < β < 1. The convex hull of a specified subset S ⊂ Rn
is the intersection of all convex sets that contain S and is
denoted by Co(S). The convex hull Co(X) of a finite subset
X = {x1, x2, ..., xn} ∈ Rn is made up of all vectors of
the form (β1x1 + β2x2 + ... + βnxn) with the coefficients
β1 ≥ 0, β2 ≥ 0, ..., βn ≥ 0 and β1 + β2 + ...+ βn = 1.

III. PROBLEM DESCRIPTION

Consider the single-integrator fractional-order networked
system consisting of n followers and m leaders. The dynam-
ics of each follower agent can be expressed as follows:

Dq
txi(t) = ui(t), i ∈ VF , (1)

where q is the fractional order, xi(t) is the position of the
i-th follower agent, and ui(t) is the i-th agent’s control input.

In addition, the dynamics of the leader agents can be
expressed as Dq

txi(t) = 0, i ∈ VL, where xi(t) denotes
the position of the i-th leader. The above dynamics means
that the leader agents’ position is stationary.

Remark 1: The leaders in MASs are uncontrolled agents
(ui(t), i ∈ VL) who just send messages to the followers. The
primary task is to provide a fully distributed control algo-
rithm for fractional-order followers, which enables bipartite
containment tracking for the leaders.

Definition 3: For single-integrator MASs with fractional-
order dynamics, the bipartite containment control is called
being implemented if the follower agents’ positions asymp-
totically converge to the convex hull created by the leader
agents. In other words, for any initial condition, there holds
that

lim
t→∞

∣∣∣∣xi(t)− wi m+n∑
j=n+1

εijxj(t)

∣∣∣∣ = 0

with wi = ±1, where εij ∈ R, εij ≥ 0 and
∑m+n
j=n+1 εij =

1, i ∈ VF , j ∈ VL.

IV. MAIN RESULTS

A. Containment Control of Fractional-Order MASs Without
Time Delay

In this part, we provide a traditional bipartite containment
control protocol without time delay, and obtain the stability
condition of the closed-loop error system with undirected
topology as well as directed topology, respectively.

On the basis of the work in [12], the containment control
protocol for the fractional-order MASs is designed as

ui(t)=
∑

j∈VF∪VL

|aij |(sgn(aij)xj(t)−xi(t)), i ∈ VF , (2)

where sgn(.) represents the sign function. According to the
equations (2) and (1), there holds that

Dq
txi=

∑
j∈VF∪VL

|aij |(sgn(aij)xj(t)−xi(t)), i ∈ VF ,

Dq
txi=0, i ∈ VL.

(3)

Define the vectors: XF = {x1, x2, ..., xn} and XL =
{xn+1, xn+2, ..., xn+m}. Hence, the compact form of the
closed-loop system is expressed as

Dq
tXF = −LFW1XF − LLW2XL, Dq

tXL = 0, (4)

where W1 = colni=1[wi] and W2 = colni=n+1[wi]. Then the
coordinate transformation Z1 = W1XF + L−1

F LLW2XL is
introduced for the subsequent analysis, where Z1 = colni [z1i]
and its corresponding fractional-order derivative is given by

Dq
tZ1 = −LFZ1. (5)

Remark 2: According to Definition 3 and Lemma 1, the
containment control for MASs can be implemented if the
condition lim

t→∞
|z1i| = 0 holds.

Lemma 2 ([22]): For the above closed-loop system (5),
if the fractional order q satisfies 0 < q < 2θ

π and the
real part of the eigenvalues of the matrix LF is greater
than zero, then lim

t→∞
|Z1(t)| = 0, and meanwhile θ =

min{π − arg{λi(LF )}}, where arg{.} indicates the phase
of the variable, and x’s phase satisfies arg{x} ∈ (−π, π] for
x ∈ C.

In addition, based on Lemma 2, the following two prop-
erties are derived about undirected and directed topologies.

1) If the topology subgraph composed of n followers is
undirected, then for the Laplacian matrix LF , all of its
eigenvalues are positive real number and θi = π. At the
same time, under the condition 0 < q < 1, the bipartite
containment control of MASs is achieved.

2) If the topology subgraph composed of n followers is di-
rected, then for the Laplacian matrix LF , all of its eigen-
values are positive real number and arg{λi(LF )} ∈
[−π/2, π/2]. At the same time, under the condition
0 < q < 2θ

π , the multi-agent containment control is
achieved.

B. Containment Control of Fractional-Order MASs With
Nonuniform Time Delays

In the previous part, a normal containment controller is
presented for fractional-order MASs without time delay.
Based on the above control protocol (2), this subsection
designs a containment controller for fractional-order MASs
under undirected topology with nonuniform delay. Specifi-
cally, the controller for the i-th agent is designed as

ui(t)=
∑

j∈VF∪VL

|aij |(sgn(aij)xj(t−τij)−xi(t−τij)), (6)

where i ∈ VF and τij represents the time delay between
agent j’s acceptance of the state information and agent i’s ac-
quisition and processing of the state information. Therefore,
it is noteworthy that the time delay will appear in two situ-
ations: one situation is in the information interaction among
agents and the other, called as “input delay”, is associated
with the agent’s own state variable in the controller of the
dynamic equation.

In this paper, it is assumed that there are M1 varying
forms of communication delay among the followers and M2
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varying kinds of communication delay between the leaders
and followers, which satisfy M1 ≤ n × (n − 1) and M2 ≤
m × n, respectively. Therefore, all kinds of communication
time delay M satisfy the inequality M ≤M1+M2. Consider
the existence of the communication delay τm and redefine the
topology subgraph Gm. Its corresponding Laplacian matrix
Lm is expressed as

Lm =

[
LFm LLm
0m×n 0m×m

]
. (7)

where LFm ∈ Rn×n and LLm ∈ Rn×m. It is obvious that∑M
m=1 LFm = LF and

∑M
m=1 LLm = LL. Accordingly, the

compact form of the closed-loop system is given by

Dq
tZ1(t) = −

M∑
m=1

LFmZ1(t− τm). (8)

We now give the following main result.
Theorem 1: Consider the fractional-order MASs with

communication time delays and undirected topology. By
adopting the protocol (6), the bipartite containment control
is achieved if all time delays satisfy τm < τ and related
parameters are given by

τ =
π(2− q)

2ω
, ω = (λn)

1
q . (9)

Proof: We use the frequency domain method to ana-
lyze the stability of the fractional-order closed-loop sys-
tem (8). Assume that the Laplace transform of Z1(t) is
Z1(s) and Z1(s) = GTτ Z1(0), where G−1

τ (s) = sqIn +∑M
m=1 Lme−τms.
Let det[Gτ (s)] denote the characteristic polynomial of

Gτ (s), and the root of the polynomial is called the charac-
teristic root of the closed-loop system. Based on the above
analysis, if there is no time delay in the fractional-order
system, then the corresponding nonzero characteristic root
has negative real parts. If there exists a time delay in the
system, then the characteristic roots of the system will also
change with the increase of τm. Once the characteristic
roots change from the negative half-plane to the positive
half-plane, the fractional-order system will become unstable.
Therefore, the magnitude of the nonzero characteristic roots
determines the delay margin corresponding to the imaginary
axis.

The imaginary characteristic roots of the closed-loop sys-
tem with time delay is expressed as s = −jω 6= 0, and the
corresponding eigenvector is u = u1⊗ [1, 0]

T
+u2⊗ [0, 1]

T .
And the vector norm satisfies ‖u‖ = 1, u1, u2 ∈ Cn. Then[

(−jω)qIn +

M∑
m=1

LFme−jωτm
]
u = 0. (10)

It is universally known that nonzero characteristic roots
usually appear in a complex conjugate form, while we just
focus on the situation that ω is greater than zero. Then
multiplying uH (also called the conjugate transpose of u)
onto the left-hand side of (10), we get uH

[
(−jω)qIn +

∑M
m=1 LFme−jωτm

]
u = 0, which leads to

M∑
m=1

uHLFmu
uHu

e−jωτm=−u(−jω)q = −ωq(−j)q

=−ωq
{

cos
(−π

2

)
+j sin

(−π
2

)}
=−ωqej(−

πq
2 ) = ωqej

π(2�q)
2 . (11)

Accordingly, we can obtain
∑M
m=1 αme

jωτm =

ωqej
π(2�q)

2 , where αm = uHLFmu
uHu

. Thus, we have∑M
m=1 αme

jωτm = ωqej
π(2�q)

2 = F(ω). Taking the
modulus operation on both sides of the above equation
produces

M(ω) = ‖F(ω)‖ =

∥∥∥∥∥
M∑
m=1

αme
jωτm

∥∥∥∥∥ ≤
∥∥∥∥∥
M∑
m=1

αm

∥∥∥∥∥
=
uHLFu
uHu

≤ λn. (12)

If the condition (9) is satisfied, then the inequality
M(ω) ≤ λn holds if and only if ω ≤ ω. In other words,
the above result (12) holds. After that, we can obtain the
angle of the complex F(ω) as θ(ω) = arg[F(ω)] = π(2−q)

2 ,
where θ(ω) ∈ (0, π).

Define τ(ω) = θ(ω)
ω = π(2−q)

2ω . The first-order derivative
of τ(ω) with respect to ω is D1(ω) = dτ(ω)

dω = −π(2−q)
2ω2 ≤ 0.

From these results, we can attain that the function τ(ω) is
descending about ω, where ω ≤ ω and

τ = τ(ω) ≤ τ(ω). (13)

It should be noted that the aforementioned conclusion
is predicated on the assumption that the system has a
characteristic root on the imaginary axis. Clearly, if all the
time-delays τm satisfy τm < τ , then one has

τ(ω) =
θ(ω)

ω
=

arg(
∑M
m=1 αme

jωτm)

ω

≤ max{ωτm}
ω

<
ωτ

ω
= τ . (14)

However, the equation (14) is contrary to the result of
the equation (13), that is, as long as all time-delays τm
satisfy τm < τ , the characteristic roots of the fractional-order
system cannot cross the imaginary axis to the right half-
plane. Accordingly, the fractional-order closed-loop system
(8) with time delays can keep the stability and achieve
containment control. Besides, while τm > τ , the fractional-
order closed-loop system will have characteristic roots that
are in the right half-plane. So in virtue of the stability
principle, the system will be unstable and cannot achieve
containment control. On the other hand, if τm = τ , then
there exists an imaginary characteristic root jω, and its
corresponding time-delay is called the critical time-delay. To
sum up, the proof of Theorem 1 is complete.

Note that Theorem 1 accomplishes the design of the
bipartite containment control protocol for fractional-order
MASs with nonuniform delays over undirected signed net-
works. If the topology is directed, then there exists τij 6=
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τji. Therefore, in the following we consider the bipartite
containment control over directed signed networks.

Theorem 2: Consider the fractional-order MASs with
symmetric nonuniform multiple time delays and directed
signed graph. By adopting the control protocol (6), the
bipartite containment control is achieved if all the time delays
satisfy τm < τ and the related parameters are given by

τ = min
‖λi‖

{ π(2−q)
2 − arg(λi)

ωi

}
, ωi = ‖λi‖

1
q , (15)

where q ∈ (0, 2θ
π ), and θ = min{π − arg(λi)}.

Proof: The subsequent analysis is similar to that of The-
orem 1. We define the imaginary characteristic roots of the
closed-loop system with time delays as s = −jω 6= 0, and
the corresponding eigenvector is u = u1 ⊗ [1, 0]

T
+ u2 ⊗

[0, 1]
T . Then we can get

Bγ =

M∑
m=1

αme
jωτm = −(−jω)q = (−1)(−j)q(ω)q

= ejπe−
πq
2 (ω)q = ωqej

2π�πq
2 = ωqej

π(2�q)
2 . (16)

Take ω as a function of ‖Bγ‖. Through the modulus op-
eration on both sides, we can obtain ω(‖Bγ‖) = ‖Bγ‖

1
q .

Clearly, the function ω(‖Bγ‖) is incremental.
Considering the argument amplitude on both sides of (16),

respectively, we can obtain arg(Bγ) = π(2−q)
2 . Based on the

definition of Bγ , one gets that arg(Bγ) ≤ arg
(∑M

m=1 αm
)
+

max(ωτm) and

max(ωτm) ≥ π(2− q)
2

− arg

( M∑
m=1

γm

)
. (17)

Notice that
M∑
m=1

αm =

M∑
m=1

(
uHLFmu
uHu

)
=
uHLFu
uHu

,

and each possible value of
∑M
m=1 αm ought to be a nonzero

eigenvalue of the matrix LF , that is,
∑M
m=1 αm = λi, i ∈

VF . Hence, we can get that ‖Bγ‖≤ ‖λi‖ and ω(‖Bγ‖) ≤
ω(‖λi‖) = ωi = ‖λi‖

1
q . If all time delays satisfy τm < τ ,

then the following condition holds:

max(ωτm) < ωiτ = min
‖λi‖

{ π(2−q)
2 − arg(λi)

ωi

}
ωi

≤ π(2− q)
2

− arg

( M∑
m=1

αm

)
. (18)

But the equation (18) is contrary to the result of the equation
(17). Namely, as long as all time delays satisfy τm < τ , the
characteristic roots of the fractional-order system under di-
rected graph cannot cross the imaginary axis to the right half-
plane. Accordingly, the fractional-order closed-loop system
(8) with time delays can keep the stability and achieve con-
tainment control. Besides, while τm > τ , the fractional-order
closed-loop system will have characteristic roots which are
in the right half-plane. In virtue of the stability principle, the
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Fig. 1. Directed topology among agents.
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Fig. 2. Trajectories of agents (τm = 0).

system will be unstable and the followers cannot converge
into the convex hull formed by the leaders. On the other hand,
if τm = τ , then there exists an imaginary characteristic root
jω, and τ is also the delay margin. Therefore, the proof of
Theorem 2 is complete.

V. NUMERICAL SIMULATIONS

In this section, some simulation results are given to verify
the effectiveness of the proposed delay margin for bipartite
containment control of fractional-order MASs.

The directed topology among the agents is shown in Fig. 1.
The node set of follower agents is VF = {1, 2, 3, 4} and
the node set of leader agents is VL = {5, 6, 7, 8}. In Fig. 1,
the black connecting lines represent cooperative relationships
and are assigned a weight of 1, while the red connecting lines
represent competitive relationships and are assigned a weight
of −1. According to Fig. 1, we can get that followers 1 and
2 belong to the same group, while followers 3 and 4 are
located in another group. In addition, there exist cooperative
relationships among the leaders and followers 1 and 2. The
fractional order of the agents is chosen as q = 0.8.

In the simulation, we consider the bipartite containment
control problem in two dimensions (xy-coordinates) and
define the initial values of the states of the leader are
coli[xix] = [2, 4, 2, 4]T , coli[xiy] = [2, 4, 4, 2]T , i ∈ VL
and the initial values of the states of the followers are
coli[xix] = [−3, 4, 5, 2]T , coli[xiy] = [3,−4,−5,−2]T , i ∈
VF . According to the equation (15), the delay margin of the
directed topology is τ = 0.3707s. Three cases are set up
to compare the bipartite containment control performance of
MASs with different time delays, namely, τm = 0, τm < τ
and τm > τ . The simulation results are exhibited in Fig. 2–4.
It can be seen that when all time delays are smaller than the
delay margin, the MAS can achieve bipartite containment
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Fig. 4. Trajectories of agents (τm > τ ).

control. That is, a group of the followers converge into the
convex hull formed by the leaders, while the other group of
the followers move into in the symmetric convex hull formed
by the leaders. However, when all time delays are larger than
the delay margin, the state of the agents will diverge and no
collaborative behavior can be achieved.

VI. CONCLUSION

This paper has investigated the bipartite containment
control problem of fractional-order MASs with nonuniform
time delays. The cooperation and competition interactions
among agents are described by signed networks. We have
first designed the bipartite containment controller for each
follower agent and then obtained the delay margin of the
closed-loop system over undirected/directed topology based
on the frequency domain method, respectively. The delay
margin is related to the controller parameters, the fractional
order, and the eigenvalue of the Laplacian matrix of the
topology. In turn, it is easy to obtain the maximum allowable
time delay for the MAS and facilitate tuning the distributed
bipartite containment controller parameters. In the future
work, we will extend the control structure and analysis
method to solve the bipartite containment control problem
of double-integrator and multiple-integrator fractional-order
MASs, respectively. We will also try to obtain the corre-
sponding delay margin.
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