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Abstract— We consider an optimal control problem on infi-
nite horizon with a vanishing discounting factor, state sufficient
conditions of optimality and illustrate them with examples.

I. INTRODUCTION

In this paper, we consider the controlled system

ẋ(t) = f(x(t), u(t)), t ≥ 0,

x(0) = x0,

x(t) ∈ X,
u(t) ∈ U,

(1)

where f(·, ·) : IRn × U → IRn, U ⊂ IRm, and X ⊂ IRn

plays a role of a state constraint.
A control u(·) and the pair (x(·), u(·)) are called ad-

missible control and an admissible process, respectively, if
u(·) is measurable, x(·) is absolutely continuous, and the
relationships (1) are satisfied. The set of admissible controls
is denoted by U(x0), which we assume to be not empty.

The optimal control problem often considered on the tra-
jectories of (1) is that of finding the infimum over admissible
processes of ∫ ∞

0

e−λtg(x(t), u(t)) dt, (2)

where λ > 0 is a parameter and g(x, u) : IRn × U → IR is
a given function. Here e−λt is the discounting factor, which
is introduced to ensure convergence of the integral when
appropriate assumptions on g are in place. λ in (2) is often
chosen arbitrarily. If it is desired to take λ close to zero,
then the following optimization problem with a vanishing
discounting factor can be considered:

inf
u(·)∈U(x0)

lim sup
λ→0+

λ

∫ ∞
0

e−λtg(x(t), u(t)) dt. (3)

The multiplicative factor λ is introduced here to ensure that
the limit as λ → 0+ is bounded. We could as well have
taken lim inf

λ→0+
rather than lim sup

λ→0+
in (3), but we chose the

latter because taking inf
u(·)∈U(x0)

lim sup
λ→0+

can be interpreted as

“minimization in the worst case scenario”. In this paper we
establish sufficient optimality conditions in problem (3).

It should also be mentioned that there are optimality
criteria on infinite horizon that do not involve a discounting
factor; see, e.g., [2], [12] and references therein.

We assume that f(·, ·) and g(·, ·) are Borel measurable
and that g is bounded below. We do not assume that f and
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g are continuous. Neither do we assume any structure of U
and X such as closedness or compactness.

If we interchange the infimum and the limit in (3), if the
latter exists, we obtain the so-called Abel limit

lim
λ→0+

inf
u(·)∈U(x0)

λ

∫ ∞
0

e−λtg(x(t), u(t)) dt. (4)

The so-called Cesàro limit of the long-run averages

lim
T→∞

inf
u(·)∈UT (x0)

1

T

∫ T

0

g(x(t), u(t)) dt (5)

is closely related to it. (Here UT (x0) is the set of admissible
controls on the interval [0, T ].)

A lot of literature is devoted to estabishing conditions of
existence and equality of Cesàro and Abel limits in problems
of dynamic programming and optimal control in discrete and
continuous time, see, e.g., [6], [9], [11]. Relatively weak
conditions ensuring equality of the limits (4) and (5) are
established in the recent paper [6].

Optimality conditions in the problem

inf
u(·)∈UT (x0)

lim inf
T→∞

1

T

∫ T

0

g(x(t), u(t)) dt,

as well as in its discrete counterpart, were studied in [1], [6],
[7], [8]. Optimality conditions for the discrete-time version of
problem (3) recently appeared in [10]. Although the ideas in
treatment of discrete-time and continuous-time problems are
similar, there are also significant differences; e.g., nonsmooth
analysis is used in the present paper, but not in discrete time.

The rest of the paper is organized as follows. In Section 2
we formulate sufficient optimality conditions in problem (3)
and illustrate them by examples in Section 3.

II. SUFFICIENT OPTIMALITY CONDITIONS
Denote

d(x0) := sup
(ψ,η)

inf
(x,u,p)

{g(x, u) + (ψ(x0)−ψ(x)) + pf(x, u)},

(6)
where supremum is taken over functions ψ : IRn → IR non-
decreasing along admissible trajectories, that is, such that

t 7→ ψ(x(t)) is non-decreasing for any admissible x(·),
(7)

and bounded locally Lipschitz η : IRn → IR (we write η ∈
BL). Infimum in (6) is taken over (x, u) ∈ X × U and
p ∈ ∂η(x), where ∂η stands for the Clarke’s generalized
gradient ([3]), which for Lipschitz η is equal to the convex
hull of the limits of its gradients, that is, has representation

∂η(x) = conv {p| p = lim
i→∞

∇η(xi) for some xi → x}.
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Since g is assumed to be bounded below, by taking constant
ψ and η in (6), we see that d(x0) > −∞.

For a fixed λ > 0 denote

hλ(x0) := λ inf
u(·)∈U(x0)

∫ ∞
0

e−λtg(x(t), u(t)) dt. (8)

Since g is bounded below, so is hλ(x0). Assume in addition
that there exists an admissible process (x(·), u(·)) such that
g(x(t), u(t)) ≤M for all t. Then hλ(x0) ≤M for all λ.

The following theorem, which is the main result of the
paper, provides conditions ensuring the existence of the limit
lim
λ→0+

hλ(x0) and of optimality of a given process in problem
(3). We state it without proof.

Theorem 2.1: Assume that a pair (ψ̄, η̄) of maximizers
in problem (6) exists and for some admissible process
(x∗(·), u∗(·)) and all t ≥ 0,

(x∗(t), u∗(t)) = argmin(x,u){g(x, u)− ψ̄(x) + pf(x, u)}
for all p ∈ ∂η̄(x)

(9)
and

ψ(x∗(t)) = const. (10)

Then
(a) there exists the limit h(x0) := lim

λ→0+
hλ(x0);

(b) there is equality

V (x0) = h(x0) = d(x0), (11)

where

V (x0) := inf
u(·)∈U(x0)

lim sup
λ→0+

λ

∫ ∞
0

e−λtg(x(t), u(t)) dt

is the value function in (3);
(c) the process (x∗(·), u∗(·)) is optimal in (3).

Remark 1. If function η̄ is smooth, then (9) becomes

(x∗(t),u∗(t)) =

argmin(x,u){g(x, u)− ψ̄(x) +∇η̄(x)f(x, u)}.
(12)

However, as we will see in examples below, η̄ may be
nonsmooth even in simple situations.

Remark 2. The limiting function h may be discontinuous
and functions ψ̄, η̄ may depend on x0, as shown in Example
2 below.

Remark 3. For (9) to hold it is necessary that for all t

u∗(t) = argminu∈U{g(x∗(t), u) + pf(x∗(t), u)}
for all p ∈ ∂η̄(x)

∣∣
x=x∗(t)

,
(13)

which implies the optimal feedback control law

uf [x] = argminu∈U{g(x, u) + pf(x, u)} for all p ∈ ∂η̄(x).

In the case when η̄ is smooth, the latter becomes

uf [x] = argminu∈U{g(x, u) +∇η̄(x)f(x, u)}. (14)

If η̄ is known, this law can be used to construct an optimal
control in (3). If the maximizing η is not known, it may
be possible to approximate it and to construct a control
close to the optimal. This approach is demonstrated in [5]
in a problem with a fixed discounting factor. In the case
of the vanishing dicounting factor, developing a method for
constructing an approximately optimal control may be a
subject of further research.

Theorem 2.1 establishes sufficient conditions of optimality
in terms of the maximizing functions ψ, η in (6). Theorem
2.2 below demonstrates a possible way for finding one such
pair of functions. (It may be not unique.) We also state this
theorem without proof.

Theorem 2.2: Let the pointwise limit h(x0) =
lim
λ→0+

hλ(x0) exist for all x0 ∈ X and η̄(·) ∈ BL be
such that

inf
(x,u,p)

{g(x, u)− h(x) + pf(x, u)} = 0, (15)

where infimum is taken over (x, u) ∈ X×U and p ∈ ∂η̄(x).
Then the supremum in (6) is reached at the functions ψ = h
and η = η̄.

Remark. If η̄ is smooth, (15) becomes

inf
(x,u)
{g(x, u)− h(x) +∇η̄(x)f(x, u)} = 0. (16)

III. EXAMPLES

In this section, applications of Theorems 2.1 and 2.2 are
demonstrated.

Example 1.
Consider the problem

inf
u(·)∈U(x0)

lim sup
λ→0+

λ

∫ ∞
0

e−λt(1− x(t))2 dt (17)

on the trajectories of the system

ẋ(t) = (1− x(t))2u(t), t > 0,

x(0) = x0,

x(t) ∈ (0, 2),

u ∈ [−1, 1].

(18)

In this example, g(x) = (1− x)2 and X = (0, 2).
It is obvious that the control that makes the system

approach x = 1 as quickly as possible, is optimal. That
is, the optimal feedback control law is

uf [x] =


1, x ∈ (0, 1),

−1, x ∈ (1, 2),

any, x = 1,

(19)

and the corresponding optimal trajectory is

x∗(t) =


1− 1

t+1/(1−x0)
, x0 ∈ (0, 1)

1 + 1
t+1/(x0−1) , x0 ∈ (1, 2),

1, x0 = 1.

(20)
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Let us show that h(x) = 0 for all x ∈ X . We see from (20)
that the integral ∫ T

0

(1− x∗(t))2 dt

is uniformly bounded with respect to T , hence

h(x0) = lim
λ→0+

λ

∫ ∞
0

e−λt(1− x∗(t))2 = 0.

Next we will show that (15) holds with η̄(x) = |1− x|. We
have

∂η̄(x) =


−1, x < 1,

1, x > 1,

[−1, 1], x = 1

and for p ∈ ∂η̄(x) we have

g(x)− h(x) + pf(x, u) = (1− x)2 + p(1− x)2u

= (1− x)2(1 + pu)

=


(1− x)2(1− u), x ∈ (0, 1),

(1− x)2(1 + u), x ∈ (1, 2),

0, x = 1.

(21)

Therefore,

min
(x,u,p)

{g(x)− h(x) + pf(x, u)} = 0, (22)

that is, (15) holds. Due to Theorem 2.2, maximizing func-
tions in (6) are ψ̄ = 0 and η̄ = |1− x|.

From (19) and (21) one can see that, for u∗(t) :=
uf [x∗(t)] we have for all t and p(t) ∈ ∂η̄(x)

∣∣
x=x∗(t)

g(x∗(t))− h(x∗(t)) + p(t)f(x∗(t), u∗(t)) = 0.

This implies via (22) that

(x∗(t), u∗(t)) = argmin(x,u,p){g(x)− ψ̄(x) + pf(x, u)}
for all p ∈ ∂η̄(x),

and, since h(x) = 0, we have

h(x∗(t)) = const.

Thus, (9) and (10) hold, hence, the process (x∗(·), u∗(·)) is
optimal due to Theorem 2.1, which agrees with our earlier
observation.

Example 2.
Consider the problem

inf
u(·)∈U(x0)

lim sup
λ→0+

λ

∫ ∞
0

e−λt(−x(t)) dt (23)

on the trajectories of the system

ẋ(t) = x(t)u(t), t ≥ 0,

x(0) = x0,

x(t) ∈ [0, 1],

u ∈ [−1, 1].

In this example, g(x) = −x and X = [0, 1].

It is clear that the feedback control law below is optimal
in problem (23):

uf [x] =


any u, x = 0,

1, x ∈ (0, 1),

0, x = 1.

(24)

If x0 = 0, then x(t) ≡ 0 and hλ(0) = 0 for all λ > 0.
Otherwise, if x0 ∈ (0, 1], the optimal trajectory reaches x =
1 at some time τ independent of λ and stays there for t ≥ τ .
Therefore,

hλ(x0) = λ

∫ τ

0

e−λt(−x∗(t)) dt+ λ

∫ ∞
τ

e−λt(−1) dt

= λ

∫ τ

0

e−λt(−x∗(t)) dt− e−λτ ,

from which we conclude that h(x0) = lim
λ→0+

hλ(x0) = −1.
Thus,

h(x) = lim
λ→0+

hλ(x) =

{
0, x = 0,

−1, x ∈ (0, 1].
(25)

Notice that h is discontinuous.
Let us construct η̄x0

such that (15) holds. (In this example
η̄x0

depends on x0, for this reason we keep it in the
subscript.)

For x0 = 0 set η̄x0
(x) ≡ 0. In this case

g(x)− h(x) +∇η̄x0(x)f(x, u) =

{
0, x = 0,

−x+ 1, x ∈ (0, 1],

and (16) holds.
If x0 ∈ (0, 1] set

η̄x0
(x) =

{
x0 − lnx0, x ∈ [0, x0)

x− lnx, x ∈ [x0, 1].

In this case, at the points x 6= x0 where η̄x0
is differentiable,

we have

g(x)− h(x) +∇η̄x0(x)f(x, u) =
0, x = 0,

−x+ 1, x ∈ (0, x0),

−x+ 1 + (1− 1/x)xu = (1− x)(1− u), x ∈ (x0, 1].
(26)

At x = x0 function η̄x0
is not differentiable and from the

properties of the generalized gradient it follows that g(x0)−
h(x0) + ∂η̄x0

(x0)f(x0, u) is equal to the interval between
the points −x0+1 and (1−x0)(1−u). From these formulas
we see that (15)-(16) also hold.

Due to Theorem 2.2, maximizing functions in (6) are ψ̄ =
h given by (25) and η̄x0 . As seen from (24) and the bottom
line of (26), for u∗(t) := uf [x∗(t)] we have for all t > 0

g(x∗(t))− h(x∗(t)) +∇η̄x0
(x∗(t))f(x∗(t), u∗(t)) = 0.

This implies via (16) and (26) that

(x∗(t), u∗(t)) = argmin(x,u){g(x)−ψ̄(x)+∇η̄x0
(x)f(x, u)}.
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From (25) we see that

h(x∗(t)) = const

(if x0 = 0 then h(x∗(t)) ≡ 0, if x0 ∈ (0, 1] then h(x∗(t)) ≡
−1.)

Thus, (9) and (10) hold, hence, the process (x∗(·), u∗(·))
is optimal due to Theorem 2.1, which agrees with the
observation made above.
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