
On the Calculation of the Equilibrium Points
of a Nonlinear System via Exact Quadratization

Francesco Carravetta

Abstract— We show that, for quadratizable dynamic non-
linear systems, all the equilibrium points satisfy an aug-
mented system of nonlinear equations obtained by applying
exact quadratization to a suitably modified dynamic system.
For autonomous polynomial dynamic systems (i.e. with no
input) this method can be viewed as a general method of
solving systems of polynomial equations, which has a lower
computational complexity with respect to the classical one
consisting of the Buchberger’s algorithm (that searches for a
Groebner basis) followed by variable elimination. As a matter,
we show that the augmented system of polynomials obtained
by quadratization is always a Groebner basis for the ideal
associated to the originary problem. This allows skipping the
computationally heavy Buchberger’s algorithm, and applying
directly elimination theory in the solution-searching algorithm.

I. INTRODUCTION

Let us consider a nonlinear system:

ẋ = f(x, u), f ∈ Fnn+p, n, p ∈ IN (1)

where Fnn+p is a set of <n-valued functions, defined each
on some open domain Df ⊂ <n+p (which depends of
f in general), and such that existence of a solution t 7→
(x(t), u(t)) passing through any point (x̄, ū) ∈ Df is assured
for any t in an interval I ⊂ < around the origin, as well
as unicity of the map t 7→ x(t) for any map t 7→ u(t) in
some subset of functions u : I → <p, namely Up, such that
(x(I), u(I)) ⊂ Df . We can, for instance, consider the set

Cnn+p = Cn+p×
. . .×Cn+p (n times), where Cn+p is the set of

all real functions f : Df → < differentiable on Df , and for
Up = Cp1 , with 0 ∈ Dφ ⊂ < for any φ ∈ Up. Then, of course,
we have Cnn+p ⊂ Fnn+p. The set of all equilibrium points
of system (1), and the corrisponding inputs u (necessarily
constant in time) is the set of all real solutions of the system
of equations:

f(x, u) = 0. (2)

By defining x = (x, u), that is: xi = xi, for i = 1, . . . , n,
and xn+j = uj , for j = 1, . . . , p, eq. (2) rewrites

f(x) = 0, (3)

and searching for the pairs (x̄, ū), giving equilibrium points
and the associated (constant) inputs, can be viewed as the
problem of finding the hypersurfaces in Rn+p described by
functions of the type ψ : U → <n (there may be indeed
many of such functions ψ for a given f ), such that D′f =
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(U,ψ(U)) ⊂ Df , and (3) is satisfied for any x ∈ D′f . In
Algebraic Geometry, for Fnn+p = <[x], i.e. for polynomials
in x with coefficients in <, the union of all hypersurfaces
in <n+p that are zeros of (3) is named: a (classic) algebraic
variety1, and is denoted: V(S), where S = {f1, . . . , fn},
is the generator of the variety, and fi ∈ <[x] are the
components of f in (3). As well known (and not difficult
to show) V(S) = V(IS) where <[x] ⊃ IS = (S), with (S)
denoting the ideal generated by S in <[x], i.e. the set of all
linear compositions of the elements of S, with coefficients
in <[x]. Moreover, by the Hilbert’s basis Theorem, <[x]
is a Noetherian ring, that is to say: all ideals in <[x] are
finitely generated (they have a finite generator). This entails
the existence of minimals generators, say σ, for any ideal
I ⊂ <[x], i.e. I = (σ), which have the property: any
element in σ cannot be written as a linear composition (with
coefficients in <[x]) of the other elements of σ (otherwise,
denoting by f such element, and defining σ′ = σ \ {f}, we
would have (σ) = (σ′)). In the particular case of p = 0 (i.e.
no input) we have x = x, and (3) is a system of n equations
in n indeterminates. This still doesn’t mean neither that a
solution of (3) exists nor that it is unique, nonetheless, for
n = 1, the set of all solutions is always finite, i.e. consists
of r points in < with r ∈ IN, r ≤ n, (r = 0 means no real
solutions) 2 which means that the hypersurfaces determined
by ψi are single points, that are the irreducible components
of the algebraic variety defined by (3). Since (S) = (S, g),
if g is a linear composition of elements in S, one can use
linear compositions in order to change the leading terms
of the polynomials of the generator, in a way that we will
briefly recall in the next section. This leads to the so called
elimination theory, which is the core of computer algebra
methods for solving systems of polynomial equations, and
is in fact an extension of the Gauss-elimination method for
linear systems. However, elimination theory has a limitation:
it only applies to a particular kind of generators that are
known in Algebra as Groebner basis, whose definition we
will recall in the next section, as well as the more known
method for testing whether a given generator is a Groebner
basis, namely: the Buchberger’s algorithm, which works in
such a way to modify and/or add new polynomials to the
initial set of generators in such a way that finally (the

1In some textbooks of Algebraic Geometry, such sets are named algebraic
sets, whereas the name ’variety’ is reserved to irreducible algebraic sets, i.e.,
roughly speaking, sets of zeroes constituting a single hypersurface.

2We limit our discussion to real solutions, which are those of interest for
control systems. Nonetheless, there would be no problems in considering
system (1) in C.
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algorithm is proven to terminate in a finite number of steps)
always outputs a set of generators that constitute a Groebner
basis. The Buchberger’s algorithm may be computational
expensive (it may be super-exponental in the number of
indeterminates), and is a part of all the classic algorithms
for solving polynomial systems of equations.
The present paper situates within an algebraic approach to
problems arising in systems and control theory, and in par-
ticular uses some elementary concept of algebraic geometry
and polynomial algebra, that can be found, for instance, in
[1], [2], [3]. In a wider sense the paper context is represented
by the differential-algebraic approaches to system theory that
can be found in [4], or in [5].
In this paper we show that, for polynomial systems, i.e.
for f in (1) given by a vector of polynomials in <[x, u],
the calculation of all equilibrium points can be performed
by replacing the Buchberger algorithm with a much less
computationally heavy algorithm based on Exact Quadra-
tization (EQ) of the original system (1), a kind of systems
immersion that has been introduced in [6], in the context of
control systems, further studied in [7] as a general property
of ordinary differential equations (ODE), and recently used
in the numerical integration of ODE [9]. This algorithm is the
main result of the paper, and is described in §III. Numerical
details, and/or a comparison with other existing methods, as
well as computer simulations, are beyond the scope of the
present paper: they will be presented in future publications.
We present here a principle scheme for EQ-based equilibrium
points calculation, that can be applied for a more general
f ∈ Qnn+p ⊂ Fnn+p, where Qnn+p ⊃ (<[x, u])n, is a more
general class of quadratizable functions (§III-A). Moreover,
we will illustrate how to apply the algorithm when the main
interest is just to solve a system of polynomial equations
not necessarily related to some dynamic system (§IV-A). We
finally argue that control problems formulated as stabilization
problems around a fixed equilibrium point can be studied and
applied on a quadratization of the original system, in that any
regulator of the former is a regulator for the latter as well
(§IV-C).

To start with, in §II we provide, for the reader ease, some
of the basic algebraic notion used in the paper. The details
of the Buchberger’s algorithm can be found in [2], or in [3],
and are here omitted: as a matter, what is important in the
paper is the definition of Groebner basis, and just to know
that the Buchberger’s algorithm is the usual tool used to find
it. We also briefly explain (§II-B) EQ, and how it is used
in the algorithm. Some geometric argument will be used in
order to illustrate how EQ works in the algorithm, for which
we refer readers to classic textbook of differential geometry,
such as [11]–[13]. For the differential-geometric insight of
EQ we also refer readers to [8], and [10].

II. PRELIMINARIES

A. Some basic algebraic notions

We briefly recall some notions of polynomial Algebra.
Details and proofs can be found in [2]. Given a polynomial
f ∈ <[x], the degree of f is the degree of the monomial

having maximum degree out of all the monomials of f . If
m = cxp11 · · ·xpnn , with c ∈ < is a monomial of f , the
degree of m is p1 + . . . + pn. m is said to be monic if
c = 1. Let us denote by M(x) the set of all monomials
in the indeterminates x1, . . . , xn. Then, any ordering of the
indeterminates: xi1 > xi2 > · · · > xin induces the following
total ordering (which is said: lexicographic) in M(x):

xp1i1 · · ·x
pn
in
> xq1i1 · · ·x

qn
in
, iff pi > qi, ∀i > j; (4)

where j is such that pi = qi ∀i ≤ j. Given an ordering of
the indeterminates we define LT (f), i.e. the Leading Term
of f , as the monomial of f of highest lexicographic order.
Let us consider f, g1, . . . , gL ∈ <[x], we can always divide
f by g1, . . . , gL through the polynomial division algorithm
in order to obtain the following decomposition:

f = q1g1 + . . .+ qLgL + r

for suitable quotients q1, . . . , ql ∈ <[x], and remainder r ∈
<[x], where any monomial of r is divisible by LT (gi) for
i = 1, . . . , L. However, the remainder r is not unique in
general.

If I is an ideal in <[x], LT (I) shall denote the ideal
generated by the leading terms of the elements of I, i.e.
LT (I) = ({LT (f) : f ∈ I}). A generator g1, . . . , gL
of I is said to be a Groebner basis of I if LT (I) =
(LT (g1), . . . , LT (gL)). A Groebner basis g1, . . . , gL is said
to be reduced if all gi’s are monic, and all monomials of
gi are not divisible for LT (gj), for any i 6= j. Any ideal
I in <[x] has a Groebner basis, and any Groebner basis
{g1, . . . , gL} can be replaced by a reduced Groebner basis.

The most important property of Groebner basis g1, . . . , gL
is that, for any f ∈ <[x] the division algorithm of f by
g1, . . . , gL yields a zero remainder if and only if f ∈ I =
(g1, . . . , gL). As a matter of fact, we stress that if g1, . . . , gL
is not a Groebner basis, even if f ∈ (g1, . . . , gL) the division
algorithm of f by g1, . . . , gL could terminate with r 6= 0.

The Buchberger’s algorithm, is the most known algorithm
to test whether a given set of generators is a Groebner
basis. If not, the Buchberger’s algorithm increase the number
of generators until they form a Groebner basis. We will
return on the Buchberger’s algorithm, in particular as for
its computational complexity, later on in §IV-B. The Buch-
berger’s algorithm is the basis by which computer algebra
programs attempts to solve systems of polynomial equations.
As a matter of fact, these programs basically implement
steps from elimination theory, which is a generalization to
polynomial of the well known linear algebra methods based
on Gauss-elimination. These algorithms works on reduced
Groebner basis, thus, as the Buchberger’s algorithm yields
a Groebner basis their first step is to get a reduced basis.
Next, elimination theory modifies the generator of the ideal
associated to the system of equations trying to perform a sort
of ’triangularization’ that allegedly allow to solve the system
by successive substitution.
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B. Exact quadratization

Let us consider the system function f : Df ⊂ Rn+p →
<n in (1), and assume f ∈ Cnn+p. Moreover assume that
Df = Df,x × Df,u, with Df,u,Df,u, open sets in <n, and
<p respectively. Then, f is said to be quadratizable on the
(open) domain D′f,x ⊂ Df,x, if there exists an integer µ ≥ n,
an injective differentiable map Φ : D′f,x → <µ, and a map

B(·, ·, ·) : D′f,x ×D′f,x ×Df,u → <µ, (5)

bilinear with respect the first two arguments, such that, if
< ⊃ I 3 t 7→ (x(t), u(t)) is a solution of (1) for some
interval I , there is another interval I ′ ⊂ I , such that the
differentiable map I ′ 3 t 7→ Φ(x(t)) = ζ(t)→ Rµ satisfies:

ζ̇ = B(ζ, ζ, u), (6)

which is said a quadratization of (1). We denote by Qnn+p ⊂
Fnn+p the class of all quadratizable functions. The meaning
of EQ comes from the fact that Φ(D′f ) is a differentiable
submanifold of <µ (in the usual topology), of dimension
n, and that the map Φ : D′f → Φ(D′f ) is invertible, thus,
any solution I 3 t 7→ x(t) of (1) can be recovered (at
least: partially) from a solution I ′ 3 ζ 7→ ζ(t) of the
quadratization (6), provided that ζ(0) = Φ(x(0)), and in
fact x(t) = Φ−1(ζ(t)), ∀t ∈ I ′.

Even though the characterization of the class Qnn+p is still
an open problem, in [6] a very large subclass Q̄nn+p ⊂ Qnn+p
has been defined, including all the most known and usual
differentiable functions, and such that, for any f ∈ Q̄nn+p
the quadratizing map Φ can be decomposed as Φ = Φ′ ◦Ψ
where for the generic i-th component zi = Ψi(x) we have:

żi =

νi∑
j=1

vij(u)Xij(z); Xij(z) = z
pij1
1 · · · zpijαα , (7)

where vij ∈ C1p , νi is the number of monomials Xij in the
i-th equation, α is the dimension of the codomain (<α) of
the map Ψ′, and the exponents pijα are real numbers. This
means that all functions in the class Q̄nn+p are quadratizable
through the intermediate representation (7). This is the reason
why hereafter we focus on systems of the type (7), namely
formally polynomial systems. Thus, let Ψ be the identity on
Df , and let Φ = Φ′ be the quadratizing map, defined on
D′f , for the system:

ẋi =

νi∑
j=1

vij(u)Xij(x); Xij(x) = x
pij1
1 · · ·xpijnn , (8)

where all symbols are the same as in (7) but x replaces z.
Then, denoting m =

∑n
i=1 νi (the number of monomials)

in (8), the basic theorem on EQ [6], [7] states that a
quadratization for (8) exists, such that:

i) D′f is dense in Df ;

ii) µ = n + m, and Φ is the aggregate vector Φ(x) =
(x,Φ(x)), with Φ = (Φij , i = 1, . . . , n, j = 1, . . . , νi)
where:

Φij(x) = x−1i Xij(x), (9)

iii) denoting, for v, w ∈ <α, v ◦w = (v1w1, . . . , vα, wα),
the map B in (6) is given by

B(ζ, ζ, u) = ζ ◦ V ζ, (10)

where, by ii), ζ = (x, Z), Z = Φ(x), and the square matrix
V ∈ <µ×µ, said the frame (of the quadratization), is given
by:

V =

[
0 d
0 D

]
(11)

with d ∈ <n×m, D ∈ <m×m given by

d =

v11 . . . v1ν1 0 . . . 0
. . .

0 . . . 0 vn1 . . . vnνn

 (12)

D = π111v11 . . . π111v1ν1 . . . π11nvn1 . . . π11nvnνn
...

πnνn1v11 . . . πnνn1v1ν1 . . . πnνnnvn1 . . . πnνnnvnνn

(13)

where πijk = pijk−δik (δ is the Kronecker symbol: δik = 1
if i = k, and 0 otherwise). The quadratization

ζ̇ = ζ ◦ V ζ, (14)

is said canonical quadratization of system (8).

III. THE PROPOSED NEW ALGORITHM

A. The general idea of the algorithm

Let us gather all the coefficients vij(u) into a vector
v = v(u) ∈ <m, then, provided that Df = D′f , i.e. a
quadratization exists on the whole domain of f , all the curves
(in <µ+m) t 7→ (ζ(t), v(t)), (v(t) = v(u(t))), solutions of
(8) passing each (for a fixed value of v, say v̄) through
a fixed point (x̄,Φ(x̄), v̄) lie entirely in the submanifold
Φ(Df ) × <m, and the original solution t 7→ (x(t), v(t))
is entirely recovered directly by projecting ζ on the hypher-
plane <n+m of the first µ = n + m coordinates ((x, v)).
If we solve the system of equations ζ ◦ V ζ we obtain a
set of hyphersurfaces, i.e. the algebraic variety V(ζ ◦ V ζ),
consisting of all equilibrium points of the canonical quadratic
system ζ̇ = ζ ◦ V ζ, and the corresponding (necessarily
constant in time) v values. The equilibrium points of the
original system are precisely the subset of V(ζ ◦ V ζ) that
lie in Φ(Df ) × <m, and, hence, we can get all of them by
using (9), and solving in ζ = (x, Z, v), the joint system of
equations:

ζ ◦ V (v)ζ = 0, (15)
Z − Φ(x) = 0, (16)

where we have made explicit the dependence of V by v
(which is linear, as we can see in (12), and (13)). Provided
that the solution-set for (15), (16) is not empty, it is a union
of hyphersurfaces in <µ+m that is described by the union
of the graphs of maps of the type v 7→ Ψk(v), for k ∈ K
in some finite set K, and v in some subset of <m. Thus,
for any admissible v̄, the set {Ψk(v̄) : k ∈ K} is the set of
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equilibrium points of the original system corresponding to
v̄. Finally, in order to find the equilibrium inputs we have
to solve v(u) − v̄ = 0 with respect to u, however note
that finding the u’s from the v’s is a separated problem
with respect to the main (and more difficult) problem of
finding the maps v → Ψk(v), and in fact, for u 7→ v(u)
analytic, it amounts to find, in the (v, u)-space <m+p, the
hyphersurfaces given by det(∂v/∂u) = 0: off these surfaces
the theorem of the inverse function can be applied to obtain
the equilibrium input ū from v̄, whereas, on these surfaces,
we directly can read the values of ū (that may be more than
one) from v̄. If pijk ∈ IN then (8) is a polynomial system.
With the further hypothesis that

piji ≥ 1, ∀i, j, (17)

looking at the structure of the function Φ given in (9), we
realize that the subsystem of equations (16) is polynomial as
well, in the indeterminates (x, Z, v). In the next section we
will see that hypothesis (17) is not really necessary, and in
fact we will devise a method for equilibria calculation which
is effective for any polynomial systems.

B. The adjoint system

The algorithm we are going to present for calculating the
equilibrium points (hereafter EP) of a general polynomial
system of the type (8), with pijk ∈ IN, is based on the follow-
ing observation. For any nonlinear system ẋ = f(x, u), let us
consider the system ẋi = fi(x, u)◦x, that we name adjoined
system. Notice that, for any x̄ ∈ Df , these systems give two
different solutions passing through x̄, even when the same
input is applied, nonetheless, if x̄ is an EP and ū is (a/the)
corresponding input for the first system, i.e. f(x̄, ū) = 0,
then f(x̄, ū) ◦ x̄ = 0, thus the pair (x̄, ū) is an EP for the
adjoined system as well. In other words, the EP-set of the
adjoined system include the one of the original system. The
adjoined equilibrium points that are not EP of the original
system are coordinate hypherplanes in <n+p of the type
xi = 0, for i ∈ ℵ0, where ℵ0 ⊂ ℵ = {1, . . . , n}. To see
this, let (x̄, ū) ∈ <n+p be not an EP for the original system,
then define ℵ0 ⊂ ℵ (possibly empty), such that fi(x̄, ū) 6= 0,
then there are two cases: (i) x̄i = 0 for i ∈ ℵ0, and (ii) there
is a j ∈ ℵ0 such that x̄j 6= 0. In the case (i) (x̄, ū) is a point
of the coordinate hypherplane

Hℵ0 = {(x, u) ∈ <n+p : xi = 0, i ∈ ℵ0},

as well as an EP for the adjoined system. In the case (ii)
(x̄, ū) is neither a point of Hℵ0 nor an EP for the adjoined
system. With that being said, it is clear that, in order to search
for the EP of the original system, we can search for the EP
of the adjoined system instead, and then, for any ℵ0 ⊂ ℵ,
discard the points in Uℵ0 that are not EP of the original
system. We will see that, for polynomial systems, this can
be performed quite easily.

C. The general scheme of the algorithm

Let us consider a polynomial system of the type (8)
with pijk ∈ IN. According to §III-A, the calculation of the

equilibrium inputs u is performed after the calculation of the
equilibrium values of v, thus, hereafter, we consider the v’s
as ’inputs’, and p as the number of vij in (8). Note that, for
polynomial systems, the adjoined system can be simplified
as follows, we set: ẋi = fi(x, v)xi for i ∈ A ⊂ ℵ0, and
leave the original equation ẋi = f(x, v), for i ∈ ℵ0 \ A,
where

A = {i ∈ ℵ : piji = 0, for some j = 1, . . . , νi}

that is to say, the set of i that index an equation where at
least one monomial Xij , for some j = 1, . . . , νi, does not
include xi (i.e. include a term x0i ). Notice that all points
in HA0

, with A0 = ℵ \ A, are EP of the original system,
therefore we have to find just the EP in <n+p \ HA0

.
Accounting of that, we modify the general scheme of the
algorithm as follows: search for the EP of the adjoined
system, then for any ℵ0 ⊂ A (which replaces: ℵ0 ⊂ ℵ)
discard the points in Hℵ0 that are not EP of the original
system. The following recursive algorithm consists of two
macro-steps, and performs all tasks described above:

Macro-step 1. Set S = <n+p, calculate A, and include
all points of HA0 in the set of EP of the original system,
then, build up the adjoined system (if A = ∅ the adjoined
system is equal to the original system). Calculate all EP of
the adjoined system in S \H , H =

⋃
ℵ0⊂ℵHℵ0 i.e. off all

hypherplanes of S where xi = 0 for at least one i ∈ ℵ. All
of such EP are in fact EP of the original system as well.

Macro-step 2. In the original system set xi = 0 ∀i ∈ A0,
rename the indeterminates {xi : i 6∈ A0}, as x1, . . . , xn′ . If
n′ = n the algorithm terminates, otherwise (i.e. n′ < n),
rename n′ as n, and repeat macro-step 1.

In macro-step 2, the original system is replaced by a
simpler one, where all monomials that include xhi with h > 0
and i ∈ A0 vanish (and, hence, possibly a subset of equations
vanishes). This new original system is then solved in the
subspace HA0 , identified with a new <n+p, where now
x1, . . . , xn are the old variables {xi : i 6∈ A0}, renumerated.

D. Details of Macro-Step 1

Macro-Step 1 calculates all EP of the adjoined system in
S \H , that is to say all EP of the type (x̄, v̄) with x̄i 6= 0
∀i = 1, . . . , n. This is performed by solving, with respect to
(ζ, v), with ζ = (x, Z), the polynomial system of equations
(15), (16), which, on account of the structure of V given in
(11), can be rewritten:

x ◦ d(v)Z = 0 (18)
Z ◦D(v)Z = 0, (19)
Z − Φ(x) = 0. (20)

Since xi 6= 0 for i = 1, . . . , n, eq. (18) is equivalent to
solve the equation d(v)Z = 0. Moreover, Zij = 0 entails
Φij(x) = x

pij1
1 · · ·xpijnn = 0, thus, either it is verified with

some xi = 0, or it is not verified (if pijk = 0 for all k =
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1, . . . , n, i.e. the monomial is constant). Therefore, Zij 6=
0 for all i, j, which makes eq. (19) as well equivalent to
the equation D(v)Z = 0, then (18)–(20) entails d(v)Z =
D(v)Z = Z − Φ(x) = 0, which is an hyphersurface in
<n+m+p, i.e. the algebraic variety V (I), where

I = (d(v)Z,D(v)Z,Z − Φ(x)), (21)

Now, let us set the following ordering, that we name the
canonical ordering, in the set of indeterminates (x, Z, v):
yk > ys if k < s; xi > xj if i < j; vk < xi < Zhl,
∀k = 1, . . . , p, i = 1, . . . , n, h = 1, . . . , n, l = 1, . . . , νh;
Zhl > Zh′l′ if h < h′, and, Zhl > Zhl′ if l < l′. We can
prove the following theorem.

Theorem 1 The generators of the ideal I in (21) form
a Groebner basis for I with respect to the canonical ordering

(Proof omitted).

IV. SOME REMARKS AND FURTHER DEVELOPMENTS

A. Solving systems of polynomial equations

The algorithm described in §III can be used for solving
any system of n polynomial equations in n indeterminates
x = (x1, . . . , xn). Indeed, by gathering the polynomials in
a vector we can write the system of equations as f(x) = 0,
finding the solution of which, is equivalent to finding the EPs
of the autonomous dynamic system ẋ = f(x). Suppose, to
exclude trivial cases, that (f) 6= <[x], and all polynomials
in f are irreducible, i.e. we cannot divide any of them by
the others with a zero remainder (in algebraic terms: they
form a minimal generator for the ideal (f)), thus (f) 6= {0}.
Then, the associated algebraic variety V(f) in <n, is a
non-empty, finite set of points in <n (cf. discussions in §I,
and §III-A). To apply our algorithm we build up an adjoint
system, following the guidelines of §III-B, and apply exact
quadratization to the adjoint system in order to obtain the
augmented system of equations associated to the ideal I in
(21), where v ∈ <p is a vector of known constants. The latter
consists of n + 2m equations in the n + m indeterminates
ζ = (x, Z), out of which n + m are linear equations in
the m indeterminates Z. Clearly, denoted q the number of
columns linearly independent of V (note, looking at the
structure of V given in (11), that maxrank(V ) = m, thus
q ≤ m), the solution Z describes an hypherplane in <m
of dimension m − q, which is the kernel of the matrix
[dT : V T ]T ∈ <(n+m)×m. We can find this kernel through an
ordinary linear algebra algorithm, which amounts to express
q out of the Z-variables as linear functions of the other
m−q variables (let us name the latter set Z ′). By eliminatng
these q linear maps we finally get a polynomial system of
m polynomial equations in the n + m − q variables x, Z ′.
By Theorem 1, all generators of the ideal I form a Groebner
basis for I, thus we can apply the substitution theory directly
in order to find the solution. Geometrically, the solution is
the intersection of the hyphersurface in <n+m defined by
Z − Φ(x), with the hypherplane, in <n+m, obtained by

extending the kernel in <m as a constant with respect to
the other n variables x (and in fact the equation V ζ = 0
shows that Z is constant with respect to x).

B. The computational advantage of our algorithm

The computational complexity of the Buchberger’s al-
gorithm is very difficult to determine, nonetheless it has
been proven that it is bounded by O(g2

n

), where n is the
number of indeterminates, and g is the maximum degree of
the system of equations, i.e. the degree of the monomials
having maximum degree out of all the monomials of any
polynomial in the system. As we have seen, our algorithm
allows to avoid the application of the Buchberger’s algorithm,
because it moves the problem to solving another system
of equations, i.e. (18)–(20), whose polynomials constitute
always a Groebner basis (with respect to the canonical
ordering) of the ideal they generate. The new system is
obtained by appling exact quadratization to a suitable dy-
namic system (the adjoint, system) directly obtained from the
original system, and in fact we can say that, essentially, our
algorithm consists in replacing the Buchberger’s algorithm,
always present in the classic method for solving polynomial
equations, with the exact quadratization. However, notice
that applying exact quadratization is just the underlying
idea upon which the method is based: as a matter of fact,
from a computational point of view, exact quadratization
amounts to nothing else than building up the two matrices
d(v) and D(v) defined in (12), and (13). As for d(v), this
matrix is built up with a negligible computational effort,
since its entries are just coefficients of the original system
polynomials. Therefore, all the computational burden of the
quadratization consists in building up the sole matrix D(v),
which amounts, looking at the structure of D(v) given in
(13), to perform m2 multiplications, where m is the total
number of monomials in the original system. Overall, the
comparison is between the computational complexity of the
quadratization, which is upperbounded by O(m2), and the
upperbound O(g2

n

) of the Buchberger’s algorithm, thus,
even if m ≥ n, polynomial vs exponential complexity, which
definitely shows the computational advantage of the method
here presented.

C. Future perspectives: regulators design via exact quadra-
tization

We conclude the paper by pointing out an approach, which
is suggested by the EPs calculation method we have here
described, for nonlinear control problems involving quadra-
tizable systems. Suppose that, for a dynamic nonlinear,
quadratizable, system of the type (1), we have found the
set of all EPs, and the result is the finite set of µ ∈ IN
points in <n+p: E = {(x̄1, ū1), . . . , (x̄µ, ūµ)}. We can
next ask to find, for each (x̄i, ūi) ∈ E the family of sets
Ui = {UKi ⊂ <n+p : K ∈ <−} defined as follows:
for any K ∈ <−, UKi ⊂ <n+p is the largest set such
that (x̄i, ūi) ∈ UKi , and for any (x′, u′) ∈ UKi there is
λ ∈ <+, λ ≥ |‖x̄i‖2 +‖ūi‖2− (‖x̄′‖2 +‖ū′‖2)|, and a map:
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< 3 [0,+∞) 7→ (x(t), u(t)) ∈ <n+p, solution of (1) such
that x(0) = x′, u(0) = u′, and

|‖x(t)‖2 + ‖u(t)‖2 − (‖x̄i‖2 + ‖ūi‖2)| ≤ λ exp(Kt).

Since E is the set of EQs for system (1), Ui 6= ∅, as it includes
the set {(x̄i, ūi)} (indeed, under the constant input u(t) ≡ ūi
we have (x(t), u(t)) ≡ (x̄i, ūi)). We say that (x̄i, ūi) is a
SES (Strongly Exponentially Stable) EP for system (1) if Ui
includes a neighbourhood3 of (x̄i, ūi).

Clearly, finding which points of E are SES, and the associ-
ated families Ui, is an instance of a regulation problem (to be
understood in both senses of open- or closed-loop4) for the
nonlinear control system (1). Now, let us suppose that system
(1) is the formally polynomial system (8) (the same argument
can be extended to any quadratizable system either), as
argued in §II-B, and §III-A, all trajectories in <n+m (and
a fortiori all the EPs) of system (8) are the projections on
the hypherplane, H = <n+m, of the variables (x, v), of the
trajectories (and of the EPs) of the canonical quadratization
(14) that lie in the manifold M = Φ(Df ) × <m, the latter
being a sub-manifold (of dimension n + m) of <n+2m. In
other words, the original system is equivalent to a quadratic
system evolving on the manifold M: even though system
(14) has trajectories in all of <n+2m, there are trajectories
all included inM, and in fact every trajectory that intersects
M lies entirely in M. As a matter of fact, any trajectory
of the quadratization (14) that lies on M, once projected on
H, yields a trajectory of the original system, and vice-versa:
any original trajectory is obtained by projection on H of a
trajectory of the quadratization lying in M.

This means that, if we are able to solve the regulation
problem for the quadratization (14), we get the solution
as well of the regulation problem for the original system,
because the sets UKi for the original problem are nothing
else than the projection on H of the intersections with the
manifold M of the UKi obtained solving the regulation
problem for the quadratization (14). In particular, any SES
EP, P , of the quadratization lying on M, projected on
H, is a SES EP for the original system: indeed, naming
P ′ the projection on H of P , the projection on H of a
neighbourhood of P , namely UKi ∩M, is a neighbourhood
of P ′ in H, thus P ′ is a SES EP for the original system. In
conlcusion, regulation problems for nonlinear systems of a
very general type (quadratizable systems form indeed a huge
class) can be all studied as regulation problems for a system
of the type (14), i.e. a dynamic system homogeneous and
quadratic (with respect to ζ), and cubic with respect to the
aggregated variable (ζ, v).

3We comply with the classic notion according to which a neighbourhood
of a point P in a topologic space T is a subset of T that includes an open
set that includes P

4In closed-loop amounts to say that a subset of equations in the system
(1), namely ẋi = fi(x, u) for i ∈ S ⊂ {1, . . . , n}, represent a (fixed)
dynamic feedback controller, i.e. xi for i 6∈ S, represent the state-variables
of an open-loop system, and xi ∈ S are actually inputs for such open-loop
system, whereas u is an exogenous input.

V. CONCLUSION

Exact Quadratization applied to a polynomial dynamic
system in <µ does not lead, in general, to a quadratization on
the whole system domain, because the quadratizing map (9)
could be undefined on some coordinate hypherplane of <µ.
The new method for EP calculation we have here proposed
uses exact quadratization relying on the observation that it
is always possible to build up an adjoint system (defined in
§III-B) whose EPs are the same as the original system, and
can be quadratized on the whole space either. The algorithm,
described in §III-C, and §III-D, consists of two macro-steps:
in the first one, the EPs are calculated off all coordinate
hyperplanes, whereas the second macro-step first projects the
system on certain maximal hypherplanes and call recursively
the first macro-step in order to repeat the calculation on
smaller and smaller subspaces. The system of equations (15),
(16), whose solution set is the set of EPs of a quadratization
of the original system, is polynomial if the original system
is polynomial, and in this case, as proven in Theorem 1, it
is always a Groebner basis of the ideal it generates in <[x].
This fact is the main result of the paper, because allows
to skip the computationally heavy Buchberger’s algorithm in
the subsequent solution procedure. In §IV-B we have given a
(coarse) quantification of the computational advantage of our
algorithm. Finally, in §IV-C we have pointed out a possible
development of the present research in the field of control
systems.
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