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Abstract— A novel definition for quantum privacy based on
hypothesis testing is presented. This privacy notion possesses an
operational interpretation based on the false positive and nega-
tive rates of adversaries attempting to distinguish among private
categories to which quantum states belong using arbitrary
measurements. Important properties of post processing and
composition are established. The relationship between privacy
against hypothesis-testing adversaries and quantum differential
privacy are then examined. This enables analysis of hypothesis
testing under differential privacy and in noisy quantum systems.
It also provides an operational interpretation for quantum
differential privacy.

I. INTRODUCTION

Quantum computing has garnered sizeable attention due
to speedups in several classically-difficult problems, such as
factorising [1]. These breakthroughs and the added attention
have paved the way for development of new algorithms
in big-data processing and quantum machine learning [2]–
[4]. However, data processing can result in unintended in-
formation leakage [5]. This is an important issue because,
as quantum hardware becomes more commercially avail-
able, quantum algorithms can be implemented on real-world
sensitive, private, or proprietary datasets. Therefore, there
is a need to better understand private information leakage
in quantum computing and to construct privacy-preserving
algorithms.

In classical computing literature, differential privacy has
become the gold standard of privacy analysis and private
algorithm design [6]–[8]. This is often attributed to the
fact that differential privacy makes minimal assumptions on
data (e.g., range rather than distribution) and adversary (i.e.,
computationally unbounded attacker). It also meets important
properties of post processing and compositions [9]. Al-
though possessing powerful guarantees, differential privacy
has been polarizing [10]–[12]. Criticisms surroundings con-
servativeness of differential privacy have motivated studies
on information-theoretic privacy to better handle privacy-
utility trade-off [13]–[17]. Adoption of hypothesis-testing
and estimation-based adversaries have been proposed as less
conservative alternatives to differential privacy by social
scientists following implementation of differential privacy in
the 2020 US Census [10]. Nonetheless, differential privacy
has been recently extended to quantum computing [18]–
[20]. Little attention has been paid to other forms of privacy
in quantum systems. In this paper, we investigate privacy
against hypothesis-testing adversaries. This is of particular
interest to us due to multiple reasons. First, this notion of
privacy provides an operational, intuitive measure of privacy
risk. Second, by investigating its relationship with quantum
differential privacy, we provide an operational meaning to

quantum differential privacy and study hypothesis testing un-
der quantum differential privacy. Finally, by establishing the
effect of depolarizing channels on privacy against hypothesis
testing adversaries, we shed light on hypothesis testing in
noisy quantum systems.

We particularly propose a novel definition for quantum
data privacy based on hypothesis testing. This notion of pri-
vacy possesses an operational interpretation, specifically for
general lay-users, based on false positive and negative rates
of a computationally-unbounded adversary in distinguishing
private classes to which quantum states belong (e.g., diag-
nosis of a disease in health datasets or belonging to training
dataset in membership inference attacks in quantum machine
learning) based on arbitrary measurements. We prove two
important properties for the new notion of privacy: post pro-
cessing and composition. These properties are highly sought-
after in privacy definitions [18] and information leakage
metrics [13]. Subsequently, we investigate the relationship
between privacy against hypothesis-testing adversaries and
quantum differential privacy. This enables us to provide an
interpretation for parameters of differential privacy based
on its relationship with privacy against hypothesis-testing
adversaries. This also enables analysis of hypothesis testing
under quantum differential privacy and in noisy quantum
systems (by establishing privacy of depolarizing channels).

The remainder of this paper is organized as follows. We
provide a review of basic concepts in quantum computing
and information in Section II. The definition and results on
privacy against hypothesis-testing adversaries is presented in
Section III. Section IV presents quantum differential privacy
and its relationship with privacy against hypothesis-testing
adversaries. Finally, we present some concluding remarks
and future directions for research in Section V.

II. QUANTUM STATES AND CHANNELS

The definitions and preliminary results in this section are
borrowed from [21]. When the results or definitions are from
outside this source, appropriate citations are presented.

A quantum system is modelled by a Hilbert space H, i.e., a
complex vector space, equipped with an inner product, that
is complete with respect to the norm defined by the inner
product. Dirac’s notation is used to denote quantum states.
That is, a pure quantum state, which is a vector in Hilbert
space H with unit norm, is denoted by ‘ket’ |·⟩, e.g., |ψ⟩ ∈
H. The inner product of two states |ϕ⟩ and |ψ⟩ is denoted by
⟨ϕ|ψ⟩. Here, ‘bra’ ⟨ψ| is used to refer to conjugate transpose
of |ψ⟩ and ⟨ϕ|ψ⟩ := ⟨ϕ| |ψ⟩ ∈ C.

The basic element of interest in quantum information
theory is a quantum bit, which is referred to as qubit. A qubit
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is a vector in a 2-dimensional Hilbert space. Any qubit can
be written in terms of the so-called computational basis |0⟩
and |1⟩ that form an orthonormal basis for the 2-dimensional
Hilbert space, i.e., |ψ⟩ = α |0⟩ + β |1⟩ with α, β ∈ C such
that |α|2 + |β|2 = 1. Combination of two qubits |ϕ⟩ and
|ψ⟩ is denoted by their tensor product |ϕ⟩ ⊗ |ψ⟩, where ⊗
is the Kronecker or tensor product. For the sake of brevity,
we sometimes refer to |ϕ⟩ ⊗ |ψ⟩ as |ϕ⟩ |ψ⟩ or |ϕ, ψ⟩. When
|ϕ⟩ and |ψ⟩ belong to or assigned to two distinct registers
(users) A and B (e.g., used by two separate parties), and this
is either unclear from the context or must be emphasized, we
write |ϕ⟩A⊗|ψ⟩B or |ϕ⟩A |ψ⟩B . A quantum gate is a unitary
operator, e.g., U such that U†U = I with U† denoting
conjugate transpose of U , that acts on quantum states.

A mixed quantum state is represented by ensemble
{(p1, |ψ1⟩), . . . , (pk, |ψk⟩)} such that pi ≥ 0,∀i ∈ [k] :=
{1, . . . , k} and

∑
i∈[k] pi = 1, i.e., the quantum system is

in pure state |ψi⟩ with probability pi. The density operator
corresponding to ensemble {(p1, |ψ1⟩), . . . , (pk, |ψk⟩)} is
ρ :=

∑
i∈[k] pi |ψi⟩ ⟨ψk|. By construction, tr(ρ) = 1. A pure

quantum states |ϕ⟩ can be modelled using rank-one density
operator ρ = |ϕ⟩ ⟨ϕ|. Combination of two density operators
ρ and σ is denoted by their tensor product ρ⊗ σ.

A basic operation in quantum systems is measure-
ment, which enables extraction of information about the
states. A measurement is modelled by a set of opera-
tors M = {Ki}i∈[m] with normalization constraint that∑

i∈[m]K
†
iKi = I . By performing measurement M on

a quantum system with state ρ, we observe output i ∈
[m] with probability tr(KiρK

†
i ) in which case the state

of the quantum system collapses to KiρK
†
i / tr(KiρK

†
i )

after measurement. When the post-measurement state of the
quantum system is of no interest, we can use the positive
operator-valued measure (POVM) framework, which is a set
of positive semi-definite Hermitian matrices F = {Fi}i∈[m]

such that
∑

i∈[m] Fi = I . In this case, the probability of
obtaining output i ∈ [m] when taking a measurement on a
system with quantum state ρ is tr(ρFi) = tr(Fiρ).

A quantum channel is a mapping from the space of
density operators to potentially another space of density
operators that is both completely positive and trace preserv-
ing. Quantum channels model open quantum systems, i.e.,
quantum systems that interact with environment, and thus can
model noisy quantum behaviours. According to Choi-Kraus
theorem [21, Theorem 4.4.1], for each quantum channel E ,
there exists a family of linear operators {Ej}j∈[n] for some
n ∈ N such that

∑
j E

†
jEj = I and E(ρ) =

∑
j∈[n]EjρE

†
j

for all density operators ρ. This is referred to as the Kraus
representation of quantum channels. For instance, a quan-
tum gate with unitary operator U can be represented by
E(ρ) = UρU†. Also, if we discard or delete the outcome of
measurement M = {Ki}i∈[m], the quantum state transition
can be modelled by quantum channel E(ρ) =

∑
i∈[k]KiρK

†
i .

We define the tensor product of quantum channels E1 and
E2 as E1 ⊗ E2(ρ1 ⊗ ρ2) := E1(ρ1) ⊗ E2(ρ2) for all density
operators ρ1 and ρ2.

The trace norm or Schatten 1-norm of any linear operator
M is defined as ∥M∥1 := tr(|M |) = tr(

√
M†M). Based

on this, we can define the trace distance between any two
density operators ρ and σ with T (ρ, σ) := 1

2∥ρ − σ∥1 ∈
[0, 1]. Recall that density operators belong to the set of linear
operators (i.e., matrices). The distance is equal to zero when
two quantum states are equal. However, the distance attains
its maximum value when two quantum states have support
on orthogonal subspaces. For υ ∈ [0, 1], the υ-relative
entropy between two quantum states ρ and σ is defined as
Dυ(ρ∥σ)=−log (min{tr(Qσ)|0⪯Q⪯I, tr(Qρ) ≥ 1−υ}) .
The υ-relative entropy satisfies a few important properties
that we will use in this paper. These properties are borrowed
from [22]. First, Dυ(ρ∥σ) ≥ 0 with equality if ρ = σ and
υ = 0. Second, υ-relative entropy enjoys data processing
inequality, i.e., Dυ(E(ρ)∥E(σ)) ≤ Dυ(ρ∥σ) for all density
operators ρ, σ and all quantum channels E . Also, Dυ(ρ∥σ) ≤
(S(ρ∥σ) +Hb(υ))/(1− υ), where Hb(υ) = −υ log(υ) −
(1 − υ) log(1− υ) is the binary entropy function and
S(ρ∥σ) := tr(ρ(log(ρ) − log(σ))) is the usual relative en-
tropy in quantum information theory. The υ-relative entropy
and the trace distance also satisfy the following relationship
ν/(1−ν)∥ρ−σ∥1 ≤ Dυ(ρ∥σ) [23]. The smooth max-relative
entropy is defined as Dυ

max(ρ∥σ) = infτ∈Bυ(ρ)Dmax(τ∥σ),
where Dmax(τ∥σ) = inf{λ ≥ 0 | ρ ⪯ exp(λ)σ} and
Bυ(ρ) := {τ | τ † = τ ⪰ 0, ∥ρ− τ∥1 ≤ 2υ}.

Global depolarizing channel is an important type of quan-
tum noise that is represented by

EDep(ρ) :=
p

D
I + (1− p)ρ, (1)

where D is the dimension of the Hilbert space to which the
system belongs and p ∈ [0, 1] is a probability parameter.

III. QUANTUM HYPOTHESIS TESTING AND PRIVACY

Consider a quantum hypothesis testing scenario where a
decision maker aims to distinguish between two quantum
states ρ (null hypothesis) and σ (alternative hypothesis).
This is done by performing POVM M := {M1,M2} with
M1 + M2 = I and 0 ⪯ Mi ⪯ I for i = 1, 2. If
measurement outcome corresponding to the operator M1 is
realized, the decision maker guesses that the state is ρ while,
if measurement outcome corresponding to the operator M2

is realized, the decision maker guesses that the state is σ.
The probability of a type-I error (false positive) is equal

α(M2) := tr(M2ρ). (2)

The probability of a type-II error (false negative) is given by

β(M1) := tr(M1σ). (3)

The optimal test, which seeks to minimize the false negative
probability subject to a constraint on maintaining the false
positive probability below η ∈ [0, 1], is given by

βη(ρ, σ) := min
M1,M2⪰0

β(M1), (4a)

s.t. M1 +M2 = I, (4b)
α(M2) ≤ η. (4c)
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This is referred to as asymmetric quantum hypothesis test-
ing [24]. The following well-known result (see, e.g., [22])
can be easily derived based on the definition of βη(ρ, σ) and
η-relative entropy Dη(ρ∥σ).

Proposition 1: βη(ρ, σ) = 2−Dη(ρ∥σ).
Proof: Note that

βη(ρ, σ)= min
M1,M2⪰0

{tr(M1σ)|M1+M2=I, tr(M2ρ)≤η}

= min
I⪰M1⪰0

{tr(M1σ)| tr((I −M1)ρ) ≤ η}

= min
I⪰M1⪰0

{tr(M1σ)|1− η ≤ tr(M1ρ)}

=2−Dη(ρ∥σ).

This concludes the proof.
Alternatively, a combination of false positive and false

negative probabilities can be minimized:

perr(ρ, σ) := min
M1,M2⪰0

pρα(M2) + pσβ(M1),

s.t. M1 +M2 = I,

where pρ ∈ [0, 1] and pσ ∈ [0, 1], respectively, denote
the prior probability that quantum state ρ and the prior
probability that quantum state σ are prepared. By construct,
pρ + pσ = 1. This is referred to as symmetric quantum
hypothesis testing [24].

Theorem 1 (Helstrom-Holevo theorem [21, p. 254-255])
perr(ρ, σ) =

1
2 (1− ∥pρρ− pσσ∥1) .

The most indistinguishable quantum states are ρ = σ. In
this case, a decision maker would not be able to identify
the quantum states because their observables are equivalent.
Therefore, we can define

pmax := perr(ρ, ρ) =
1

2
(1− |pρ − pσ|) .

Therefore, for general density operators, we have

perr(ρ, σ) = pmax +
1

2
(|pρ − pσ| − ∥pρρ− pσσ∥1) .

In quantum data privacy, it is desired to protect the
quantum state of a system (which is being used for quantum
computation) from being accurately estimated. Particularly,
given a quantum state ρ, we want to make sure that no
decision maker can identify whether the quantum state of the
system is ρ or another similar quantum state σ. Similarity is
modelled or captured using the neighbourhood relationship,
c.f., differential privacy [20].

Definition 1 (Neighbouring Relationship) A neighbouring
or similarity relationship over the set of density operators is
a mathematical relation that is both reflective and symmetric.
The notation ρ ∼ σ signifies that two quantum states ρ and
σ are neighbouring or similar. Note that, by definition, ρ ∼ ρ
(reflectivity) and ρ ∼ σ implies σ ∼ ρ (symmetry).

An example of neighbouring or similarity relationship is
the notion defined using trace distance in [18]. In this case,
we say ρ ∼ σ if and only if T (ρ, σ) ≤ d for some constant
d > 0. However, we may select another notion of similarity
that ensures that two quantum states are neighbouring if they

are constructed based on two private datasets that differ in
the data of one individual. Such a definition is well-suited
for quantum machine learning with privacy guarantees [25].

Definition 2 ((ε, η)-Privacy) For any ε ≥ 0 and η ∈ [0, 1],
a quantum channel E is (ε, η)-private (against hypothesis-
testing adversary) if Dη(E(ρ)∥E(σ)) ≤ ε for all neighbour-
ing states ρ ∼ σ.

This definition implies that a channel E is private if
distinguishing output states E(ρ) and E(σ), for any two
neighbouring states ρ ∼ σ, is hard by any decision maker. In
fact, Proposition 1 shows that probability of false negatives
β(M1) for any detection mechanism M = {M1,M2} is
lower bounded by 2−ε if the probability of false positives
bounded by α(M2) ≤ η. Therefore, as privacy budget ε
tends to zero (i.e., privacy guarantee is strengthened), the
probability of false negatives tends to one (i.e., the decision
maker would become overwhelmed by false negatives).

Proposition 2: Assume that a quantum channel E is
(ε, η)-private. Then, the quantum channel E is (ε′, η′)-private
if η′ ≥ η and ε ≤ ε′.

Proof: If η′ ≥ η, we have

2−Dη(ρ,σ) = min{tr(Qσ)|0⪯Q⪯I, tr(Qρ) ≥ 1−η}
≤ min{tr(Qσ)|0⪯Q⪯I, tr(Qρ) ≥ 1−η′}

= 2−Dη′
(ρ,σ),

where the inequality follows from that {Q|0 ⪯ Q ⪯
I, tr(Qρ) ≥ 1−η} ⊆ {Q|0 ⪯ Q ⪯ I, tr(Qρ) ≥ 1−η′}.
Therefore, for all σ ∼ ρ, we get Dη′

(ρ, σ) ≤ Dη(ρ, σ) ≤
ϵ ≤ ϵ′.

The following corollary, building on Proposition 2, shows
that (ε, 0)-privacy against hypothesis testing adversary is the
strongest notion of privacy and thus, (ε, η)-privacy can be
thought of as relaxations of (ε, 0)-privacy.

Corollary 1: Assume that a quantum channel E is (ε, 0)-
private. Then, the quantum channel E is (ε, η)-private for all
η ∈ [0, 1].

Although privacy in Definition 2 is defined in terms
of asymmetric quantum hypothesis testing, we prove the
following bound on symmetric quantum hypothesis testing.

Theorem 2: For any (ε, η)-private quantum channel E ,

perr(E(ρ), E(σ)) ≥ Γpρ,pσ
(ε, η) (5)

where

Γpρ,pσ (ε, η) :=max

{
pmax−

εmin{pρ, pσ}(1−η)
2η

, 0

}
.

Proof: Using [23], we have

η

1− η
∥E(ρ)− E(σ)∥1 ≤ Dη(E(ρ)∥E(σ)).

Therefore, if E is (ε, η)-private, we get

∥E(ρ)− E(σ)∥1 ≤ 1− η

η
ε.
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Fig. 1. The lower bound Γ 1
2
, 1
2
(ε, η) on perr(E(ρ), E(σ)) in Theorem 2

versus the privacy budget ε for various choices of η. As expected, reducing
the privacy budget ε strengthens the privacy guarantees.

We have

∥pρE(ρ)−pσE(σ)∥1=pσ
∥∥∥∥ pρpσ E(ρ)−E(σ)

∥∥∥∥
1

=pσ

∥∥∥∥pρ−pσpσ
E(ρ)+E(ρ)−E(σ)

∥∥∥∥
1

≤|pρ−pσ|∥E(ρ)∥1+pσ∥E(ρ)−E(σ)∥1

≤|pρ−pσ|+
1− η

η
εpσ. (6)

Following the same line of reasoning, we can also show that

∥pρE(ρ)− pσE(σ)∥1 ≤ |pρ − pσ|+
1− η

η
εpρ. (7)

Combining (6) and (7), we get

∥pρE(ρ)− pσE(σ)∥1 ≤ |pρ − pσ|+
1− η

η
εmin{pρ, pσ}.

Therefore,

perr(E(ρ), E(σ)) =pmax +
1

2

(
|pρ − pσ|

− ∥pρE(ρ)− pσE(σ)∥1
)

≥pmax −
εmin{pρ, pσ}(1− η)

2η
.

This concludes the proof.
Theorem 2 shows that, by decreasing privacy budget

ε, the combined probabilities of false positive and false
negative denoted by perr(E(ρ), E(σ)) increases towards its
maximum value pmax. Figure 1 illustrates the lower bound
Γpρ,pσ (ε, η) on perr(E(ρ), E(σ)) versus the privacy budget
ε for various choices of η for the case that pρ = pσ = 1

2 .
As expected, reducing the privacy budget ε strengthens the
privacy guarantees.

It is stipulated that any useful notion of privacy should
admit two important properties of post processing and com-
position [20]. In the remainder of this section, we discuss
these properties and their application to privacy against
hypothesis-testing adversaries.

Theorem 3 (Post Processing) Let E be any (ε, η)-private
and N be an arbitrary quantum channel, then N ◦ E is
(ε, η)-private.

Proof: The proof follows from that, for all ρ and σ,
Dη(N (E(ρ))∥N (E(σ))) ≤ Dη(E((ρ)∥E(σ)) [22].

Theorem 3 shows that an adversary cannot weaken the
privacy guarantees by processing the received quantum in-
formation in any way. This is also a useful property for
developing privacy-preserving algorithms as it ensures that it
is enough to guarantee privacy at the beginning of the data
analysis chain. This is the motivation behind the so-called
local differential privacy, see, e.g., [26].

Theorem 4 (Composition) Let E1 be any (ε1, 0)-private
and E2 be any (ε2, 0)-private. Assume that ρ1⊗ρ2 ∼ σ1⊗σ2
if ρ1 ∼ σ1 and ρ2 ∼ σ2. Then, E1⊗E2 is (ε1+ε2, 0)-private.

Proof: Using the additivity results in [27, Appendix A],
we get D0(ρ1 ⊗ ρ2∥σ1 ⊗ σ2) = D0(ρ1∥σ1) + D0(ρ2∥σ2).
Therefore, if D0(ρi∥σi) ≤ εi for i = 1, 2, then D0(ρ1 ⊗
ρ2∥σ1 ⊗ σ2) ≤ ε1 + ε2.

In practical data processing applications, there is often a
need to deal with complicated algorithms in which responses
from several queries based on private user data are fused
together to extract useful statistical information from the
data. For instance, when training machine learning models,
iterative gradient descent is used and the gradient at each
epoch can be modelled as a query on the private data used
for training [28]. In this case, it is desirable to establish com-
position rules for combination of several privacy-preserving
quantum operations. Theorem 4 provides such a result for
privacy against hypothesis-testing adversaries.

IV. QUANTUM DIFFERENTIAL PRIVACY

The gold standard of privacy analysis in computer science
literature is differential privacy, which has been recently
extended to quantum computing [18]. In this section, we
establish a relationship between differential privacy and
privacy against hypothesis-testing adversaries.

Definition 3: For any ϵ, δ ≥ 0, a quantum channel E is
(ϵ, δ)-differentially private if

tr(ME(ρ)) ≤ exp(ϵ) tr(ME(σ)) + δ, (8)

for all measurements 0 ⪯ M ⪯ I and neighbouring density
operators ρ ∼ σ.

We can prove the following result regarding the rela-
tionship between quantum differential privacy and privacy
against hypothesis testing adversaries.

Theorem 5: The following two statements hold:
• If E be (ε, η)-private, then E is (ε,

√
2η)-differentially

private.
• If E be (ϵ, 0)-differentially private, then E is (ϵ, η)-

private for all η ∈ [0, 1].
Proof: First, D

√
2ν

max(E(ρ), E(σ)) ≤ Dν(E(ρ), E(σ)) [23,
Proposition 4.1]. Therefore, if E is (ε, η)-private, we
get D

√
2η

max(E(ρ), E(σ)) ≤ Dη(E(ρ), E(σ)) ≤ ε. From
Lemma III.2 in [20], a quantum channel E is (ϵ, δ)-
differentially private if and only if Dδ

max(E(ρ), E(σ)) ≤ ϵ.
This proves that E is (ε,

√
2η)-differentially private.

For the second part, note that Dη(E(ρ), E(σ)) ≤
D0

max(E(ρ), E(σ)) [23, Proposition 4.1]. Therefore, if E
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Fig. 2. Lower bound on βη(E(ρ), E(σ)) in Theorem 7 [top] and lower
bound on perr(E(ρ), E(σ)) in Theorem 8 [bottom] versus privacy budget
ϵ for various choices of δ.

is (ϵ, 0)-differentially private, we have Dη(E(ρ), E(σ)) ≤
D0

max(E(ρ), E(σ)) ≤ ϵ. This implies that E is (ϵ, η)-private
for all η ∈ [0, 1].

Theorem 6 (Lemma IV.2 [20]) Assume ρ ∼ σ if T (ρ, σ) ≤
κ. Then, global depolarizing channel EDep is (ϵ, δ)-
differentially private with δ = max{0, (1 − exp(ϵ))p/D +
(1− p)κ}.

Corollary 2: Assume ρ ∼ σ if T (ρ, σ) ≤ κ. Then,
global depolarizing channel EDep is (ε, η)-private with ε =
log(1 + (1− p)Dκ/p) and all η ∈ [0, 1].

Proof: First, note that Theorem 6 shows that the
depolarizing channel EDep(ρ) is (ϵ, δ)-differentially private
with δ = max{0, (1− exp(ϵ))p/D+(1− p)κ}. If we select
ϵ = log(1 + (1− p)Dκ/p), we get δ = 0. Using Theorem 5,
then E is (ϵ, η)-private for all η ∈ [0, 1].

We finish this section with analysing the performance of
hypothesis-testing adversaries for differentially-private quan-
tum channels. This enables to establish bounds on hypothesis
testing under quantum differential privacy constraint. Fur-
thermore, we can establish an operational interpretation for
guarantees of quantum differential privacy.

Theorem 7: For any (ϵ, δ)-differentially private quantum
channel E ,

βη(E(ρ), E(σ)) ≥ Ωη(ϵ, δ), (9)

where Ωη(ϵ, δ) := exp(−ϵ)(1− η − δ).

Proof: Assume that ρ ∼ σ. Because of (ϵ, δ)-
differential privacy, tr(ME(σ)) ≥ exp(−ϵ)(tr(ME(ρ)) −
δ) for all measurements 0 ⪯ M ⪯ I . There-
fore, βη(E(ρ), E(σ)) = minI⪰M⪰0{tr(ME(σ))|1 − η ≤
tr(ME(ρ))} ≥exp(−ϵ)(1− η − δ).

Theorem 7 provides a lower bound for the false negative
rate of any hypothesis testing mechanism under quantum dif-
ferential privacy constraint. The lower bound grows and the
decision maker would get overwhelmed by false negatives
when decreasing ϵ and δ. Therefore, the privacy guarantees
strengthens as the privacy budget reduces in quantum differ-
ential privacy. This is illustrated in Figure 2 [top].

Theorem 8: For any (ϵ, δ)-differentially private quantum
channel E ,

perr(E(ρ), E(σ))≥Θ(ϵ, δ), (10)

where Θ(ϵ, δ) :=max{pmax+max{pρ, pσ}(1−exp(ϵ)−δ), 0}.
Proof: First, assume that pρ ≥ pσ . The defi-

nition of differential privacy implies that tr(ΛE(ρ)) ≤
exp(ϵ) tr(ΛE(σ)) + δ for all 0 ⪯ Λ ⪯ I . As a result,

tr(Λ(pρE(ρ)− pσE(σ))) ≤(pρ exp(ϵ)−pσ) tr(ΛE(σ))+pρδ
≤pρ exp(ϵ)− pσ + pρδ,

where the last inequality follows from that pρ exp(ϵ)−pσ ≥
pρ − pσ ≥ 0 and that tr(ΛE(σ)) ≤ 1 because 0 ⪯ Λ ⪯ I .
Therefore, using Lemma 1 in the appendix, we have

1

2
∥pρE(ρ)− pσE(σ)∥1 ≤pρ exp(ϵ)− pσ + pρδ +

pσ − pρ
2

≤pρ(exp(ϵ) + δ)− pσ + pρ
2

. (11)

Alternatively, assume that pσ ≥ pρ. Following the same line
of reasoning, we get

1

2
∥pσE(σ)− pρE(ρ)∥1 ≤pσ(exp(ϵ) + δ)− pσ + pρ

2
. (12)

Combining (11) and (12) gives

1

2
∥pσE(σ)− pρE(ρ)∥1 ≤max{pρ, pσ}(exp(ϵ) + δ)

− pσ + pρ
2

.

Therefore,

|pρ−pσ| − ∥pρE(ρ)− pσE(σ)∥1
≥|pρ − pσ|+ (pσ + pρ)− 2max{pρ, pσ}(exp(ϵ) + δ)

=2max{pρ, pσ}(1− exp(ϵ)− δ).

This concludes the proof.
Theorem 8 provides a lower bound for the combined

false positive and negative rates of any hypothesis testing
mechanism. The lower bound grows towards pmax as ϵ and
δ become smaller, which demonstrates that the privacy guar-
antees strengthen as the privacy budget reduces in quantum
differential privacy. This is illustrated in Figure 2 [bottom].

V. CONCLUSIONS AND FUTURE WORK

We presented a definition for privacy based on quantum
hypothesis testing. Important properties of post processing
and composition were proved. We then examined the rela-
tionship between privacy against hypothesis-testing adver-
saries and quantum differential privacy. In the composition
rules for privacy against hypothesis adversaries, we only
considered the case of η = 0. Future work can expand
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these results for general case of η ∈ [0, 1]. Furthermore,
we only showed that (ϵ, 0)-differential privacy can be trans-
lated to privacy against hypothesis testing adversaries (the
inverse results are more general in this paper). Therefore,
another avenue for future research is to expand these results
to general (ϵ, δ)-differential privacy. Finally, an important
direction for future research is to use the proposed framework
in numerical setups based on real-world data.
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APPENDIX

Lemma 1: The following identity holds:

1

2
∥pρρ− pσσ∥1 = max

0⪯Λ⪯I
tr(Λ(pρρ− pσσ)) +

pσ − pρ
2

.

Proof: The proof is similar to the standard argument for
trace distance. The difference operator pρρ− pσσ is Hermi-
tian. So we can diagonalize it as pρρ− pσσ =

∑
i λi |i⟩ ⟨i|,

where {|i⟩}i is an orthonormal basis of eigenvectors and
{λi}i is a set of real eigenvalues. Define matrices P :=∑

i:λi>0 λi |i⟩ ⟨i| ⪰ 0 and Q :=
∑

i:λi<0(−λi) |i⟩ ⟨i| ⪰ 0.
Evidently, by construction, pρρ− pσσ = P −Q. Note that,

∥pρρ− pσσ∥1 = tr(|pρρ− pσσ|) = tr(|P −Q|)
= tr(P +Q)

=2 tr(P ) + (pσ − pρ),

where the last equality follows from

tr(P )− tr(Q) = tr(P −Q) = tr(pρρ− pσσ)

=pρ tr(ρ)− pσ tr(σ)

=pρ − pσ.

For all 0 ⪯ Λ ⪯ I , we have

tr(Λ(pρρ− pσσ)) = tr(Λ(P −Q))

≤ tr(ΛP )

≤ tr(P )

=
1

2
∥pρρ− pσσ∥1 +

pρ − pσ
2

,

with equality achieved if Λ =
∑

i:λi>0 |i⟩ ⟨i|. This implies
that
1

2
∥pρρ− pσσ∥1 = max

0⪯Λ⪯I
tr(Λ(pρρ− pσσ)) +

pσ − pρ
2

.
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