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Abstract—An implicit Euler discretization scheme is given for
a linear system driven by the prescribed-time stabilizing control
algorithm from [1] in the presence of matched disturbances and
measurement noise. The discretized version preserves all main
properties of the continuous-time counterpart, and can be re-
cursively applied on infinite horizon rather than confined to the
prescribed-time interval. In addition, the discretized estimation
error is robustly stable with respect to the measurement noise
with a linear gain. The efficiency of the suggested discretization
is illustrated through numeric experiments.

I. INTRODUCTION

Robust stabilization of dynamical systems using noisy
state measurements and in the presence of external bounded
disturbances is a well-studied problem, which has many
popular and well established solutions based on linearization,
passivation, backstepping, sliding mode and other approaches
[2]–[9]. There are different performance criteria to be im-
posed on the closed-loop system by the feedback, with
varying importance dependent on applications, which is a
reason for existence of many design methods. The main per-
formance characteristics include (but not limited to): the time
of convergence of the state to the origin, asymptotic precision
in the noise-free case (the steady-state error), measurement
noise sensitivity and the implementation complexity.

A popular control solution is based on the concept of
prescribed-time convergence [1], [10]–[14]. In such a case,
a linear feedback with time-varying gains is designed in
a way to guarantee that for any initial conditions, in the
noise-free scenario, the estimation error in the closed-loop
system vanishes by the specified time instant, and this zero-
settling property of the error is independent in the matched
perturbations (i.e., exact uniform stabilization in a prescribed
time). However, there is a price to pay for these advantageous
performances: 1) noise dependence of stabilization error
is complicated and can be properly handled under strong
restrictions on the perturbations only [13], 2) the definition of
control law after the settling time requires a special attention,
and the error behavior after the convergence is usually not
considered (since the control gains take infinite values at this
instant of time, then a commutation to another control law is
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needed [15], [16]). All these drawbacks, which are unusual
for other control frameworks, complicate the applicability
of the prescribed-time converging stabilizers (frequently in
applications, the control is commuted to another solution
before the settling instant).

Inspired by [17], [18], where implicit discretization of a
hyperexponentially (asymptotically) converging differentiator
and controller was studied, in this note we are going to
analyze an implicit discretization scheme for the prescribed-
time controller. Our contribution is in establishing that such
a discretization preserves the uniform finite-time convergence
of the continuous-time counterpart, while being robust with
respect to the measurement noise and avoiding the infinite
gain implementation problem. Moreover, the resulting con-
trol law proves to be well-posed on the infinite horizon. Its
efficacy is illustrated by simulations, which demonstrate that
the obtained discrete-time linear time-varying feedback has
very advantageous features. Note that for linear systems, the
explicit and implicit discretization schemes have often similar
computational complexity, since the latter ones can be easily
reduced to en explicit form.

The paper is organized as follows. Brief preliminaries are
given in Section II. The problem statement is introduced
in Section III. The properties of the considered control in
continuous time are recalled in Section IV. The properties
of its implicit Euler discretization are investigated in Section
V. The results of numeric simulation of the control algorithm
are shown in Section VI. The proofs are omitted due to space
limitations.

Notation

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real
numbers; Z is the set of integer numbers, Z+ = Z∩R+.

• | · | denotes the absolute value in R, ∥ · ∥ is used for the
Euclidean norm on Rn.

• For a (Lebesgue) measurable function d : R+ → Rm

define the norm ∥d∥∞ = ess supt∈R+
∥d(t)∥, and the

set of d with the property ∥d∥∞ < +∞ we further
denote as Lm

∞ (the set of essentially bounded measurable
functions).

• For a sequence dk ∈ Rm with k ∈ Z+ define its norm
by |d|∞ = supk∈Z+

∥dk∥ and the set of d with |d|∞ <
+∞ we denote by lm∞.

• A continuous function α : R+ → R+ belongs to the
class K if α(0) = 0 and it is strictly increasing. The
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function α : R+ → R+ belongs to the class K∞ if
α ∈ K and it is increasing to infinity.

• A finite series of integers 1, 2, ..., n is denoted by 1, n,
and {1, n} = {1, 2, ..., n}.

• Denote the identity matrix of dimension n × n by In
and the matrix of zeros of dimension m× n by 0m×n.

• diag{g} represents a diagonal matrix of dimension n×n
with a vector g ∈ Rn on the main diagonal.

• The relation P ≺ 0 (P ⪰ 0) means that a symmetric
matrix P ∈ Rn×n is negative (positive semi-) definite,
λmin(P ) denotes the minimal eigenvalue of such a
matrix P .

• Denote e = exp(1).

II. PRELIMINARIES

The standard stability notions are used throughout and
their definitions can be found in [3].

A. Uniform prescribed-time stability

Consider a non-autonomous differential equation:

dx(t)

dt
= f(t, x(t), d(t)), t ≥ t0, t0 ∈ R+, (1)

where x(t) ∈ Rn is the state vector, d(t) ∈ Rm is the
vector of external disturbances and d ∈ Lm

∞; f : R+ ×Rn ×
Rm → Rn is a continuous function with respect to x, d and
piecewise continuous with respect to t, f(t, 0, 0) = 0 for all
t ∈ R+. A solution of the system (1) for an initial condition
x0 ∈ Rn at time instant t0 ∈ R+ and some d ∈ Lm

∞ is
denoted by X(t, t0, x0, d), and we assume that f ensures
existence and uniqueness of solutions X(t, t0, x0, d) at least
locally in forward time.

The following definition is inspired by [11], [13], and it is
specified for a control-free system (1) while also presuming
that the settling-time instant has been assigned at the designer
will.

Definition 1. Given T > 0 and a set D ⊂ Lm
∞, the system (1)

is called uniformly prescribed-time stable (T -uPTS) if there
exist σ1, σ2 ∈ K such that for all x0 ∈ Rn \ {0}, t0 ∈ R+

and d ∈ D:

∥X(t, t0, x0, d)∥ ≤ max{σ1(∥x0∥), σ2(∥d∥∞)},
0 < ∥X(t, t0, x0, 0)∥

for all t ∈ [t0, t0 + T ), and

lim
t→t0+T

∥X(t, t0, x0, d)∥ = 0.

It is important to highlight that the boundedness of solu-
tions is claimed on a finite interval [t0, t0+T ) only, and the
solutions of (1) may be undefined for t > T . Hence, a uPTS
system may not demonstrate a Lyapunov stable behavior, and
it is a variant of short-time stability (frequently also called
finite-time one) as in [19]. In comparison with the concept of
fixed-time stability [20], an important feature of a prescribed-
time stable system is that its settling time is the same for all

initial conditions out of the origin in the disturbance-free
setting. In this definition the uniformity of convergence is
understood in double meaning: as independence in both the
initial time t0 and in the input d ∈ D. Despite it is assumed
that D ⊂ Lm

∞, any other admissible class of inputs can be
considered.

A simple scalar example of a uPTS system (1) for t0 = 0
is [1]:

ẋ(t) = − T

T − t
x(t) + d(t), t ∈ [0, T ), T > 0,

with x(t), d(t) ∈ R, whose solutions admit an estimate:

|x(t)| ≤
(
T − t

T

)T

|x(0)|+ ι(t)∥d∥∞, t ∈ [0, T )

for any x(0) ∈ R and d ∈ L1
∞, where

ι(t) =

{
T (T−t

T −(T−t
T )

T
)

T−1 if T ̸= 1,

(1− t) ln 1
1−t if T = 1.

Then by Definition 1, it follows that σ1(s) = s and σ2(s) =
ιmaxs with

ιmax =

{
T (1−T )−1

−T (1−T )−T

1−T−1 if T ̸= 1,

e−1 if T = 1.

B. Auxiliary property

The following block matrix inversion formulas are used in
the sequel [21]:[

A B
C D

]−1

=

[
A−1 +A−1BS1CA

−1 −A−1BS1

−S1CA
−1 S1

]
=

[
S2 −S2BD

−1

−D−1CS2 D−1 +D−1CS2BD
−1

]
,

S1 = (D − CA−1B)−1, S2 = (A−BD−1C)−1,

where A, B, C and D are matrices of appropriate dimensions
(A, D, S1 and S2 should be nonsingular).

C. Useful linear matrix inequalities

Define

A =

[
0n−1×1 In−1

0 01×n−1

]
, b =

[
0n−1×1

1

]
,

c =

[
1

0n−1×1

]⊤
, H = diag{[0 1 . . . n− 1]⊤}.

Lemma 1. [22] For any a1 > 0 there exist constants d0 > 0,
d1 ≥ 0, symmetric matrices Po, Pc ∈ Rn×n and vectors
Ko,Kc ∈ Rn such that

(A+ bK⊤
c )⊤Pc + Pc(A+ bK⊤

c ) ≤ −d0Pc,

(A+Koc)
⊤Po + Po(A+Koc) ≤ −d0Po,

Pc ≻ 0, −a1Pc ≤ PcH +HPc ≤ d1Pc,

Po ≻ 0, −a1Po ≤ PoH +HPo ≤ d1Po.
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III. PROBLEM STATEMENT

Consider a single-input single-output linear system in the
Brunovsky canonical form with a matched disturbance and
measurement noise:

ẋ(t) = Ax(t) + b(u(t) + d(t)), y(t) = x(t) + v(t), (2)

where x(t) ∈ Rn is the state, u(t) ∈ R is the control to be
designed; d(t) ∈ R is the disturbance, d ∈ L1

∞; y(t), v(t) ∈
Rn are the measured output and noise, v ∈ Ln

∞; A ∈ Rn×n

and b ∈ Rn are in the canonical form as above.

Problem. Given T > 0, it is required to design a feedback
u(t) = u(t, y(t)), which for the closed-loop system provides
T -uPTS property for d ∈ D = L1

∞ while ∥v∥∞ = 0, and
additionally guarantees a bounded state behavior for v ∈ L1

∞
after a proper discretization.

In continuous time, this problem has been studied using
different approaches in [1], [10], [13], [23], whereas the
subsequent discrete-time extension is the main contribution
of the present work.

IV. STABILIZATION IN CONTINUOUS TIME

For later use, let us recall a possible control law solving
the stated uPTS problem in the closed loop for v ≡ 0 [1],
[12], [23]:

u(t) = −KD(t)y(t), (3)

D(t) = diag{[ϱn(t) ϱn−1(t) . . . ϱ(t)]⊤},

where K = [K1 . . .Kn] ∈ R1×n is the control gain that
will be selected later, ϱ(t) = T

T−t is a strictly growing and
unbounded function of time for t ∈ [0, T ).

Remark 1. Introducing mild modifications in the forthcoming
analysis, any continuous strictly growing and unbounded (for
t → T ) function of time ϱ : [0, T ) → R+ with ϱ(0) = 1,
having also unbounded integral, can be used in (3) (see also
[24, Lemma 4.2]).

Remark 2. As it is common for the prescribed-time converg-
ing systems [14], in the presence of escaping to infinity at
t = T gain ϱ(t), the right-hand side of (3) is defined on a fi-
nite interval of time [0, T ). Due to this, for t ≥ T , frequently,
another stabilization or estimation algorithm is applied, since
D(t) is not yet defined behind T . Such ax extension is natural
due to well-posedness of the system on [0, T ), and next
for small regulation errors other solutions can be used [15].
However, such a switching does not take into account the
advantageous uniformity of convergence in the disturbance
magnitude feasible with prescribed-time controllers, which
may be difficult to ensure through other methods. In this
work, we will later consider another approach in the discrete-
time setting by replacing t ∈ R+ with mod (t, T ) ∈ [0, T ).
In such a case ϱ (mod(t, T )) periodically ranges from 1 till
+∞ while t passes from iT to (i + 1)T , correspondingly,
for any i ∈ Z+.

Define the dynamics of the closed-loop system (2), (3):

ẋ(t) = (A− bKD(t))x(t) + bd(t)− bKD(t)v(t)

and introduce for future reference auxiliary variables:

Γ(t) = ϱ−n(t)D(t)

= diag{[1 ϱ−1(t) . . . ϱ1−n(t)]⊤}

and

ι̃i(t) = T

{
ϱ−2(i−1)(t)−ϱ−T (t)

T−2(i−1) if T ̸= 2(i− 1),

ϱ−T (t) ln ϱ(t) if T = 2(i− 1)

for i = 1, n+ 1. Then, the result of [1], [23] can be repeated
for the considered uPTS scenario:

Lemma 2. Let P = P⊤ ∈ Rn×n, U ∈ Rn, γ1 > 0 and γ2 >
0 be such that the linear matrix inequalities are verified:

P−1 ≻ 0,

 Q11 b −b
b⊤ −γ1 0
−b⊤ 0 −γ2

 ⪯ 0,

Q11 = P−1

(
A− 1

T
H

)⊤

+

(
A− 1

T
H

)
P−1

−bU − U⊤b⊤ + P−1.

Then for K = UP and any x(0) ∈ Rn, d ∈ L1
∞, v ∈ Ln

∞ in
(2), (3):

√
λmin(P )


|x1(t)|
|x2(t)|

...
|xn(t)|

 ≤


1
ϱ(t)

...
ϱn−1(t)


×(ϱ−T/2(t)

√
x(0)⊤Px(0) +

√
γ1ι̃n+1(t)∥d∥∞

+
√
nγ2∥v∥∞

n∑
i=1

|Ki|
√
ι̃i(t))

for all t ∈ [0, T ).

The linear matrix inequalities formulated in Lemma 2 are
feasible due to the result of Lemma 1.

Theorem 1. Under conditions of Lemma 2, if T > 2n − 2
and ∥v∥∞ = 0, then (2), (3) is T -uPTS for d ∈ L1

∞.

The result of this theorem means that (3) is a prescribed-
time stabilizer, and the class of disturbances d ∈ L1

∞, for
which the uniformity of the convergence is kept, can be
enlarged by ones satisfying the constraint

lim
t→T

d(t)ϱn−1(t)
√
ι̃n+1(t) = 0.

Remark 3. Note that any arbitrary time of convergence T
can be assigned by substituting κt → t in ϱ for any κ >
1. Moreover, this technical constraint disappears after the
discretization proposed in the next section.
Remark 4. The upper bound on the transients of (2), (3)
calculated in Lemma 2 implies that the gain of |xi(t)| in
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v(t) is proportional to ϱi−1(t) for i ∈ 1, n, hence, it becomes
infinite at t = T for i > 1. It is a serious drawback for a
non-vanishing noise v often met in practical implementation.
Frequently, to avoid this issue, the precision is sacrificed by
stopping the growth of controller gains slightly before the
prescribed time instant T (it actually implies that the system
looses the prescribed-time convergence quality).

Let us investigate what happens after discretization of (2),
(3).

V. DISCRETIZATION OF (2), (3)

Note that (2), (3) is modeled by a linear time-varying
system with external inputs d(t) and v(t). Since the time-
varying gain D(t) is strictly growing to infinity, the explicit
Euler discretization cannot be used for all t ∈ [0, T ] (the
resulted discrete-time dynamics will be unstable for any
sampling rate with the growth of ϱ(t)), however, the implicit
one can be effectively applied [25]. Let h > 0 be constant
discretization step, denote by tk = hk for k ∈ Z+ the
discretization time instants, and slightly loosing generality
assume that there exists N ∈ Z+ such that T = Nh, then
application of the implicit Euler discretization method to (2),
(3) gives for k ∈ {0, N − 1}:

ξk+1 = F−1(tk+1) (ξk + hbdk+1 + L(tk+1)vk+1) , (4)
F (t) = In − h (A− bKD(t)) , L(t) = −hbKD(t),

where ξk ∈ Rn is an approximation of xk = x(tk) (i.e.,
ξk → xk as h → 0), vk = v(tk) and dk = d(tk). For
the discrete-time part we assume that vk and dk take finite
values with bounded norms as before, i.e., in this section
these sequences d ∈ L1

∞ and v ∈ Ln
∞.

In order to calculate the expression of F−1(t) and to
further analyze its properties, let us use the first block matrix
inversion formula given in the preliminaries. To this end,
represent this matrix as follows

F (t) =

[
A B
C(t) D(t)

]
,

where

A = In−1 − h

[
0n−2×1 In−2

0 01×n−2

]
, B =

[
0n−2×1

−h

]
,

C(t) = h
[
K1ϱ

n(t) . . .Kn−1ϱ
2(t)

]
, D(t) = 1 + hKnϱ(t),

then

F−1(t) =
W (t)

O(t)
,

O(t) = D(t)− C(t)A−1B = 1 +

n∑
i=1

Kih
n−i+1ϱn−i+1(t),

W (t) =

[
A−1(O(t)In−1 + BC(t)A−1) −A−1B

−C(t)A−1 1

]
.

Moreover, the direct computations show that

A−1 =


1 h · · · hn−2

0 1
. . .

...
...

. . . . . . h
0 · · · 0 1

 , A−1B = −


hn−1

hn−2

...
h

 ,
C(t)A−1 =

[(
C(t)A−1

)
1
. . .

(
C(t)A−1

)
n−1

]
,

where

(
C(t)A−1

)
j
=

j∑
i=1

Kih
j−i+1ϱn−i+1(t), j = 1, . . . , n− 1.

As we can conclude performing these computations, the
discrete state transition matrix F−1(t) is nonsingular (since
O(t) > 0 for all t ≥ 0 due to Ki > 0, i = 1, n
for a stabilizing control gain K) and elementwise bounded
for all t ≥ 0 (since O(t) and C(t)A−1 are polynomial
functions of ϱ(t) of order n, and O(t) appears as the common
denominator of F−1(t)). Moreover,

lim
t→T

F−1(t) = −


0 0 · · · 0

h−1 0
. . .

...
...

. . . . . . 0
h1−n · · · h−1 0

 ,
which implies that, after a finite time, the own dynamics of
(4) becomes a static linear system with a nilpotent matrix of
index n. The measurement noise v gain matrix

F−1(t)L(t) =


hn

...
h2

h

KD(t)

O(t)

is also elementwise bounded with

lim
t→T

F−1(t)L(t) =


1 0 · · · 0

h−1 0
. . .

...
...

. . . . . . 0
h1−n 0 · · · 0

 ,
which evaluates the terminal noise sensitivity (only the first
component of v affects the system dynamics at the end of the
time interval). And, obviously, the effect of the disturbance
d is still annihilated by the control with

hF−1(t)b =
1

O(t)

 hn

...
h

 .
To investigate stability and the rate of convergence in

(4), we will consider first a finite interval of time with
k ∈ {0, N − 2}, and next possible extensions for k ∈ Z+.
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A. Analysis for k ∈ {0, N − 2}
Let us define a time-varying Lyapunov function candidate:

Vk = ξ⊤k Πkξk, Πk = Γ(tk+1)PΓ(tk+1), ∀k ∈ {0, N − 2},

where P = P⊤ ≻ 0 is as in Lemma 2 (more precise
requirements will be defined below). Note that for k = N−1,
by definition tk+1 = T , hence, Γ(T ) = diag{[1 0 . . . 0]⊤}
and Γ(T )PΓ(T ) is a singular matrix, then such a choice
of Πk is admissible for k ∈ {0, N − 2} only (it also
explains our division of the stability analysis on two cases:
for k ≤ N − 2 and k = N − 1).

The following result can be formulated:

Theorem 2. Let for some ϕ > 0, ψ > 0 and σ > 0 there
exist P = P⊤ ∈ Rn×n, K ∈ R1×n such that the matrix
inequalities are verified:

P ≻ 0, (A− bK)P−1 + P−1 (A− bK)
⊤ ⪯ 0,

HP−1 + P−1H ⪰ 0,

(A− bK)P−1 (A− bK)
⊤ − ψ−1P−1

−ϕ−1bKK⊤b⊤ − σ−1bb⊤ ⪰ 0.

Then for any ξ0 ∈ Rn, v ∈ Ln
∞ and d ∈ L1

∞ in (4):

∥ξk∥2 ≤ ϱ2(n−1)(tk)

(
ψ

h2

)k
λmax(P )

λmin(P )
∥ξ0∥2

k−1∏
i=0

ϱ−2(ti+1)

+
ϱ2(n−1)(tk)

λmin(P )

k−1∑
i=0

(
ψ

h2

)k−1−i

[ϕ|v|2∞
n∑

l=1

ϱ2(1−l)(ti+1)

+σϱ−2n(ti+1)|d|2∞]

k−1∏
j=i+1

ϱ−2(tj+1)

for all k ∈ {0, N − 2}.

The feasibility of the imposed linear matrix inequalities
again follows Lemma 1.

As we can see from the obtained results, the convergence
in the initial error is similar to prescribed-time one for t ∈
[0, T ), and the dependence in d becomes infinitesimal at k =
N−2, while the noise gain admits a static linear upper bound.

B. Analysis for k ≥ N − 1

For k = N − 1, tk+1 = T then all eigenvalues of
the matrix F−1(T ) are zero, hence, there is P̄ = P̄⊤ ≻
0 such that the Lyapunov equation reads the inequality
F−⊤(T )P̄F−1(T ) ≺ βP̄ for β ∈ [0, 1). If we would like
to extend the analysis to k > N − 1 we need to introduce a
definition of F−1(t) and L(t) in (4) for t > T . A possible
approach is just to take

F−1(t) = F−1(T ), L(t) = L(T ), ∀t > T.

In such a case let us modify our time-varying Lyapunov
function Vk = e⊤k Πkek as follows:

Πk =

{
Γ(tk+1)PΓ(tk+1) if k ∈ {0, N − 2}
P̄ if k ≥ N − 1

,

then it has been already proven an accelerated convergence
of the state for k ∈ {0, N − 2} in Theorem 2, while for k ≥
N − 1 we get the error dynamics (note that F−1(T )b = 0)

ξk+1 = F−1(T )ξk + F−1(T )L(T )vk+1

= F−1(T )ξk +


1
h−1

...
h1−n

 v1,k+1,

which is independent in dk+1 and all vi,k+1 for i = 2, n.
Moreover, in the noise-free case ξN+n−1 = 0, and we
recover the prescribed-time convergence in n steps after T .
This behavior can be interpreted as continuation for t ≥ T of
the system trajectories in the noise-free setting by considering
zero control input.

Another approach is to recursively apply the control (3)
always staying onto the interval k ∈ {0, N − 2} for the
values of matrices F−1 and L:

x̂k+1 = F−1(t̃k+1)
(
ξk + hbdk+1 + L(t̃k+1)vk+1

)
, (5)

t̃k+1 = mod (tk+1, T )

for all k ∈ Z+. Then, the dependence on initial conditions
is eliminated for tk ≤ T , and for tk > T such a regulator
compensates the influence of any bounded disturbances d and
filters the noise v following the advantageous performance
evaluated in Theorem 2.

Remark 5. Recalling Remark 2, note that in the continuous-
time noise-free case, a similar modification can be applied
to (3) extending its application to all t ≥ 0, but in the
presence of an arbitrary bounded noise v the state x may
become infinite while mod (t, T ) → T . Moreover, definition
of solutions and analysis of well-posedness for t ≥ 0 in a
noise-free scenario is a subject of a separate research. In the
discrete-time setting, (5) is naturally well-posed since F−1

and L are continuous functions on the entire segment [0, T ).

Let us illustrate the efficiency of the proposed iterative
scheme in simulations.

VI. SIMULATIONS

For simulations, let us take n = 2 and

v(t) =

[
sin(2t) + rnd(1)
cos(πt) + rnd(1)

]
, d(t) = −rnd(1),

where rnd(1) generates a uniformly distributed in the interval
[0, 1] random number. For T = 3 > 2n− 2,

K = [1 1]

and the initial conditions x(0) = [50 50]⊤, the results of
simulations are presented in figures 1 and 2 for h = 0.1 and
h = 0.01, respectively. On the plots, the norm of the state
vector is plotted for three scenarios: 1) green dash line for
v ≡ 0 and d ≡ 0; 2) blue dot line for v ≡ 0 and d as above;
3) red solid line corresponds to the results with the noise
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Figure 1. The state norm versus time t, h = 0.1

Figure 2. The state norm versus time t, h = 0.01

and disturbance. As we can conclude from these results, in
the absence of noise and disturbance the state norm decays
till a vicinity of zero at the end of the interval [0, T ) (the
size of the vicinity depends on h), and further continues to
converge to the origin (the behavior for t ≥ 9 is not shown
since it is out the scale). Moreover, the convergence rate is
faster than exponential. In the noise-free case the influence
of the disturbance is compensated at the end of each interval
[(i − 1)T, iT ) with i = 1, 5, but later it is relaxed at the
beginning of the next interval when the gains are resetted.
In the presence of noises the behavior is similar, but more
excited (note that noise has rather big amplitude with random
and harmonic components). Recall that application of the
explicit Euler discretization method to this example results
in unbounded trajectories.

VII. CONCLUSION

A new simple discretization scheme for the prescribed time
stabilizing control from [1], [23] is proposed, which guaran-
tees an accelerated rate of convergence of the estimation error
in discrete time, while remaining prescribed-time exact in
the noise-free case. It has also good robustness with respect
to the measurement noises. The tuning rules are formulated
using feasible linear matrix inequalities. Development to the
sampled-and-hold control implementation or extension to
the MIMO case can be considered as directions for future
research.
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