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Abstract—This paper proposes a new dynamics-constrained 

path planning method for hypersonic vehicles. Due to vehicles’ 

limited maneuverability, path and dynamics are tightly coupled. 

To ensure executability, it is required to consider dynamic con-

straints and trajectory indexes in path planning. This leads to a 

more intricate problem formulation, and the path search space is 

high-dimensional and sparse. Existing methods mainly target 

low-velocity vehicles and rely on simple motion models, making 

them cannot be directly applied here. We address the problem 

with a graph learning method. This method begins by modeling 

the graph-search Markov decision process (MDP) on a Graph 

Attention Network (GAT) to find a path in the topological 

graph, which guides the subsequent trajectory generation. On 

top of the path, it uses a three-dimensional waypoint-crossing 

navigation (3D WCN) law to generate a trajectory under full 

dynamics and uncertainties. The GAT is trained using rein-

forcement learning, where the devised cost function includes 

both trajectory and path indexes. The trajectory index punishes 

trajectories that fail safety checks to ensure both the perfor-

mance and executability of the path. The path index, aimed at 

eliminating the erratic impact of implicit trajectory representa-

tions and uncertainties, is calculated from the mean square error 

between the path and an optimal reference, thereby improving 

learning efficiency. Simulation results show superior optimality, 

adaptability, and millisecond-level computation speed. 

I. INTRODUCTION 

This paper focuses on a type of unpowered hypersonic 
vehicle with a flight velocity far exceeding Mach 5. In 
near-space mission environments, the vehicle will encounter 
obstacles such as no-fly zones [1]. These obstacles have 
random and scattered distribution, presenting the necessity in 
global path planning to ensure safe flight. For the hypersonic 
vehicle path planning problem, it is required to consider dy-
namic constraints and trajectory indexes. That is because 
these vehicles, characterized by high velocity and unpowered 
flight, have limited maneuverability determined by dynamics 
[2]. Failure to consider these constraints could result in an 
inexecutable path and cannot generate an associated trajec-
tory. However, early works for path planning mainly focuses 
on low-velocity aircraft or robots [3][4], relying on simple 
trajectory representations. They cannot guarantee the complex 
dynamic constraints and thus cannot resolve the hypersonic 
vehicle path planning. In a word, dynamics-constrained hy-
personic vehicle path planning is an emerging problem. 

In the literature, there are two general strategies to achieve 
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global path planning, both aimed at obstacle avoidance by 
searching for a sequence of waypoints from start to target 
within a topological graph while using an easy-to-handle 
motion model. The first strategy is to transform the path 
planning problem into a mathematical programming problem, 
in which the main work is to model obstacle avoidance con-
straints as integer constraints and model trajectory-associated 
constraints as continuous constraints. Afonso et al. [5] trans-
formed the problem into a mixed integer linear programming 
problem. The obstacle avoidance constraints were modeled as 
waypoint constraints by introducing binary variables for 
nodes on the graph, and the motion equations were modeled as 
linear constraints. Similarly, Dutta et al. [6] defined the binary 
variables as edges on the graph and transformed obstacle 
avoidance constraints into directional constraints. Trajectory 
information is defined by continuous variables, which form 
quadratic constraints. These methods can intuitively imple-
ment path planning but have limitations in terms of solution 
efficiency. To improve efficiency, another strategy is to de-
sign heuristic algorithms, and make decisions sequentially on 
the graph. The trajectory is then generated separately using 
either geometrical curves or simple motion equations. Kool et 
al. [7] designed a graph attention network (GAT) to model the 
MDP of graph search, training it for shortest path planning by 
reinforcement learning. This method assumes that the agent 
can move in straight lines. Luo et al. [8] designed a for-
ward-looking model based on Johnson’s curve for obstacle 
identification, and the avoidance path is searched by the ge-
netic algorithm (GA). Penicka et al. [9] used the informed 
RRT* algorithm to fast search the paths and trajectories under 
simple motion equations. These methods design or learn 
heuristic rules to accelerate solution efficiency, but they ne-
glect motion under full dynamics and deal with trajectory 
generation separate from path planning. 

Using existing methods to solve the dynamics-constrained 
hypersonic vehicle path planning problem is challenging. On 
the one hand, this problem requires consideration of dynamic 
constraints and trajectory indexes. The trajectory of the hy-
personic vehicle has strong nonlinearity and implicit repre-
sentations [2], resulting in a more intricate problem formula-
tion compared to benchmark problems. So, it is difficult for 
algorithms to keep stable performance. On the other hand, due 
to the limited maneuverability, path planning and trajectory 
generation are tightly coupled and cannot be separated [10]. 
When constructing the topological graph, the sampling space 
becomes high-dimensional, and the node distribution is 
sparse, resulting in low search efficiency. Therefore, the ex-
isting methods cannot be directly applied to the hypersonic 
vehicle path planning problem. 

Our previous work first combines hypersonic vehicle path 
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planning with trajectory information and index based on graph 
learning [11]. GAT is used to plan waypoints, kinematic 
trajectory provides performance indexes, and network pa-
rameters are trained based on these indexes. However, this 
work neglects the impact of dynamic constraints on the op-
timality and safety of the path. As an extension, this paper 
proposes an improved graph learning-based hierarchical so-
lution framework to achieve dynamics satisfaction. This 
framework consists of three parts: path planning network, 
trajectory generation simulator, and cost function. The nov-
elty lies in the latter two parts. Specifically, the path planning 
network is designed based on a GAT that matches the 
graph-search MDP, enabling sequential decision-making of 
waypoints. On top of the waypoint sequence, the trajectory 
generation simulator generates a trajectory under uncertainties 
and full dynamics, which is achieved by designing a 3D WCN 
law. The cost function for GAT learning is designed based on 
the trajectory index and safety check, penalizing trajectories 
that do not meet constraints. In addition, to eliminate the 
erratic impact of implicit trajectory representations and un-
certainties, the cost function also includes a path index. This 
path index is the mean squared error of the path compared to 
an optimal reference, which improves learning efficiency 
compared to using only trajectory indexes. Simulation results 
show the potential of our method as its superior optimality, 
adaptability to environments, and computing efficiency at the 
millisecond level. 

II. PROBLEM FORMULATION 

The mission scenario is shown in Fig. 1, where there are 
many obstacles in near space. To safely reach the target, the 
hypersonic vehicle needs to avoid these obstacles. The path 
planning problem contains two goals: decide a sequence of 
waypoints with the minimum total control effort and ensure 
the waypoint sequence executable by trajectory generation 
constrained by full dynamics. 

As the cornerstone, a global topological graph 𝐺 = (Ṽ, Ã) is 
established to cover the feasible paths, where Ṽ is the nodes 
set and Ã is the edges set. The basic idea of graph modeling is 
laying out the nodes located above and below the no-fly zone 
respectively, and connecting directed edges if there is no 
no-fly zone in the line-of-sight direction between two nodes. 
For specific details, refer to literature [10]. Path planning 
requires additional decision variables to encode the path and 
account for directional constraints, result in a sequence of 
waypoints. Specifically, we define the binary integer variables 
xij = 1 if the edge from node i to j in Ã is on the path, 0 oth-
erwise, i, j = 1, 2, . . ., n, n is the number of nodes in Ṽ. Further, 
we ensure that each node, except for the start and target node, 
has an in-degree equal to its out-degree, with the out-degree 
being at most 1. Assuming that the start and target nodes are at 
indexes 1 and n, and there are no subtours present in the path, 
the directional constraints can be formulated as follows [12]: 
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Figure 1.  Diagram of dynamics-constrained path planning problem.  

Constraints in (1) serve to guarantee that the path starts at 
node 1 and ends at node n. This ensures the connectivity, and 
that every node is visited at most once. Note that if the 
out-degree of node i except for the start node is 1, this node is 
a waypoint on the path, which can be formulated as follows:  

 1j ijx   (2) 

Different from typical graph search problems, the hyper-
sonic path planning problem also includes dynamics intro-
duced trajectory index and associated constraints, such as 
dynamic constraints, path constraints, as well as corner point 
constraints from the coupling with waypoints.  

To be specific, we define the continuous vectors x = [r; θ; 
φ; V; γ; ψ] as the flight state and u = [α; σ] as the control of the 
hypersonic vehicle. Where r is the radial distance, θ is the 
longitude, φ is the latitude, V is the velocity, γ is the flight path 
angle, ψ is the heading angle, α is the angle of attack, and σ is 
the bank angle. We define the constants θi and φi are the lon-
gitude and latitude of node i in G, variable ti is the time at 
which the vehicle passes through, i = 1, 2, . . ., n. The motion is 
governed by gravity g0, aerodynamic lift 𝐿, and aerodynamic 
drag D. The translation dynamics in consideration of a 
spherical and rotating Earth refer to the literature [2]. The 
compact form with respect to time t can be formulated as 
follows: 

  ( ) ( ),  ( )t t tx f x u  (3) 

Constrained by the waypoints on the path, the corner point 
constraints of the trajectory can be formulated as follows: 
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Constraints in (4) serve to guarantee that node i is on the 
trajectory if it is on the path, where M is a large enough 
number. Specifically, if condition (2) is satisfied, indicating 
that node i is a waypoint on the path,  then it must hold that θ(ti) 
= θi, φ(ti) = φi. 

The performance index for dynamics-constrained path 
planning problem is to minimize the total control effort. In all, 
the problem can be formulated in the following compact form: 

2840



  

Problem 1. Dynamics-constrained path planning problem. 
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Figure 2.  Dynamics-constrained graph learning framework.  

where t0 is the given initial time, tf is the free terminal time. 
gmax is the upper bound of path constraints. x0/xf are the ini-
tial/terminal values. 

III. DYNAMICS-CONSTRAINED GRAPH LEARNING APPROACH 

This paper proposes a graph learning-based hierarchical 
framework, while maintaining the dynamics-associated index 
and constraints, as illustrated in Fig. 2. A sequential waypoint 
decision method based on the GAT is designed to search the 
path. The GAT matches the graph-search MDP into the net-
work structure, enabling the network to automatically gener-
alize the obstacle distribution. Then, we introduce a 3D WCN 
law, generating trajectories under paths with varying waypoint 
combinations. The coupling between path and trajectory is 
realized by the interaction between the two layers, in which 
the cost function design and safety check make the selected 
path meet both optimality and dynamic constraints. 

A.  Path Planning Graph Attention Network 

The path planning problem is described as a sequential 
waypoint decision on the global topological graph. Variations 
in the obstacle distribution led to different graph structures 
and sequential decision models, creating distinct MDPs. 
Consequently, applying learning algorithms directly is not 
feasible. To address this challenge, a GAT-based network is 
designed to inherently match the graph-search MDP. 

The designed GAT includes an encoder and a decoder. 
The encoder generates embeddings for each node based on the 
node coordinates xwi, i = 1, 2, . . ., n, and adjacency matrix A = 
{aij}n×n of the graph G. The decoder generates nodes step by 
step until the target node n is output, forming the path com-
posed of waypoint sequence π = [π0, π1,..., πm]. The network 
structure is illustrated in Fig. 3. The specific network layers 
and parameters can be found in [7][11]. 

Here, we describe the proposed adjacency matrix mask in 
the attention mechanism. The attention mechanism transfers 
message through interactions between nodes. The purpose of 
the mask is to check the connections between individual nodes 
to determine the eligibility of message transfer. If two nodes 
are not connected, the message will be masked, preventing the 
selection in the sequential decision. This process aligns with 
the Markovian nature of the graph, ensuring the directional 
constraints (1).  
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Figure 3.  A graphical of the path planning GAT.  

Specifically, assuming the node embedding for the input 
of the attention mechanism is denoted as hG, the three varia-
bles, query qG, key kG, and value vG, are obtained through 
linear transformations of the node embedding, that is: 

 ( ) ( ) ,  ,  G Gi i

Q K V

c G c Gi G Gi  q k vW h W h W h  (6) 

where qG is derived solely from the current waypoint πk-1 at 
step k, while kG and vG are obtained from other nodes em-
beddings interacting with it. WQ, WK, and WV represents the 
learning parameters of the network. Define the normalization 
factor dG, the output of the attention mechanism is given by: 
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In (7), when aij = 1, node i and j are adjacent, else if aij = 0, 
or node j has been visited before step k, the decoder masks the 
message, setting the compatibility u(c)j = −∞. The decoder 
samples the next waypoint based on the probability obtained 
by applying a SoftMax function to compatibilities u(c)j of the 
current waypoint with other nodes. 

The network's ability to generalize across different ob-
stacle distributions can be attributed to two factors. Firstly, the 
sequential decision adapts to various graph structures through 
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the design of an adjacency matrix mask. Secondly, all pro-
jections in the GAT are node-wise, with shared parameters for 
different nodes, so the forward propagation adapts to various 
obstacle numbers. 

B.  Trajectory Generation Simulator by 3D WCN Law 

In this subsection, a 3D WCN law is designed to execute 
the dynamics-constrained path. The trajectory generation 
simulator needs to show adaptability because of the frequent 
generation of paths with different numbers and combinations 
of waypoints when training the GAT. This paper introduces a 
waypoint-crossing law to obtain controls u = [α; σ].  

1) Waypoint-Crossing Navigation logic 

Navigation is to determine the direction of flight Φ = [γ; ψ], 
including vertical navigation and horizontal navigation.  

Vertical navigation is to determine the vertical direction of 
the flight γ to achieve the required terminal altitude, the 
command γcom is: 

 com kq   (8) 

where q is the vertical line-of-sight angle, k is the proportional 
coefficient. 

Horizontal navigation is to determine the horizontal di-
rection of the flight ψ to achieve the required waypoint se-
quence and terminal position. According to a minimum con-
trol effort waypoint-crossing navigation law [13], define the 
Lagrange multiplier vector λ=[λ1, λ2,…, λm]T, miss distance 
vector Z=[Z1, Z2,…, Zm]T, i=1,2,…,m, and parameter matrix R

∈Rm×m, which satisfy R λ Z . 

Based on the extended lemma of the Schwartz inequality, 
the commanded heading angle ψcom is: 
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where ψLOSi is the horizontal line-of-sight angle relative to the 
ith waypoint πi, tfi is the crossing time, k1, k2, …, km are the 

proportional coefficients obtained by (9) analytically. So, the 
navigation command can be formulated as follows: 
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2) Control allocation 

Based on the dynamic equations, the required control 
force Lcom can be obtained by the navigation command (10), 
which can be formulated as follows: 
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where mv is the mass of the vehicle. 

The required lift satisfies: 

 2 2

com com comV HL L L   (12) 

The commanded controls are allocated by Lcom, satisfies: 
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where αl and αu are lower and upper bounds of the angle of 
attack, respectively. arctan 2 is a four-quadrant inverse tan-
gent function. 

Based on control commands ucom = [αcom; σcom], the tra-
jectory under full dynamics along the selected path can be 
simulated by dynamics integration. 

C.  Graph Learning-Based Path Planning 

A graph learning-based framework is introduced to train 
the GAT, as depicted in Fig. 4, ensuring that the selected path 
meets both dynamic constraints and optimal index. To achieve 
this, a cost function L(π), including both trajectory and path 
indexes, is devised as follows: 
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Where π* is the optimal reference path generated offline, M is 
a large number, ω1, ω2 are the weights.  

Cost function

Updated

θG

Offline 

dataset

MDP builder
Graph search 

model

GAT-based 

network

xwi, A

Obstacle 

avoidance

waypoint 

sequence

Matched 

MDP

3D WCN law
Closed-loop 

dynamics 
simulation

π = [π0, π1,..., πm]

αcom, σcomTrajectory 
index

x, u

Safety check
x(tf), g

L,  L

Uncertainties

π*

Path index

REINFORCE

E
n

c
o
d

e
r D

e
co

d
e
r

 

Figure 4.  Dynamics-constrained graph learning algorithm diagram.  
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We now describe the cost function (14). L(π) consists of 
three parts: the mean square error between π and the optimal 
one π*, the total control effort of the generated trajectory, and 
the penalty if the trajectory fails safety checks. Specifically, 
the first part is the path index, the purpose is to eliminate the 
erratic impact of implicit trajectory representations and un-
certainties when only relying on trajectory indexes [14], 
thereby improving learning efficiency. The latter two parts are 
trajectory indexes which are obtained by feedback infor-
mation from the trajectory generation simulator. The purpose 
is to optimize path performance while considering full dy-
namics and uncertainties, enabling effective learning in di-
verse environments. Additionally, they penalize trajectories 
that fail safety checks to ensure the path's executability. 

Define the loss function as the expectation of L(π), the 
gradient of the loss function is defined as follows: 

    ( | )( | ) E log ( | )
GG

GG pG Gb pL G    L
    (15) 

where G is the training sample, π is the selected path, b is the 
exponential baseline aiming to reduce gradient variance, and 
pθG is the stochastic policy computed by the product of the 
waypoint probabilities for each step: 
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We employ the REINFORCE gradient estimator and use 
Adam [15] as optimizer to update network parameter θG.  

IV. SIMULATION VERIFICATION 

Two types of simulations are conducted to evaluate the 
effectiveness of the proposed method in common no-fly zone 
avoidance missions. First, we compare the optimality in 
comparison to the existing methods. Then, we analyze the 
adaptability to missions and uncertainties. 

The proposed approach is implemented on a desktop PC 
with Intel Core i5-8265U processor, 8.0 GB memory and 
64-bit Windows operation system. The training data consists 
of 10,000 instances. The central locations and radiuses of 

no-fly zones uniformly at random in the range of θo∈(20 °, 

80 °), φo∈(−10 °, 10 °), ro∈ (400 km, 600 km), the number of 

no-fly zones N = 3-7. The initial states of the vehicle are θ0 = 
0 °, φ0 = 0 °, h0 = 64 km, V0 = 7000 m/s, γ0 = 0 °, ψ0 = ψLOS1. 
The terminal states are θf = 100 °, φf =0 °, hf > 35 km, Vf = 
3400 m/s. The average code running time under 100 simula-
tions is 0.067 s. 

A. Optimality Verification 

For comparison, a traversal method, SBPD algorithm [16], 
is implemented to generate the “optimal possible path”, and 
the state-of-the-art mixed-integer trajectory optimization 
method, MITO algorithm [10], is implemented to generate the 
“optimal possible trajectory”. 

We test the same 100 instances with N = 5 on our method 
and two existing methods, one is a graph-learning method, 
GLPD algorithm, without considering dynamics [11], another 
one is the traditional A* algorithm. The optimality statistics on 
the test set are shown in TABLE I. Fig. 5 shows an example 

result. In TABLE I, the cost gap % represents the average cost 
difference of the paths obtained by our method relative to the 
SBPD algorithm. It can be observed that the cost of all test 
results is within a 5 % gap, and the path consistency is much 
higher than the existing methods. These results show a better 
learning performance by considering dynamic constraints and 
introducing both planning and trajectory indexes. 

TABLE I.  PATH PLANNING OPTIMALITY STATISTICS 

Method 
Path  

Consistency 

Cost Gap 

0.5 % 2 % 5 % 

Proposed 94 % 84 % 89 % 100 % 

GLPD 67 % 50 % 63 % 78 % 

A* 50 % 43 % 49 % 60 % 

 

 

Figure 5.  Path planning result.  

Besides, the trajectory comparison results of one instance 
are shown in Fig. 6-7. The results closely match the optimal 
reference trajectory, with a difference of only 1 % in the total 
control effort. So, the trajectory generation simulator is valid 
and can be used to evaluate the performance and executability 
of the path. 

 

Figure 6.  Longitude-latitude comparisons 

  

Figure 7.  Velocity-time comparisons 

B.  Adaptability Validation 

We separately test our method's performance in different 
no-fly zone distributions, where N = 3-7. At the same time, we 
consider uncertainties in the flight state and model, where Δθ0 
= ±0.5 °, Δφ0 = ±0.5 °, Δh0 = ±3 km, ΔV0 = ±50 m/s, Δγ0 = 
0.02 °, along with 5% aerodynamic deviation and 5% at-
mospheric density deviation. 

The path planning optimality statistics tested on the 100 
instances compared to the existing methods are shown in 

2843



  

TABLE II. In all cases, the path consistency is above 85 %, 
and it is much higher than existing methods. Note that the path 
consistency of the proposed method decreases as the number 
of obstacles increases, that is because the number of feasible 
paths increases, making the planning problem more difficult. 
Conversely, both the GLPD and A* algorithms exhibit the 
highest path consistency when N = 5, that is because the 
former only used instances with N = 5 during training, and the 
latter exhibits randomness in its performance under different 
grid resolutions and heuristic functions. 

Fig. 8-9 illustrates the trajectory generation results of one 
instance under uncertainties. All trajectories terminate within 
5 km of the target. The terminal velocity error is within 45 m/s, 
and the terminal altitude hf > 35 km. Fig. 10 shows the impact 
of uncertainties on the trajectory index. The results indicate 
that it must balance navigation errors by sacrificing trajectory 
performance, thus having an impact on path planning. 

The above results verified that the proposed graph learn-
ing method leverages randomization in simulation and uses 
the cost focus on indexes of both planning and trajectory, 
enabling the stable learning of a path that is effective in di-
verse no-fly zone distributions and uncertainties. 

TABLE II.  PATH CONSISTENCY STATISTICS UNDER UNCERTAINTIES 

Method 
Path Consistency 

N = 3 N = 4 N = 5 N = 6 N = 7 

Proposed 97 % 94 % 90 % 87 % 86 % 

GLPD 54 % 44 % 63 % 59 % 40 % 

A* 42 % 40 % 47 % 41 % 35 % 

 

 

Figure 8.  Trajectories under uncertainties.  

 

Figure 9.  Control commands under uncertainties.  

 

Figure 10.  Trajectory performances under uncertainties.  

V. CONCLUSION 

In this paper, we discuss the path planning problem fo-

cusing on a hypersonic vehicle. We propose a dynam-

ics-constrained graph learning method for this problem. The 

main idea is to decompose this intricate problem and integrate 

information from both path planning and trajectory generation 

into the cost function and learning algorithm. Simulation 

results demonstrate a more stable learning effect in diverse 

environments. This is because we add a mean square error 

index of the path, which reduces the erratic impact of implicit 

trajectory representations and uncertainties. Compared to 

existing methods, the method shows superior optimality and 

adaptability, proving the unignorable impact of dynamics and 

uncertainties on path planning. Additionally, with reliable and 

millisecond-level computations, this approach holds promise 

for practical applications in engineering. 
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